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How to get assurance about protocols?
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} Proving security properties: 
Consider adversaries
} Design

} Model checking: 
Check invariants
} Design 
} Implementation

} Testing (fuzzying): 
Random inputs, grammar-based
} Implementation
} Deployement

Implementation

Requirement

Design



Our work in this space

Cristina Nita-Rotaru 3

} Provable security
} QUIC [S&P 2015], TLS 1.3/TFO ESORICS 2019]
} Secure routing [ACM CCR 2017]
} Post-quantum [NDSS 2021]

} Compliance checking
} IoT stacks, TLS:  CHIRON [DSN 2017]
} X509 certificates: SymCerts [S&P 2017]
} NLP-learning of specifications: [IAAI 2019], [S&P 2022]

} Adversarial testing
} State machine replication: Gatling [NDSS 2012], Turret [ICDCS 2013]
} Routing: Turret-W [WiSec 2012, TON 2016]
} SDN: BEADS [RAID 2017,USENIX SECURITY 2017] 
} TCP: Snake [DSN 2015], TCPwn [NDSS2018], BBR [RAID 2020]



Challenges
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} Specification of requirements
} Uneven culture of formally defining goals 

across research communities
} Difficulty of formalizing some goals 

} Assurance of designs
} Models do not capture optimizations and other 

choices made at implementation time 
} Assurance of implementations

} Providing testcase coverage while addressing 
scalability and complexity

} Ensuring testing in realistic scenarios similar to
deployment conditions

} Machine learning will add complexity and 
attack vectors 
} Many distributed services and future generation of 

networking will have a machine learning component
Implementation

Requirement

Design

It is important to have a formal specification 
of the protocol to begin with



(Formal) Specification of Internet Protocols
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} Produced by the IETF, describe 
the main Internet’s protocols 
such as addressing, routing, 
transport, or secure protocols 
such as TLS 1.3 and QUIC

} Statuses: Internet Standard, 
Proposed Standard, Best 
Current Practice, 
Experimental, Informational, 
and Historic

“RFC documents contain technical specifications and 
organizational notes for the Internet.”

RFC 793



TCP

} Transport protocol used by vast majority 
of Internet traffic
} Including traffic encrypted with TLS
} Including network infrastructure protocols 

like BGP
} Thousands of implementations

} Over 5,000 implementation variants 
detectable by nmap

} Provides:
} Reliability
} In-order delivery
} Flow control
} Congestion control
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RFC 793
RFC 5681
RFC 2581
RFC 2001
RFC 6298

RFC 7323
RFC 3390
RFC 3465
RFC 2018
RFC 3042

RFC 6582 RFC 6675
RFC 2883 RFC 4015RFC 5682 RFC 6528

RFC 2861
RFC 5827
RFC 6937
RFC 3708
RFC 4653

TCP functionality is 
described in over 20 RFCs



… attacked for over 35 years!
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Leveraging State Information for Automated Attack Discovery in Transport 
Protocol Implementations. S. Jero, H. Lee, and C. Nita-Rotaru. In the 45th 
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 
June 2015. Best paper award.



QUIC
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} Protocol developed by Google 
and implemented in Chrome 
since 2013

} Main goal is reducing latency 
} Design goals

} Provide security protection 
comparable to TLS 

} Reduce connection latency by 
collapsing TCP and TLS 
functionality in one layer: 
requires UDP

} Lists performance of connection 
establishment (0-RTT) as a goal exchange data

serverclient
QUIC

TCP session 
establishment

TLS key establishment
+

client server

TLS

exchange data



… deployed without security analysis
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} The initial document provided some informal arguments
} Specification was incomplete 
} Did not include any formal security analysis

} Security proofs were done by the research community 
based on analyzing the code
} Fischlin & Günther, ACM CCS 2014
} How Secure and Quick is QUIC? Provable Security and 

Performance Analyses. R. Lychev, S. Jero, A. Boldyreva, and C. 
Nita-Rotaru. 36th IEEE Symposium on Security and Privacy 
(Oakland), May 2015. Awarded IETF/IRTF Applied Networking 
Research Prize, 2016.

} QUIC was standardized in May 2021, as RFC 9000 



BBR Congestion Control
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Packet Loss Today

packet loss

large queue buffer

packet loss

small queu
buffer

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 13 / 43

How is Congestion Detected?

Packet Loss

Why? Some queue along path overflowed due to
congestion

packet loss
"not enough space"

queue capacity

packets arriving
too fast

packet 
processing
rate

network switch

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 8 / 43How it works: Some queue along path 
overflowed due to congestion 

In modern networks: less effective

Packet loss as congestion signal

How Does BBR Detect Congestion?

Estimating the bottleneck bandwidth

Why? Data cannot be delivered faster than the bottleneck can

process packets

sender
receiver

2 Mbps

70 Mbps

10 Mbps

35 Mbps

20 Mbps

bottleneck link

delivery 
rate

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 14 / 43What is actually needed is to estimate 
the bottleneck link and not send faster 
than that

Available in Linux TCP implementation



TCPwn: Automated attacks against 
congestion control
} Use model-based testing to identify all 

possible attacks in a scalable manner
} Use an abstract model to generate abstract strategies
} Map abstract strategies to concrete strategies
} Execute concrete strategies on implementations to 

find attacks causing:
} Decreased throughput
} Increased throughput
} Connection stall
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Automated Attack Discovery in TCP Congestion Control Using a Model-
guided Approach. Samuel Jero, Endadul Hoque, David Choffnes, Alan Mislove, 
Cristina Nita-Rotaru. NDSS 2018, Feb. 2018. CISCO Network Security 
Distinguished Paper Award.



