
Automated Attack Discovery in TCP
Congestion Control Using a Model-Guided

Approach
Cristina Nita-Rotaru

PhD work of: Samuel Jero, Hyojeong Lee and Endadul Hoque, Purdue University
MS Thesis: Anthony Peterson, Northeastern University

Khoury College of Computer Science
Northeastern University

TCP

} Transport protocol used by vast majority
of Internet traffic
} Including traffic encrypted with TLS
} Including network infrastructure protocols

like BGP
} Thousands of implementations

} Over 5,000 implementation variants
detectable by nmap

} Provides:
} Reliability
} In-order delivery
} Flow control
} Congestion control

2Cristina Nita-Rotaru

TCP attacked for 30 years!

3Cristina Nita-Rotaru

Why so many attacks?

} Complex goals
} Reliability, in-order delivery, congestion control

} Many designs and implementations
} Different designs for congestion control: Tahoe,

Reno, New Reno, SACK, Vegas, BIC, CUBIC
} Hundreds of implementations

} Written in low level languages
} Highly efficient, but error-prone

} Heavily optimized
} Prefers performance to ease of

understanding and maintenance

4

RFC 793
RFC 5681
RFC 2581
RFC 2001
RFC 6298

RFC 7323
RFC 3390
RFC 3465
RFC 2018
RFC 3042

RFC 6582 RFC 6675
RFC 2883 RFC 4015RFC 5682 RFC 6528

RFC 2861

RFC 5827

RFC 6937

RFC 3708

RFC 4653

Cristina Nita-Rotaru

Over 20 RFCs

TCP connection set up and tear down

} Connection establishment
} Check the other end exists
} Set communication

parameters on both directions
} Data sending

} Bytes are numbered
} Receiver periodically sends

cumulative ACKS to sender
} Connection teardown

} Graceful - each end releases its
side of the connection

} Abrupt - prevent attacks, lack
on resources

5

Sender Receiver
SYN

SYN,ACK
ACK

ACK,Data
ACK,Data

ACK,Data
ACK,Data

ACK

ACK,Data
ACK,Data

ACK

FIN
FIN,ACK

ACK

Connection
establishment

Data
transfer

Connection
tear down

Cristina Nita-Rotaru

TCP congestion control

} Protects against congestion collapse, provides fairness
} Many designs and implementations

} Multiple Variations: Reno, New Reno, SACK, Vegas, BBR
} Multiple Optimizations: PRR, TLP, DSACK, FRTO, RACK
} Hundreds of implementations

6Cristina Nita-Rotaru

This talk

Cristina Nita-Rotaru 7

} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Model-based testing approach

Can we automatically find attacks
in TCP implementations?

(without instrumenting the code)

Current methods

} Developer test suites
} Tests used by developer to make sure implementation is

correct
} Packetdrill [USENIX 13]

} Fuzzing
} KiF [IPTComm 07], SNOOZE [ISC 06], EXT-NSFM [IMCCC 11]
} Find crashes by subjecting implementation to random inputs

} MAX [SIGCOMM 11]
} Automatically find manipulation attacks using symbolic

execution

8

Ad-hoc, focused on benign scenarios

Difficulty reaching deep states, focus on
crashes

Requires the user to select vulnerable lines
of code

Cristina Nita-Rotaru

Performance Attacks

} Decrease the throughput
of a target connection

} Stall a connection
} Increasing the throughout

of a connection (basically
making TCP behave as UDP
– denial of service)

Availability Attacks

} Keep resources allocated --
Denial of Service (DoS)

} Make a network service
unavailable to all users

} Targeting a single
connection using very
focused actions

9Cristina Nita-Rotaru

Attack model

Our approach

Cristina Nita-Rotaru 10

} Test unmodified binaries in their
native environment for close to
deployment environment

} Testing for performance and
availabilty issues, we need
reproducible performance results

} No code instrumentation

} Minimal input from user

1.Virtualization

2.Network
emulation

3.Messages
interception

4.Message format,
metric, topology,
malicious nodes

5. AUTOMATED

Design questions

Cristina Nita-Rotaru 11

} What attacks to create:
} Disrupt message delivery: Delay, Divert, Duplicate, Drop:
} Corrupt message content: lie field by field (based on field

type range and on original value): Min and max, Zero, Scaling,
Spanning, Random

} How to decide that the result was an attack:
} Throughput, latency

} How to find attacks:
} Brute force, greedy search algorithm, weighted greedy

} When to inject an attack:
} Packet send-based, time-based, state machine-based

Attack injection: Packet send-based

} How
} For each packet, inject each

attack at packet send call
} Pros.