… TCPwn applied on BBR
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Attack class Impact
Optimistic acknowledgments Faster
Delayed acknowledgments Slower
Repeated Re-transmission timeout Slower
Re-transmission timeout stall Stalled
Sequence number de-sync stall Stalled

Cristina Nita-Rotaru

aBBRate: Automating BBR Attack Exploration Using a Model-Based 
Approach Anthony Peterson, Samuel Jero, Endadul Hoque, Dave Choffnes, 
Cristina Nita-Rotaru. RAID 2020.

BBR is currently an Internet Draft not standardized yet
We had to derive the model from the code ….



Why so many attacks?

} Most of these protocols have complex goals
} Many designs and implementations
} Written in low level languages, that are highly 

efficient, but error-prone
} Heavily optimized
} Specifications incomplete, have ambiguities or 

contradictory requirements
} Often implemented and deployed before 

specified, i.e. the code is the specification

13Cristina Nita-Rotaru



Modeling protocols with FSMs
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} Model of computation 
defined by a list of states, 
the initial state, and the 
inputs that trigger each 
transition
} Change from one state to 

another is called 
a transition

} For protocols events are 
sending , receiving 
messages and timeouts

} Protocol fuzzying, model 
checking, attack synthesis 
rely or may benefit from 
FSM



Obtaining an FSM
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Manual analysis
Automated FSM construction from traces

Manual analysis
How to automatically derive FSM ???



This talk
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Can we automatically extract formal 
specifications of protocols (FSM) from RFC?

Can we synthesize attacks based on 
the extracted FSM? 

Automated Attack Synthesis by Extracting Finite State Machines from Protocol 
Specification Documents Maria Leonor Pacheco, Max von Hippel, Ben Weintraub 
Dan Goldwasser Cristina Nita-Rotaru. IEEE Security and Privacy, 2022.

https://github.com/RFCNLP



What’s in an RFC?
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Challenges: How to define the NLP problem
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} NLP semantic parsing studies methods for translating 
natural language into a complete formal representation

} RFCs do not contain canonical/reference FSMs, they have 
mistakes, omissions, ambiguities solved by human 
experts

} Unlike traditional NLP semantic parsing problems  in our 
setting there is not a complete one-to-one translation 
between the text and the FSM 

How to define a problem we could measure if 
we succeeded or not?



Challenges: What NLP approach to choose?
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} Off-the-shelf NLP tools: Already available typically 
trained over news documents
} When applied to technical documents that include many out-

of-vocabulary words (i.e. technical terms), their performance 
degrades substantially 

} Rule-based systems: Developed to support information 
extraction based on the specific format of the textual 
input. 
} Different RFC documents define variables, constraints, and 

temporal behaviors totally differently
} Training such systems from scratch requires significant human 

effort annotating data with the relevant labels, which could be 
different for different protocols Which approach to choose?



Our approach
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1. Learn large-scale word-representation for technical language with off-the-shelf tools
2. Define and learn protocol-independent information language from RFC with focused 

zero-shot learning to adapt to new, unobserved protocols without re-training
3. Use rule-based mapping from protocol-independent information to a protocol FSM 



Learn distributed word representations
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} Static word representations: learn 
a single vector for each word form

} Contextualized representations: 
allow the same word form to take 
different meanings in different 
context; compute different vectors 
for each mention
} Example: “The connection is in 

error and should be reset with 
Reset Code 5” 

} State-of-the art: BERT is an neural 
architecture based on a 
Transformer that computes a 
contextualized representation

} BERT models were pre-trained on 
the Books Corpus (800M words) 
and English Wikipedia (2,500M 
words) and are publicly available

BERT uses two learning strategies:
• masked language modeling: masks 

15% of the words in each sentence and 
attempts to predict them

• next sentence prediction: uses pairs of 
sentences as input, and learns to 
predict whether the second sentence 
is the subsequent sentence 



Use BERT for technical language embedding
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} Goal is to learn distributed word 
representations for technical 
language 

} It was shown that further training 
on technical language improves 
performance 

} We pre-train BERT using the 
masked language model and the 
next sentence prediction 
objective using networking data 

} No  supervision needed for this 
step

Dataset
• Full set of RFC documents 

publicly available in ietf.org and 
rfc-editor.org

• Documents cover different 
aspects of computer 
networking, including protocols, 
procedures, programs, concepts, 
meeting notes and opinions.

• 8,858 documents and about 
475M words 



Our general Protocol Grammar
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} We use this grammar to 
define the protocol semantic 
we want to extract from RFCs

} Captures the semantic of a 
protocol FSM

} General enough that is 
applies to many protocols

} We use it to annotate the RFC
} Four types of annotation tags:

} Definition tags
} Reference tags
} State machine tags
} Control flow tags

bool ::= true | false
type ::= send | receive | issue
def-tag ::= def_state | def_var | def_event
ref-state ::= ref_state id="##"
ref-event ::= ref_event id="##" type="type"
ref-tag ::= ref-event | ref-state
def-atom ::= <def-tag>engl</def-tag>
sm-atom ::= <ref-tag>engl</ref-tag> | engl
sm-tag ::= trigger | variable | error | timer
act-atom ::= <arg>sm-atom</arg> | sm-atom
act-struct::= act-struct | act-struct act-atom
trn-arg ::= arg_source | arg_target | arg_inter
trn-atom ::= <trn-arg>sm-atom<trn-arg> | sm-atom
trn-struct::= trn-struct | trn-struct trn-atom
ctl-atom ::= <sm-tag>sm-atom</sm-tag>

| <action type="type">act-struct</action>
| <transition>trn-struct</transition>
| sm-atom

ctl-struct::= ctl-atom | ctl-struct ctl-atom
ctl-rel ::= relevant=bool
control ::= <control ctl-rel>ctl-struct</control>
e ::= control | ctl-atom | def-atom

| e_0 e_1

Fig. 2: BNF grammar for RFC annotation.

A. Background
Distributed representations of words aim to capture meaning

in a numerical vector. Unlike symbolic representations of
words, that use binary values to signal if the words are present
or not, word embeddings have the ability to generalize by
pushing semantically similar words closer to each other in
the embedding space. When using binary representations of
words, we can only consider features that we have seen during
training. Consider a scenario in which during training, we only
have access to DCCP. If we were to test our learned model
on TCP, we could not represent words that were not observed
during training.

Several models have been suggested to learn distributed word
representations. Some approaches rely on matrix factorization
of a general word co-occurrence matrix [29], while other
approaches use neural networks trained to predict the context
surrounding a word, and in the process, learn efficient word
embedding representations in their inner layers [30], [31]. In
this paper we focus on contextualized word representations.
Unlike static word representations that learn a single vector for
each word form, contextualized representations allow the same
word form to take different meanings in different contexts.
For example, in the sentence “The connection is in error and
should be reset with Reset Code 5”, the word “reset” has two
different meanings. Contextualized representations compute
different vectors for each mention.

State-of-the-art pre-trained language models provide a way
to derive contextualized representations of text, while allowing
practitioners to fine-tune these representations for any given
classification task. One example of such models is BERT
(Bidirectional Encoder Representations from Transformers)
[32]. BERT is built using a Transformer, a neural architecture

that learns contextual relations between words in a word
sequence. A Transformer network includes two mechanisms,
an encoder that reads the input sequence, and a decoder that
predicts an output sequence. Unlike directional models that
read the input sequentially, Transformer encoders read the
whole sequence at once, and allow the representation of a
given word to be informed by all of its surroundings, left and
right. Details regarding the Transformer architecture can be
found in the original paper [33].

To learn representations, BERT uses two learning strategies,
masked language modeling and next sentence prediction. The
first strategy masks 15% of the words in each sentence, and
attempts to predict them. The second strategy uses pairs of
sentences as input, and learns to predict whether the second
sentence is the subsequent sentence in the original document.
Figure 3 illustrates this process. BERT models were pre-trained
on the BooksCorpus (800M words) and English Wikipedia
(2,500M words) and are publicly available1.

Fig. 3: BERT pre-training.

B. Our Embedding
While we could use pre-trained language models directly

for predicting FSM tags, we note that these models were
trained on general document repositories. To obtain a model
that better represents the domain vocabulary, we further
pre-train BERT using the masked language model and the
next sentence prediction objective using networking data. We
collected the full set of RFC documents publicly available
in ietf.org and rfc-editor.org. These documents
cover different aspects of computer networking, including
protocols, procedures, programs, concepts, meeting notes and
opinions. The resulting dataset consists of 8,858 documents
and approximately 475M words. Note that we do not need any
supervision for this step.

Previous findings suggest that further pre-training large
language models on the domain of the target task consistently
improves performance [34]. Our experiments in Section VIII
support this hypothesis.

1https://github.com/google-research/bert
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Definition tags
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} Whey we need them? Main entities related to a protocol, 
used to annotate the names of states, events, and variables

} State definition. We annotate it when the name of a state is 
introduced in the text

<def_state id="##">IDLE</def_state>, where ## is replaced by the identifier

} Event definition. Same annotation conventions as states

<def_event id="##">

} Variable definition. Defined in a similar way to events and 
states, but they do not include identifiers because they are 
not explicitly referenced by annotation in the rest of the text 



Reference tags
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} Why we need them? When an event or state occurs in the text, 
it must be linked to an event or state which was tagged 
} RFC may formally refer to one event as “ACK”, but throughout the 

text these ACKs may also be referred to as “acknowledgments”
} State reference. States are referenced by surrounding the 

state’s name with the <ref_state id="##"> tag, where ## 
corresponds to the appropriate SID that was included with the 
state’s <def_state> tag

enter <ref_state id="2">SYN-SENT</ref_state> state
} Event reference. Same convention as state references. The 

event reference must also include the type of event, where the 
three possible types are: send, receive, and compute 

a <ref_event type="send" id="10">SYN</ref_event> segment 



State machine tags
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} Transition. Denotes a state change. We use argument tags <arg_source>, <arg_target> and 
<arg_intermediate> to specify the segment in the text

<transition>The server moves from the <arg_source>OPEN state</arg_source>, possibly through the 
<arg_inter>CLOSEREQ state</arg_inter>, to <arg_target>CLOSED</arg_target></transition>

“OPEN”, “CLOSEREQ” and “CLOSED” would also be enclosed in a <ref_state> tag. 

} Variable. Certain variables may be tracked as part of the state machine.

<variable>SND.UP <- SND.NXT-1</variable> 

} Timer. This tag is used if a timer value is changed or set

<timer>start the time-wait timer</timer> 

} Error. If a context results in an error or warning being thrown

<error>signal the user error: connection aborted due to user timeout</error>

} Action. Three types of actions: send, receive and issue. We use an argument tag <arg> to 
specify the argument in the text being sent, received or computed. 

<action type="send">Send <arg>a SYN segment</arg></action>. 
SYN” would also be enclosed in a <ref_event> tag: <ref_eventid="10">SYN</ref_event> 



Control flow tags
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} Why we need them? To 
indicate that some flow 
control or conditional logic is 
about to follow

} Flow control logic contains a 
<trigger> tag, which captures 
the event that triggers some 
action in the state machine, 
followed by one or more of 
the state machine tags

} A single block of control tags 
may contain multiple state 
machine tags
} Multiple state machine tags

organized in a list. In this 
case, the implication is that 
the state machine tags 
should all be executed if the 
initial trigger condition is true

APPENDIX

Alg. EXTRACTTRAN(xml,T)

Inputs:

• xml intermediary representation
• transition block T, contained with xml.