} Simple
} Systematic

} Cons.
} Does not support injecting

new packets
} Only considers modifying a

single packet per test

Cristina Nita-Rotaru 12

Not a good fit for finding
attacks in TCP handshake

Attack injection: Time-based

} How
} Every n seconds, inject a

message attack and observe the
result

} Supports injecting new packets
} Can hit a particular point in

execution assuming synchronized
clocks

} Cons.
} Trade-off between coverage and

scalability when selecting n

Cristina Nita-Rotaru 13

Cannot achieve scalability and coverage!

Scales with n*connection_length*attacks
A minimum sized TCP packet takes 5 microseconds to
transmit at 100Mbits/sec

12 million pkts*60 attacks*2min = 24 million hours

} Improved scalability and
coverage

} State machine identifies
key protocol areas

} Similar packet types
received in the same state
often perform similar
actions

} Combine protocol state
and packet type for attack
injection

14

Our approach: Leverage state machine

TCP Connection State Machine

Cristina Nita-Rotaru

Attack injection: State machine-based

} How
} Consider the protocol state, packet type pairs and apply

each message attack to each pair
} Pros.

} Scalable
} Can apply attacks to more than a single packet

} Cons.
} Assumes state machine is available
} Assumes state machine is implemented correctly

Cristina Nita-Rotaru 15

Decide if it was an attack or not

Cristina Nita-Rotaru 16

} During testing, performance and
resource usage information
collected to identify attacks

} Attack declared if:
} Throughput of a flow is different that

of the competing flow’s by more than
a factor of 2

} Server resources are not released at
the end of the test

SNAKE

} Supported attacks: Drop, Duplicate, Delay, Batch,
Reflect, Lie about packet fields, Inject, and
HitSeqWindow

} Current protocol state tracked by monitoring packets

17Cristina Nita-Rotaru

Leveraging State Information for Automated Attack Discovery in Transport Protocol Implementations
Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru. DSN 2015. Best Paper Award.

} Client application exits
} Client responds to all

future data with Resets
} Resets are dropped
} Server must receive ACKs

for all data before it can
close connection

18

TCP CLOSE_WAIT resource exhaustion attack

36Cristina Nita-Rotaru

Client can force the server to
keep socket state around for
13-30 minutes

TCP and DCCP
Protocol Attack Impact OS Known

TCP CLOSE_WAIT Resource
Exhaustion

Server DoS Linux
3.0/3.13

Partially

TCP Packets with Invalid Flags Fingerprinting Linux 3.0 /
Win 8.1

No

TCP Duplicate Ack Spoofing Poor Fairness Win 95 Yes

TCP Reset Attack Client DoS All Yes

TCP SYN-Reset Attack Client DoS All Yes

TCP Duplicate Ack Rate Limiting Degraded
Throughput

Win 8.1 No

DCCP Ack Mung Resource
Exhaustion

Server DoS Linux 3.13 No

DCCP In-window Ack Sequence
Number Modification

Degraded
Throughput

Linux 3.13 No

DCCP REQUEST Connection
Termination

Client DoS Linux 3.13 No

19Cristina Nita-Rotaru

This talk

Cristina Nita-Rotaru 20

} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Model-based testing approach

Can we automatically find attacks
in TCP implementations?