Outputs:

• A set TT containing potential transitions s
`�! s

0

described in and around the block T.

1. from := EXTRACTSOURCESTATE(T, xml)
2. to := EXTRACTTARGETSTATE(T, xml)
3. int := EXTRACTINTERMEDIARYSTATES(T, xml)
4. C := CLOSESTCONTROLCONTAINING(T, xml)
5. outer := [ ]
6. If (to = null and from = null):

1. to := SCANCHILDRENFORTARGETSTATE(T)
7. If (to = null or from = null):

1. outer := SCANCONTEXTFORSTATES(C,T)
8. ` := ✏

9. i := 1
10. While (not SEARCHEDENOUGH(`, outer, i, or,C)):

1. If ` = ✏:
/* ` is the transition label, brk indicates if the
source states are given outside C, and or indicates
if ` is of the form “`0 or `1 or ... or `k”. */
1. (`, brk, or) := EXTRACTTRANLBL(T,C).

2. If outer = [ ] and (from = null or to = null):
1. outer := SCANCONTEXTFORSTATES(C,T)

3. C := CLOSESTCONTROLCONTAINING(C, xml)
4. i++

11. (fromS, to) := FIXFROMTOSTATES(from, to, outer)
12. If int 6= [ ]:

1. (`0, ..., `j) := PARTITIONLABELACROSS(`, int)
2. Let S0 := {s0

`0�! s1 | s0 2 fromS}
3. Let S1 := {s1

`1�! s2, ..., sj
`j�! to}

4. Return S0 [ S1

13. If brk = true:
a) C := CLOSESTCONTROLCONTAINING(T, xml)
b) C0 := CLOSESTCONTROLCONTAINING(C, xml)
c) fromS := SCANCONTEXTFORSTATES(C0

,C)

14. Return {s0
`�! to | s0 2 fromS}.

A. Grammar Examples
Figure 7 shows an example of an annotated block from the

TCP RFC. Here, we can observe a list of events within one
control statement

B. Segmentation Results
In Table VI, we show the detailed performance of different

segmentation strategies to create the base textual unit in our

<control>
<trigger>

if active and the foreign socket is
specified,

</trigger>
<action type="issue">

issue <arg>a <ref_event id="10">SYN</ref_event>
segment</arg>.

</action>
<variable>

An initial send sequence number (ISS) is
selected.

</variable>
<action type="send">

A <arg><ref_event id="10">SYN</ref_event>
segment of the form

<SEQ=ISS><CTL=SYN></arg> is sent.
</action>
<variable>

Set SND.UNA to ISS, SND.NXT to ISS+1,
</variable>
<transition>

enter the <arg_target><ref_state
id="2">SYN-SENT</ref_state>
state<arg_target>

</transition>
</control>

Fig. 7: Example of flow control annotations for TCP.

sequence-to-sequence models.

C. FSM Extraction Errors Examples
In Table VII, we show examples of FSM extraction errors.

D. Finite State Machine Figures
We present FSMs for TCP and DCCP in Figures 8,9 and

10. Note that in the DCCP diagrams we omit the states
CHANGING, STABLE, and UNSTABLE, which are described
in the RFC but are (a) unreachable dead code in all the extracted
FSMs and (b) unrelated to the connection routine. We use ⇤ as
a wild-card, ! to mean send, ? to mean receive, == to denote
variable-reading, and := to denote variable-writing.

E. Attack Synthesis Errors Examples
Below we show examples of attacks that are synthesized

with the canonical FSM, but not found with the NLP models.
TCP.Canonical.3.9 spoofs both peers passively. When tested

against �3, the attack causes the peers to end up in a deadlock
in SYN_RECEIVED⇥SYN_RECEIVED. None of the TCP
Gold, LINEARCRF+R, or NEURALCRF+R attacks do passive
spoofing; nor do any of them cause the peers to deadlock in
SYN_RECEIVED⇥SYN_RECEIVED.

DCCP.Canonical.2.18 spoofs both peers actively. When
tested against ✓2, the attack causes the peers to nav-
igate to RESPOND⇥RESPOND. On the way, they enter
TIME_WAIT⇥TIME_WAIT, violating ✓2. None of the DCCP
Gold, LINEARCRF+R, or NEURALCRF+R attacks do ac-
tive spoofing; nor do any of them conclude in the state
RESPOND⇥RESPOND.

14



Protocol information extraction
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} Zero-shot approach: Have a system that can adapt to new, 
unobserved protocols without re-training the system 

} We build on our general protocol grammar and the technical 
language embedding learnt with BERT and further trained on 
protocols RFC dataset (about 9000 documents).

} We identify a list of protocols and annotate them with our 
grammar

} Our goal is to parse the document according to our grammar,
using a sequence-to-sequence model

} We segment paragraphs into smaller units (individual words, 
chunks or phrases). Then, we map each unit to a particular tag 



Linear-Chain Conditional Random Fields 
(LINEARCRF) 
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} Uses a set of extracted features over each chunk 
} Conditional Random Fields model the prediction as a 

probabilistic graphical model
} Chain Conditional Random Fields specifically consider 

sequential dependencies in the predictions 
} Let y be a tag sequence and x an input sequence of 

textual units, maximize the conditional probability: 

f is a linear scoring function learned with parameter vector θ over a feature vector xt

} We use the LINEARCRF provided by the pystruct library 

V. ZERO-SHOT PROTOCOL INFORMATION EXTRACTION

In this section we describe our design for a protocol
information extraction system. Our main goal is to have a
system that can adapt to new, unobserved protocols without
re-training the system. To support this, we build on the general
grammar introduced in Section III that focuses on concepts
relevant to a wider set of protocols and takes advantage of the
technical language embedding described in Section IV.