(without instrumenting the code)

Congestion control-related attacks

Attacks may result in:
} Decreased throughput
} Increased throughput that starves competing flows
} Stalled data transfer

21

Des
yn

c
Atta

ck

Optim
ist

ic
Ack

 Atta
ck

Ack
 D

ivi
sio

n Atta
ck

Dup Ack
 Sp

oofin
g A

tta
ck

Optim
ist

ic
Ack

 Atta
ck

 (ag
ain
)

Bl
in

d
Flo

od
in

g

At
ta

ck
Bl

ind
 th

ro
ug

hp
ut

-re
du

ct
ion

Induce
d-Sh

re
w

Atta
ckSh
re

w Atta
ck

Ack
 St

orm
 Atta

ck

1995 2000 2005 2010 2015

SNAKE could not find these attacks

Cristina Nita-Rotaru

Congestion control

Cristina Nita-Rotaru 22

} Goals
} Avoid overwhelming the

network
} Divide bandwidth to flows

sharing network
} How

} Use signals from network to
detect congestion

} TCP Congestion Control
} Leverages acknowledgments

(ACKs) to detect packet loss

How is Congestion Detected?

Packet Loss

Why? Some queue along path overflowed due to
congestion

packet loss
"not enough space"

queue capacity

packets arriving
too fast

packet
processing
rate

network switch

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 8 / 43How it works: Some queue along path
overflowed due to congestion

Packet loss as congestion signal

ACK manipulation attacks

23Cristina Nita-Rotaru

} Manipulate ACKs to fool sender about actual congestion
} Attacker needs to observe (on-path) or predict (off-path)

a sequence to be able to inject packets
} Cause sender to send too fast, too slow or stall

Congestion Control Attacks

Manipulate ACKs to fool sender about actual
congestion

Cause sender to send too fast, too slow or stall

Attacker

Data Packets
ACKs

sender receiver

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 3 / 43

Why SNAKE could not find those attacks?

} State machine we modeled
perceived congestion
control as a black-box, we
modeled only connection
establishment, steady state
was modeled as one state
} No visibility into ACKs and

their relation to the different
stages of congestion control

24Cristina Nita-Rotaru

Optimistic Ack Attack

} Acknowledging new data causes
yellow transitions to be taken

} Increases cwnd and thus throughput
with each loop

} Avoids red transitions which reduce
cwnd and thus throughput

25

How does it work: Increase sending
rate by acknowledging data that has
not been received yet

Ack
--
cwnd+=1

Slow
Start

Exponential
Backoff

Congestion
Avoidance

Fast
Recovery

TimeoutTimeout

Ti
m

eo
ut

3 Duplicate Acks
--
cwnd = cwnd/2

New Ack
--
cwnd+=MSS

Ack
--
cwnd=0

New Ack
--
cwnd+=1

3 Duplicate Acks
--
cwnd = cwnd/2

New Reno Congestion Control
State Machine

Key Takeaways:
• Attacks attempt to cause desirable transitions
• Attacks must repeatedly execute transition to

have noticeable impact

Timeout

cwnd > ssthresh

Ack
ab

ove
 high

est
 se

nt a
t lo

ss

Cristina Nita-Rotaru

Our approach for congestion control: TCPwn

} Use model-based testing to identify all possible
attacks in a scalable manner
} Use an abstract model to generate abstract strategies
} Map abstract strategies to concrete strategies
} Execute concrete strategies on implementations to find

attacks causing:
} Decreased throughput
} Increased throughput
} Connection stall

} 1. How to select the abstract model
} 2. How to find abstract strategies
} 3. How to map abstract strategies to concrete

strategies

26

SS

EB

CA

FR

Cristina Nita-Rotaru

Our model: New Reno

} State machine
} Input: Acks and Timers
} Output: Congestion Window

(cwnd)
} Four states:

} Slow Start—Quickly find
available bandwidth

} Congestion Avoidance—Steady
state sending with occasional
probe for more bandwidth

} Fast Recovery—React to loss by
slowing down

} Exponential Backoff—Timeout,
slow down

27

Ack
--
cwnd+=1

Slow
Start

Exponential
Backoff

Congestion
Avoidance

Fast
Recovery

TimeoutTimeout

Ti
m

eo
ut

3 Duplicate Acks
--
cwnd = cwnd/2

New Ack
--
cwnd+=MSS

Ack
--
cwnd=0

New Ack
--
cwnd+=1

3 Duplicate Acks
--
cwnd = cwnd/2

New Reno Congestion Control
State Machine

= sending rate

Timeout

cwnd > ssthresh

Ack
ab

ove
 high

est
 se

nt a
t lo

ss

Cristina Nita-Rotaru

Why New Reno

} General-enough state machine
} It is the starting based for _most_ TCP congestion

control algorithms
} Does not capture optimizations, but our results

show that was good enough in practice
} (As we will show later we need to also be able to

infer the state at ran time so simpler is better)
} We trade-off precision for generality

28Cristina Nita-Rotaru

Model-based attack generation

1. Consider state machine model of congestion control
2. Identify cycles containing desirable transitions

} Abstract strategy generation
3. Force TCP to follow each cycle

} Concrete strategy generation

29

1 2
3

State Machine

1,2,1…
1,2,3,1…

Abstract Strategies

Delay Msg1, Drop Msg2
Drop Msg3, Dup Msg4

Concrete Strategies

Generate all cycles with the following pattern:
• cwnd increases/decreases along cycle
• A set of actions exist that force TCP to follow this cycle

Cristina Nita-Rotaru

Abstract strategy generation

} Enumerate all paths
} No standard graph algorithm
} We adapt depth first search to this problem

} Check that path contains cycle
} Check that cycle contains desirable transitions

} Any change to cwnd
} Add path and transition conditions to abstract

strategies

30

1

32

5

4

Cycle

Desirable
TransitionAbstract strategies are merely desirable

cycles; they may not be realizable in practice!

Cristina Nita-Rotaru

From abstract to concrete strategies

} Limited to packet manipulation and injection to cause
abstract strategies

} Consider each abstract strategy separately
} Map each transition to a set of basic malicious actions

} Actions chosen to cause transition
} Based on attacker capabilities

31

1 2 3

ACK && New

ACK && Dup

Abstract Strategy
Inject Dup Ack
Inject Pre Ack
Inject Offset Ack

Duplicate Ack
Limit Ack
Pre Ack

State 1 State 2
State1:InjectDupAck,State2:DuplicateAck
State1:InjectPreAck,State2:LimitAck
State1:InjectOffsetAck,State2:PreAck
State1:InjectDupAck,State2:DuplicateAcl
…

We want to test implementations
Attacker Types:

Off-path:

On-path:

Cristina Nita-Rotaru

TCPwn design

} Test strategies created using model-based testing and
our abstract and concrete strategy generators

} Attack injector applies malicious actions
} Performance of target TCP connection identifies

attacks

32Cristina Nita-Rotaru

Automated Attack Discovery in TCP Congestion Control Using a Model-guided Approach. S.
Jero, E. Hoque, D. Choffnes, A. Mislove, C. Nita-Rotaru. NDSS 2018, CISCO Network Security
Distinguished Paper Award

Inferring congestion control state

} Approximate congestion control state and assume normal application behavior
} Take a small timeslice and observe the bytes sent and acknowledged by the

implementation

33

Slow Start

Congestion Avoidance

Fast
Recovery

Data
Ack

Time

Se
qu

en
ce

 N
um

be
r

To apply concrete strategies to an implementation, we need to know the
sender’s congestion control state

Bytes Sent*2 ≈ Bytes Acked
State: Slow Start

Bytes Sent ≈ Bytes Acked
State: Congestion Avoidance

Retransmitted packets or ACK pkts > Data pkts
State: Fast Recovery

ACK pkts == 0 and Data pkts > 0
State: Exponential Backoff

Cristina Nita-Rotaru

Evaluation

We tested five TCP implementations:

34

Found 11 classes of attacks, 8 of them unknown

Implementation Date Congestion Control
Ubuntu 16.10 (Linux 4.8) 2016 CUBIC+SACK+FRTO+ER+PRR+TLP
Ubuntu 14.04 (Linux 3.13) 2014 CUBIC+SACK+FRTO+ER+PRR+TLP
Ubuntu 11.10 (Linux 3.0) 2011 CUBIC+SACK+FRTO
Debian 2 (Linux 2.0) 1998 New Reno
Windows 8.1 2014 Compound TCP + SACK

Cristina Nita-Rotaru

Results summary

35

Attack Class Attacker Impact OS New?