A. Sequence-to-Sequence Model
To parse specification documents, we designed a sequence-to-

sequence model that receives text blocks as input, and outputs
a sequence of tags corresponding to the grammar described in
Section III. To tag the text, we use BIO (Beginning, Inside,
Outside) tag labels. Text blocks correspond to paragraphs in the
RFC document. Initially, we segment paragraphs into smaller
units (e.g. individual words, chunks or phrases). Then, we map
each unit to a particular tag. To illustrate this process, consider
the parsed statement in Figure 4, mapping chunks to BIO-tags.

Fig. 4: BIO example.

We consider two models to learn the sequence to sequence
mapping: a linear model we refer to as LINEARCRF, and a
neural model based on the BERT embedding, which we refer
to as NEURALCRF.

Linear-Chain Conditional Random Fields (LINEARCRF)
works on a set of extracted features over each chunk. Condi-
tional Random Fields model the prediction as a probabilistic
graphical model; Chain Conditional Random Fields specifically
consider sequential dependencies in the predictions [35].

Let y be a tag sequence and x an input sequence of textual
units. We want to maximize the conditional probability:

p(y|x) = p(y,x)P
y0 p(y0,x)

p(x,y) =
TY

t=1

exp(f(yt, yt�1,xt;✓))

(1)

Where f is a linear scoring function learned with parameter
vector ✓ over a feature vector xt. To learn ✓, we minimize
the negative log-likelihood � log p(y,x). Learning is made
tractable by using the forward-backward algorithm to calculate
the partition function Z(x) =

P
y0 p(y0

,x).
The second model considered is a BERT encoder enhanced

with a Bidirectional LSTM CRF layer (NEURALCRF). LSTMs
are recurrent neural networks, a class of neural network where
connections between nodes form a directed graph along a
sequence [36]. We outline this model in Figure 5. The BERT
encoder is used to create chunk-level representations from word
sequences. The resulting sequence of chunks is then processed

Fig. 5: NEURALCRF.

using a BiLSTM. A softmax activation is used to obtain scores
for the labels. Finally, we add a CRF layer on top. This way,
we are able to leverage the sequential dependencies both in
the representation and in the output space [37], [38]. Note that
BERT enforces a limit of 512 tokens per sequence, which is
not enough to represent some of our control sequences. For
this reason, we leverage a BiLSTM instead of using the CRF
layer directly over BERT.

To formalize the NEURALCRF model, we first consider a
textual unit containing n words (w0,w1, ...,wn�1). A BERT
encoder is used to obtain a single representation u for the full
textual unit, resulting in a d-dimensional vector.

Then, a BiLSTM computes a representation over the se-
quence of embedded textual units (u0,u1, ...,um�1) to obtain
representations ht = [

�!
ht;
 �
ht] for every textual unit t. Here,

�!
ht

represents the left context of the sequence, and
 �
ht represents

the right context, at every unit t.
Finally, we add a CRF layer over these representations by

replacing the function f in Eq. 1 with:

f(yt, yt�1,xt) = ht + Pyt,yt�1 (2)

Where xt represents the input for that textual unit, ht is the
representation of the textual unit computed with our model and
P is a learned parameter matrix representing the transitions
between labels. Like in the linear CRF case, we minimize
the negative log likelihood, � log p(y,x), to jointly learn the
parameters of the BERT encoder, the BiLSTM layer, and the
transition matrix P .

Predictions for both models are done using the Viterbi
algorithm. Viterbi is a dynamic programming algorithm for
finding the most likely sequence of states. Viterbi takes into
account both emission (h2

t ), and transition (Pyt,yt�1) scores
at each unit t in the sequence.

B. Features
For each textual unit in the input, we extract a set of features

to capture properties about the input and help us make a correct
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} LSTMs are recurrent neural 
networks, a class of neural 
network that can learn long-
term dependencies

} Architecture:
} BERT encoder is used to 

create chunk-level 
representations from word 
sequences 

} Resulting sequence of 
chunks is then processed 
using a Bidirectional LSTM 
(BiLSTM) 

} A softmax activation is used 
to obtain scores for the 
labels 

} CRF on top to leverage the 
sequential dependencies 
also in the output space 
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} Vocabulary: Bag-of-word features for all stemmed forms of the words in 
the training data

} Capitalization Patterns: all letters are in lower case, all letters are 
capitalized, the first letter is capitalized, the word is in camel case, the 
word has only symbols, the word has only numeric characters, or the 
word has any other form of alpha-numeric capitalization

} Logical and Mathematical Expression Patterns: Different patterns 
corresponding to logical and mathematical expressions

} Dictionary Features: Indicator features for a held-out dictionary of 
reserved state and variable names

} Part-of-Speech Tags: Part-of-speech (POS) tags for all observed words 
(e.g. noun, verb, adjective). We use an off-the-shelf tagger

} Position Features: Position and relative position for each word in a chunk
} How we use them:

} LINEARCRF: features vector used as the input xt for each textual unit t 
} NEURALCRF: features vector concatenated to the resulting vector ut from the 

BERT encoder, before being inputted to the BiLSTM layer 
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} Use exact lexical matching to identify explicit mentions to 
states and events in the predicted sequences using a 
dictionary built on the definition tags 

} For triggers, transitions, actions, variables, and errors we use 
an off-the-shelf Semantic Role Labeler (SRL) to identify 
predicted actions as either send, receive, or issue, depending 
on the verb used, as well as to identify the segment in the text 
being sent, received, or issued
} Example: given a sentence like “Send a SYN segment”, an SRL model 

would identify the verb “to send” as the predicate, and “SYN 
segment” as the argument