Optimistic Ack On-path Increased Throughput ALL No

On-path Repeated Slow
Start

On-path Increased Throughput Ubuntu 11.10, Ubuntu
16.10

Yes

Amplified Bursts On-path Increased Throughput Ubuntu 11.10 Yes

Desync Attack Off-path Connection Stall ALL No
Ack Storm Attack Off-path Connection Stall Debian 2, Windows 8.1 No

Ack Lost Data Off-path Connection Stall ALL Yes

Slow Injected Acks Off-path Decreased Throughput Ubuntu 11.10 Yes
Sawtooth Ack Off-path Decreased Throughput Ubuntu 11.10, Ubuntu

14.04, Ubuntu 16.10,
Windows 8.1

Yes

Dup Ack Injection Off-path Decreased Throughput Debian 2, Windows 8.1 Yes

Ack Amplification Off-path Increased Throughput Ubuntu 11.10, Ubuntu
14.04, Ubuntu 16.10,
Windows 8.1

Yes

Off-path Repeated Slow
Start

Off-path Increased Throughput Ubuntu 11.10 Yes

Cristina Nita-Rotaru

Off-path repeated slow start attack

} Linux includes adjustable dup ack threshold
} Based on observed duplicate and reordered packets

} Attacker injects many duplicate acks
} Increasing dup ack threshold

} Timeout occurs before dup ack loss detection
} Enter Exponential Backoff and then Slow Start

} Instead of Fast Recovery
} Short 200ms timeout causes throughput to be >= normal
} Competing connections also suffer badly due to repeated

losses

36

Time

Sending
Rate

RTO RTO RTO RTO RTO RTO

Dup Acks

RTO

Off-path attacker can
increase throughput
for Linux senders

Cristina Nita-Rotaru

Discussion

} Use of New Reno as model
} Model limited by ability to infer sender’s state from network traffic
} More precise inference or instrumentation would enable more precise modeling
} We trade off precision for ease of application to a wide range of

implementations

} What about CUBIC, SACK, etc?
} Most algorithms/optimizations are similar to New Reno (includes: SACK, CUBIC,

TLP, PRR)
} We actually tested implementations of these and found attacks

} What about algorithms not similar to New Reno?
} For example: BBR, TFRC, Vegas
} Model-based testing still readily generates abstract strategies
} Need a method to infer sender’s congestion control state

37Cristina Nita-Rotaru

This talk

Cristina Nita-Rotaru 38

} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Despite using a different congestion control approach, is BBR

prone to acknowledgment-based manipulation attacks?
} Are there any known attacks that BBR is immune to?

Can we automatically find attacks
in TCP implementations?

(without instrumenting the code)

BBR: Motivation

Cristina Nita-Rotaru 39

How Does BBR Detect Congestion?

Estimating the bottleneck bandwidth

Why? Data cannot be delivered faster than the bottleneck can

process packets

sender
receiver

2 Mbps

70 Mbps

10 Mbps

35 Mbps

20 Mbps

bottleneck link

delivery
rate

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 14 / 43

Packet Loss Today

packet loss

large queue buffer

packet loss

small queu
buffer

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 13 / 43

How is Congestion Detected?

Packet Loss

Why? Some queue along path overflowed due to
congestion

packet loss
"not enough space"

queue capacity

packets arriving
too fast

packet
processing
rate

network switch

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 8 / 43How it works: Some queue along path
overflowed due to congestion

In modern networks: less effective

Packet loss as congestion signal

What is actually needed is to estimate
the bottleneck link and not send faster
than that

BRR: Congestion Control

Cristina Nita-Rotaru 40

How is the Bottleneck Bandwidth Estimated?