} (We experiment with a simple set of rules to correct some 
easy cases that the prediction models fail to identify )
} We refer to these models as LINEARCRF+R and NEURALCRF+R
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} We need a procedure to extract an FSM from the intermediary 
representation 

} Contain pointers for where to look in the intermediary 
representation in order to guess the source and target states, and 
labels, for the FSM transitions. 
} Might describe no transitions at all
} Might describe multiple transitions at once
} Might describe only part of a transition

<control relevant="true">
<trigger><def_state id="3">REQUEST</def_state></trigger>

<transition>A client socket enters this state, from <arg_source><ref_state
id="1">CLOSED</ref_state></arg_source>,</transition> after <action type=send>sending a

<arg><ref_event type="send" id="1">DCCP-Request</ref_event> packet</arg> to try to 
initiate a connection.</action>
</control>
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} Gold: FSM obtained with the entire annotation; 
documents annotated using the grammar we defined;

} LinearCRF: FSM obtained with the linear model
} NeuralCRF: FSM obtained with the neural networks 

model
} LinearCRF+R: same but with some rules
} NeuralCRF+R: same but with some rules

} 6 protocols: BGP, DCCP, LTP, PPTP, SCTP, TCP 
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can appreciate both the advantage of the technical embeddings,
as well as the advantage of the BiLSTM CRF layer. We find
that leveraging expressive neural representations for sequence-
to-sequence models is advantageous for this task. Note that
both the NEURALCRF and the LINEARCRF models make use
of the full set of features introduced in Section V-B. Finally,
we find that applying rules on top of our models to correct
predictions does not improve their general performance.

In Table II, we show the individual performance for the six
protocols and show that we obtain better performance using
the NEURALCRF model for all protocols.

TABLE II: Results by Protocol for our Best Models

Protocol LINEARCRF NEURALCRF # Control
Strict Exact Strict Exact Statements

BGPv4 52.99 82.56 57.34 86.86 6
DCCP 69.74 92.73 75.60 93.25 150
LTP 67.25 94.44 74.22 94.41 65
PPTP 84.21 96.05 87.34 98.73 25
SCTP 52.21 65.49 58.54 65.85 19
TCP 57.46 82.64 59.82 81.90 31

4) FSM extraction: We compare both the NLP and the Gold
extracted FSMs with the Canonical FSM in Table III, based
on how many states and transitions are successfully extracted.
Both the NLP and the Gold FSMs are extracted from the
predicted/annotated intermediary representation introduced in
Section III, by using the procedure outlined in Section VI.
The results presented in Tables I and II correspond to how
accurately we can recover this intermediary representation from
the text, before we attempt to construct the FSM.

Note that even with Gold annotations, we are not able
to extract all expected transitions because in some cases,
the transitions are not explicit in the text or in other cases,
our general grammar and extraction procedure are not able
to capture the intended behavior. In all cases, we are able
to recover all relevant states. Graphic visualizations for all
resulting state machines can be found in the Appendix.

We manually analyzed all the partially correct, incorrect
and missed transitions in Table III and found that, for the
Gold FSM, they are caused by ambiguities in the RFC, or the
information about some transition missing completely (67%
for TCP and 96% for DCCP). The remaining errors are due to
difficulties capturing complex logical flows using our method.
The difference between the Gold FSMs and the predicted FSMs
can always be attributed to errors in the text predictions.

For example, we notice that one incorrect behavior in
the TCP Gold FSM is caused by ambiguity in the TCP
RFC text. The only outgoing communication transition in
the TCP Gold FSM from SYN_SENT sends ACK and goes to
SYN_RECEIVED. The correct logic is to receive SYN first,
before sending the ACK and transitioning. The TCP RFC does
not textually mention the expected SYN. We only know to
expect it because it is illustrated in Figure 6 of the RFC. We
show more examples of FSM extraction errors in the Appendix.

5) Summary: In Tables I and II we evaluated how much of
our intermediary representation we could extract from natural
language, while in Table III we evaluated how much of the

TABLE III: Transitions Extracted (Partially Correct means
source and target state are correct, and at least one of the
events on the edge is also correct).

TCP FSM Canonical Extracted Correct Partially Incorrect Not FoundCorrect
Gold

20

18 8 8 2 4
LINEARCRF 28 2 3 23 15
LINEARCRF+R 30 7 10 13 3
NEURALCRF 11 2 3 6 15
NEURALCRF+R 30 7 10 13 3

DCCP FSM Canonical Extracted Correct Partially Incorrect Not FoundCorrect
Gold

34

24 15 1 8 18
LINEARCRF 8 1 5 2 28
LINEARCRF+R 17 6 3 8 25
NEURALCRF 20 9 1 10 24
NEURALCRF+R 19 8 3 8 23

canonical FSM we recovered after running the extraction
procedure in Section VI. There is not a one-to-one mapping
between the intermediary representation extracted from the
text and the resulting state machines for four reasons: 1) Not
all Canonical FSM behaviors are clearly and unambiguously
described in the text. 2) Some behaviors are mentioned more
than once, giving us several opportunities to extract an expected
transition. 3) We have annotated for a larger set of behaviors
than needed to extract the communication transitions, we do
this to be able to capture the language used to express FSM
behaviors. 4) The metrics shown in Tables I and II are based
on text span matching, however, we do not need to have a strict
match in a text segment to successfully recover a behavior.

Our results show that learning technical word representations
is useful for the task of extracting FSM information from
protocol specifications. We demonstrate that we can recover
a significant portion of the intermediary representation for
the six evaluated protocols. Moreover, we show that we
can recover partially correct FSMs by using the procedure
outlined in Section VI. This analysis indicates that the grammar
proposed in Section III can capture enough information to
reconstruct a significant portion of the FSM, while being
general enough to be applied to various protocols. Ambiguity
and missed information in the RFCs result in transitions being
partially/incorrectly recovered or missed. We show examples
in the Appendix and discuss limitations in Section X.