By measuring fine-grained ACK rate across RTT intervals

Termed “delivery rate samples”

time

bytes

ac
k_

ra
te

RTT

Data packets
ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 15 / 43

Detecting congestion
• Estimates the Bottleneck Bandwidth
• By measuring fine-grained ACK rate

across RTT intervals

Reacting to congestion:
} Retain max delivery rate sample for

10 RTTs, and send proportionally
} Send 25% faster 1/8 RTTs to

approach network limit
} Backs off from network when old

max delivery rate sample expires

Adapting TCPwn for BBR

} TCPwn use the congestion control finite-state machine (FSM) encoding
} Searches for all paths in FSM that manipulate its sending rate
} Map paths to actual attacks
} Execute attack while measuring sending rate

41Cristina Nita-Rotaru

How Does TCPwn Work?

1 Give TCPwn BBR congestion control finite-state
machine (FSM) encoding

2 Searches for all paths in FSM that manipulate its
sending rate

3 Map paths to actual attacks
4 Execute attack while measuring sending rate

BBR FSM

Abstract
Attack

Strategy
Finder

cwnd++ cwnd++

...
Concrete

Attack
Mapping

A

B

CD

E

A

B

CD

E

If State A
drop ACKs

...
If State B

inject dup ACKs

Testing
Enviro-
nment

Results

avg.
sending
rate...

1 2 3 4

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 19 / 43

On-path concrete attacks supported

Cristina Nita-Rotaru 42

} ACK duplication: send same ACK several times
} ACK stepping: several ACKs are dropped and then several

let through in a cycle
} ACK bursting: ACKss are sent in bursts
} Optimistic ACK: acknowledge highest byte, dropping

duplicates
} Delayed ACK: delay ACKs for a fixed amount of time
} Limited ACK: prevent ACK numbers from increasing
} Stretch ACK: forward only every nth ACK
} Off-path: ACK duplication, offset acknowledgments, and incrementing ACKS

Linux TCP BBR

Startup

cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))

bw increasing

Drain
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)

Drain Queues

ProbeBW

cwnd = bw*min_rtt*2
rmult= [1.25,0.75,1,1,1,1,1,1]
rate=bw*min_rtt*rmult[idx]

Steady state

ProbeRTT

cwnd=4
rate=bw*min_rtt*1
Probe for min RTT

RateLimited

cwnd=est_bw*min_rtt*2
rate=est_bw*min_rtt*1

Recovery

cwnd=in_ ight*2
avoid loss during recovery

bw has not increased for 3 rounds
--
fullbw=1
rate=bw*min_rtt*(ln(2)/2)

in_ ight <=bw*min_rtt
--
cwnd=bw*min_rtt*2
idx=rand(2,7)
rate=bw*min_rtt*rmult[idx]

min_rtt_ts > 10s

save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw>0 && est_bw == 0
--
cwnd=save_cwnd
idx=rand(2,7)
rate=bw*min_rtt*rmult[idx]

LostPacket
--
save_cwnd=cwnd
Update in_ ight
cwnd=in_ ight
high_water=last_sent

ACK && New
--
Update in_ ight
cwnd=in_ ight*2

ACK && New && pkt.ack >= high_water
--
cwnd=save_cwnd

ExponentialBacko

cwnd=1

loss > 50% && abs(bw-prev_bw) <= 1/8*bw && 4 rounds
--
est_bw=rate*min_rtt - drops
rate=est_b2*min_rtt
cwnd=est_bw*min_rtt*2

48 rounds
--
est_bw=0
idx=rand(2,7)
rate=est_bw*min_rtt*rmult[idx]

RTO Timeout
--
cwnd=1
fullbw=0
rto_timeout=2*rto_timeout

RTO Timeout
--
cwnd=1
rto_timeout=2*rto_timeout

ACK
--
cwnd=1
bw=0
fullbw=0

Init
--
cwnd=10
rate=10*handshake_rtt*(2/ln(2))
fullbw=0
min_rtt_ts=now()

ACK && New && MaxBW
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))

ACK && New && MinRTT
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))
min_rtt_ts=now()

ACK && New && MinRTT
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)
min_rtt_ts=now()

ACK && New && MaxBW
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)