B. Attacker Synthesis Evaluation

In this section we use KORG [18] to automatically synthesize
attackers against the TCP and DCCP connection establishment
and tear-down routines. Note we cannot extract Canonical
FSMs like the ones manually derived and used by [18]. Our
FSMs are partial, and we had to modify KORG to make it work
with partial FSMs. We also had to modify KORG to support
DCCP. We use our modified-KORG on all the models including
the Canonical FSM and report these results below.

1) Methodology: We apply the same methodology to TCP
and DCCP. We use the intermediary representations obtained
with the models with best results for transition extraction
(LINEARCRF+R and NEURALCRF+R), and Gold. We then
extract FSMs and transpile them to PROMELA programs. All
FSMs are presented in Appendix D.
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program. For TCP we adapt the Canonical program from [18].
For DCCP, no such program was available and we created our
own hand-written Canonical PROMELA program.

�1 =“No half-open connections.”
�2 =“Passive/active establishment eventually succeeds.”
�3 =“Peers don’t get stuck.”
�4 =“SYN_RECEIVED is eventually followed by

ESTABLISHED, FIN_WAIT_1, or CLOSED.”

(3)

✓1 =“The peers don’t both loop into being stuck or
infinitely looping.”

✓2 =“The peers are never both in TIME_WAIT.”
✓3 =“The first peer doesn’t loop into being stuck or

infinitely looping.”
✓4 =“The peers are never both in CLOSE_REQ.”

(4)

Note that KORG expects that all its inputs (P , Q, and �) are
correct. However, since we test on an automatically extracted
PROMELA program P , which may have some incorrect
transitions when compared to the corresponding Canonical
program, this assumption is broken. We therefore adapted
KORG to work on incomplete or imperfect programs, while
preserving the formal guarantees from the original paper (except
for soundness, which depends on how different the extracted
program is from the Canonical one).

VIII. EVALUATION

In this section we present an evaluation of both NLP tasks
and attacker synthesis.

We use “Gold intermediary representation” to refer to the
manual text annotations obtained using our protocol grammar
presented in Section III. We use “Canonical FSM” to refer to
the FSM which was derived from expert domain knowledge, the
protocol RFC, and FSM diagrams in textbooks and literature.

A. Information Extraction Evaluation
We evaluate how much of the intermediary representation

specified in Section III we can recover.
1) Methodology: We evaluate the output of the specification

document parser in six different protocols: BGPv4, DCCP,
LTP, PPTP, SCTP and TCP. We use a leave-one-out setup, by
training on five protocols and testing on the remaining one. This
means that no portions of a test protocol are observed during
training. To artificially introduce more training sequences, we
split recursive control statements into multiple statements at
training time. At test time, we evaluate on each example once.

We evaluate predictions at the token-level and at the span-
level. For tokens, we have 19 labels: beginning and inside
tags for trigger, action, error, timer, transition and variable,
as well as the outside label. We use standard classification
metrics to measure the token-level prediction performance. We
infer the control spans based on the indentation in the original
documents. For identifying event and state references, we do
direct lexical matching using a dictionary built on the definition
tags described in Section III-A.

TABLE I: Average Results for Different Models

Model Token-level Span-level
Acc Weighted F1 Macro F1 Strict Exact

Rule-based 31.08 25.94 29.37 41.58 41.78
BERT-base 58.93 56.72 51.33 60.77 84.18
BERT-technical 62.38 60.31 52.50 62.84 83.81
LINEARCRF 58.95 56.61 49.58 63.98 85.65
LINEARCRF+R 58.60 56.79 50.62 63.52 85.18
NEURALCRF 64.42 64.18 54.95 68.81 86.83

NEURALCRF+R 62.79 62.50 53.64 66.22 86.10

To evaluate spans, we use the metrics introduced for the
International Workshop on Semantic Evaluation (SemEval)
2013 task on named entity extraction [41]. We use the SemEval
evaluation script on our data. In this case, we have six span
types, plus the outside tag. The metrics are outlined below.

1) Strict matching, with exact boundary and type.
2) Exact boundary matching, regardless of the type.
3) Partial boundary matching, regardless of the type.
4) Type overlap between the tagged span and the Gold span.
We use the LINEARCRF provided by the pystruct library

[42], which uses a structured SVM solver using Block-
coordinate Frank-Wolfe [43], and use the default parameters
during training. We implemented the NEURALCRF model
using the transformers library [44] and PyTorch [45], and
learn the model using the adaptive gradient algorithm Adam,
with decoupled weight decay [46]. We initialize the BERT
encoder with the parameters resulting from our pre-training
stage described in Section IV, which further pre-trains BERT
on technical documents. We use a learning rate of 2e-5 and
50 hidden units for the BiLSTM layer. For BERT, we use the
standard parameter settings, and a maximum sequence length
of 512. We randomly sample 10 percent of the training data to
set aside as a development set, which we use to perform early
stopping during training, using a patience of 5 epochs.

2) Segmentation strategies: We evaluate different segmenta-
tion strategies to create the base textual unit in our sequence-to-
sequence models: segmenting by token, chunk, and phrase. For
segmenting chunks, we use an off-the-shelf chunker [47]. For
segmenting phrases, we split the text on periods, colons, semi-
colons and newline markers, as well as on a set of reserved
words corresponding to conditional statements (e.g. if, then,
when, while). We find that segmenting by chunks yields the
best token-level results (Weighted F1 of 61.25), but segmenting
by phrases gives us better span-level results (Strict matching of
63.98, and Exact boundary matching of 85.56). Detailed results
for these models are in the Appendix, in Table VI. Moving on,
all evaluations are done using the phrase segmentation strategy.