ACK && New && MaxBW
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*rmult[idx]

ACK && New && MinRTT
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*rmult[idx]
min_rtt_ts=now()

min_rtt_ts > 10s

save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

ACK && New && MinRTT
--
rate=bw*min_rtt*1
min_rtt_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw==0
--
cwnd=save_cwnd
rate=bw*min_rtt*(2/ln(2)) min_rtt_ts > 10s

save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && est_bw > 0
--
cwnd=save_cwnd

ACK && New && MinRTT
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*1
min_rtt_ts=now()

1 round
--
idx=(idx+1)%8
rate=bw*min_rtt*rmult[idx]

RateLimited

ProbeBWDrainStartup

Recovery

Exponential
Backo

ProbeRTT

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 43 / 43

LINUX TCP BBR

Cristina Nita-Rotaru 43

} We extracted BBR FSM from code (not available anywhere)

aBBRate: Automating BBR Attack Exploration Using a Model-Based Approach A.
Peterson, S. Jero, E. Hoque, D. Choffnes, C. Nita-Rotaru. RAID 2020

Evaluation

} Generated 30,297 attack strategies
} 8,859 caused faster, slower or stalled connections
} 14 – Faster

4,025 – Slower
4,820 – Stalled (transmission halts)

} 5 classes of attacks

44

Attack class Impact
Optimistic acknowledgments Faster
Delayed acknowledgments Slower
Repeated Re-transmission timeout Slower
Re-transmission timeout stall Stalled
Sequence number de-sync stall Stalled

Cristina Nita-Rotaru

Optimistic ACK

Cristina Nita-Rotaru 45

} When BBR probes for bandwidth, it sends 25% faster for 1 RTT
} ACK rate follows the increased sending rate
} BBR believes the network can sustain the increased rate

Attack 1 – Optimistic acknowledgments

Increased sending rate
How?

1 Always ACK highest observed data sequence

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2

ACK 1

ACK 2 ACK 2

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 23 / 43

ACK highest observed data sequence,
makes the sender send faster

Attack 1 – Optimistic acknowledgments

Why?
1 When BBR probes for bandwidth, it sends 25% faster for 1 RTT

2 The ACK rate follows the increased sending rate

3 BBR believes the network can sustain the increased rate

time

bytes

RTT

Data sent
Data ACKed

ack_rate after
attack

ack_rate before
attack

BBR sending
25% faster

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 24 / 43

Delayed ACK

Cristina Nita-Rotaru 46

} Initial delay in ACKs at sender
} Sender stops sending data because no data is ACKed
} BBR believes the bottleneck bandwidth is smaller than reality
} Takes effect after 10 RTTs, due to bottleneck bandwidth filter

Attack 2 – Delayed acknowledgments

Decreased sending rate
How?

1 Delay ACKs for a constant amount of time

sender receiverattacker

DATA 1

DATA 1

ACK 1

ACK 1

delay

DATA 2

DATA 2

ACK 2

ACK 2

delay

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 25 / 43

Attack 2 – Delayed acknowledgments

Why?
1 Initial delay in ACKs at sender

2 Sender stops sending data because no data is ACKed

3 BBR believes the bottleneck bandwidth is smaller than reality

time

bytes

Data packets
ACKs
Delivery rate samples

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 26 / 43
Delay ACKs for a constant amount of time

Repeated retranssmission timeout

Cristina Nita-Rotaru 47

} Until RTO occurs, sender waits
and does not send data

} A lot of time is wasted idling
} Data is sent in small bursts

between RTOs

Attack 3 – Repeated Re-transmission timeout

Decreased sending rate
How?

1 Cause sender to RTO (re-transmission timeout)

2 Immediately following, allow through some ACKs then repeat

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4ACK 2

ACK 4

RTO

Limit ACKs Stretch ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 28 / 43

Attack 3 – Repeated Re-transmission timeout

Decreased sending rate
How?

1 Cause sender to RTO (re-transmission timeout)

2 Immediately following, allow through some ACKs then repeat

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4ACK 2

ACK 4

RTO

Limit ACKs Stretch ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 28 / 43

Attack 3 – Repeated Re-transmission timeout

Why?
1 Until RTO occurs, sender waits and does not send data

2 A lot of time is wasted idling

3 Data is sent in small bursts between RTOs

time

bytes

Data packets
ACKs

RTO

RTO

re-transmitted
segments

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 29 / 43

Limit ACKs

Stretch ACKs

Re-transmission timeout Stall

Cristina Nita-Rotaru 48

} If no new data is ACKed,
no new data will be sent

Attack 4 – Re-transmission timeout Stall

Stalled connection:
How?

1 Prevent new data from being ACKed

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4

RTO

Limit ACKs Drop ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 30 / 43

Attack 4 – Re-transmission timeout Stall

Stalled connection:
How?

1 Prevent new data from being ACKed

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4

RTO

Limit ACKs Drop ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 30 / 43

Attack 4 – Re-transmission timeout Stall

Why?
1 If no new data is ACKed, no new data will be sent

time

bytes

Data packets
ACKs

re-transmissions

re-tranmissions are
never ACKed

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 31 / 43

Limit ACKs

Drop ACKs

Attacks ineffective against TCP BBR

Cristina Nita-Rotaru 49

Divided Acknowledgments

How?

Attacker divides single ACK into n smaller ACKs

Why is BBR immune to this attack?

BBR only computes delivery rate samples for segments that the ACK

specifically acknowledges

sender receiverattacker
DATA (0:1500)

ACK (1500)

DATA (0:1500)

ACK (500)

ACK (1000)

ACK (1500)

not used
to compute
delivery rate

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 37 / 43

Acknowledgment Bursts

How?

Attacker accumulates n ACKs and sends in a burst

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

ACK 1
DATA 3

ACK 2

ACK 3

ACKs 1, 2 & 3

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 35 / 43

Duplicate Acknowledgments

How?

Duplicate single ACK n times

Why is BBR immune to this attack?

BBR does not use packet loss to signal congestion

Duplicate ACKs are not used to compute delivery rate samples

sender receiverattacker

DATA 1

ACK 1

ACK 1

not used
to compute
delivery rate

DATA 1

ACK 1

ACK 1

ACK 1

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 38 / 43

Attacker accumulates n
ACKs and sends in a burst

BBR immune
because it sends
data proportional to
average ACK rate over
RTT intervals

Attacker divides single
ACK into n smaller ACKs

BBR immune because it
only computes delivery
rate samples for segments
that the ACK specifically
acknowledges

Duplicate single ACK
n times

BBR immune because it
does not use packet loss to
signal congestion, duplicate
ACKs are not used to compute
delivery rate samples

Duplicate ACKs ACKs Bursts Divided ACKs

Summary

} Show how to find
automatically attacks in
TCP implementations
without instrumenting the
code
} Connection establishment
} Congestion control

50

Check out the code!
https://github.com/samueljero/snake

https://github.com/samueljero/TCPwn

Cristina Nita-Rotaru

ISEC Building

Acknowledgments

Cristina Nita-Rotaru 51

} Partially sponsored by NSF SaTC 1421815-CNS, NSF SATC CNS-1223834
} PhD thesis work of: Samuel Jero, MS Thesis Antony Peterson,

contributions by Endadul Hoque, Hyojeong Lee.
Relevant publications
} Leveraging State Information for Automated Attack Discovery in

Transport Protocol Implementations Samuel Jero, Hyojeong Lee, and
Cristina Nita-Rotaru. 45th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Jun. 2015. Best Paper Award.

} Automated Attack Discovery in TCP Congestion Control Using a Model-
guided Approach. Samuel Jero, Endadul Hoque, David Choffnes, Alan
Mislove, Cristina Nita-Rotaru. NDSS 2018, Feb. 2018. CISCO Network
Security Distinguished Paper Award

} aBBRate: Automating BBR Attack Exploration Using a Model-Based
Approach Anthony Peterson, Samuel Jero, Endadul Hoque, Dave Choffnes,
Cristina Nita-Rotaru. RAID 2020