3) Extraction models: We evaluate the two models proposed
in Section V, and obtain a significant improvement with respect
to a rule-based baseline that applies the rules outlined in
Section V-C directly, without any learning. In addition, we
test a BERT model by removing the BiLSTM CRF Layer,
both with and without the pre-training strategy introduced in
Section IV. Average results can be observed in Table I. When
pre-training on technical documentation is not done, we use the
BERT model trained on BookCorpus and Wikipedia. Here, we
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} We extract all states
can appreciate both the advantage of the technical embeddings,
as well as the advantage of the BiLSTM CRF layer. We find
that leveraging expressive neural representations for sequence-
to-sequence models is advantageous for this task. Note that
both the NEURALCRF and the LINEARCRF models make use
of the full set of features introduced in Section V-B. Finally,
we find that applying rules on top of our models to correct
predictions does not improve their general performance.

In Table II, we show the individual performance for the six
protocols and show that we obtain better performance using
the NEURALCRF model for all protocols.

TABLE II: Results by Protocol for our Best Models

Protocol LINEARCRF NEURALCRF # Control
Strict Exact Strict Exact Statements

BGPv4 52.99 82.56 57.34 86.86 6
DCCP 69.74 92.73 75.60 93.25 150
LTP 67.25 94.44 74.22 94.41 65
PPTP 84.21 96.05 87.34 98.73 25
SCTP 52.21 65.49 58.54 65.85 19
TCP 57.46 82.64 59.82 81.90 31

4) FSM extraction: We compare both the NLP and the Gold
extracted FSMs with the Canonical FSM in Table III, based
on how many states and transitions are successfully extracted.
Both the NLP and the Gold FSMs are extracted from the
predicted/annotated intermediary representation introduced in
Section III, by using the procedure outlined in Section VI.
The results presented in Tables I and II correspond to how
accurately we can recover this intermediary representation from
the text, before we attempt to construct the FSM.

Note that even with Gold annotations, we are not able
to extract all expected transitions because in some cases,
the transitions are not explicit in the text or in other cases,
our general grammar and extraction procedure are not able
to capture the intended behavior. In all cases, we are able
to recover all relevant states. Graphic visualizations for all
resulting state machines can be found in the Appendix.

We manually analyzed all the partially correct, incorrect
and missed transitions in Table III and found that, for the
Gold FSM, they are caused by ambiguities in the RFC, or the
information about some transition missing completely (67%
for TCP and 96% for DCCP). The remaining errors are due to
difficulties capturing complex logical flows using our method.
The difference between the Gold FSMs and the predicted FSMs
can always be attributed to errors in the text predictions.

For example, we notice that one incorrect behavior in
the TCP Gold FSM is caused by ambiguity in the TCP
RFC text. The only outgoing communication transition in
the TCP Gold FSM from SYN_SENT sends ACK and goes to
SYN_RECEIVED. The correct logic is to receive SYN first,
before sending the ACK and transitioning. The TCP RFC does
not textually mention the expected SYN. We only know to
expect it because it is illustrated in Figure 6 of the RFC. We
show more examples of FSM extraction errors in the Appendix.

5) Summary: In Tables I and II we evaluated how much of
our intermediary representation we could extract from natural
language, while in Table III we evaluated how much of the

TABLE III: Transitions Extracted (Partially Correct means
source and target state are correct, and at least one of the
events on the edge is also correct).

TCP FSM Canonical Extracted Correct Partially Incorrect Not FoundCorrect
Gold

20

18 8 8 2 4
LINEARCRF 28 2 3 23 15
LINEARCRF+R 30 7 10 13 3
NEURALCRF 11 2 3 6 15
NEURALCRF+R 30 7 10 13 3

DCCP FSM Canonical Extracted Correct Partially Incorrect Not FoundCorrect
Gold

34

24 15 1 8 18
LINEARCRF 8 1 5 2 28
LINEARCRF+R 17 6 3 8 25
NEURALCRF 20 9 1 10 24
NEURALCRF+R 19 8 3 8 23

canonical FSM we recovered after running the extraction
procedure in Section VI. There is not a one-to-one mapping
between the intermediary representation extracted from the
text and the resulting state machines for four reasons: 1) Not
all Canonical FSM behaviors are clearly and unambiguously
described in the text. 2) Some behaviors are mentioned more
than once, giving us several opportunities to extract an expected
transition. 3) We have annotated for a larger set of behaviors
than needed to extract the communication transitions, we do
this to be able to capture the language used to express FSM
behaviors. 4) The metrics shown in Tables I and II are based
on text span matching, however, we do not need to have a strict
match in a text segment to successfully recover a behavior.

Our results show that learning technical word representations
is useful for the task of extracting FSM information from
protocol specifications. We demonstrate that we can recover
a significant portion of the intermediary representation for
the six evaluated protocols. Moreover, we show that we
can recover partially correct FSMs by using the procedure
outlined in Section VI. This analysis indicates that the grammar
proposed in Section III can capture enough information to
reconstruct a significant portion of the FSM, while being
general enough to be applied to various protocols. Ambiguity
and missed information in the RFCs result in transitions being
partially/incorrectly recovered or missed. We show examples
in the Appendix and discuss limitations in Section X.

B. Attacker Synthesis Evaluation

In this section we use KORG [18] to automatically synthesize
attackers against the TCP and DCCP connection establishment
and tear-down routines. Note we cannot extract Canonical
FSMs like the ones manually derived and used by [18]. Our
FSMs are partial, and we had to modify KORG to make it work
with partial FSMs. We also had to modify KORG to support
DCCP. We use our modified-KORG on all the models including
the Canonical FSM and report these results below.

1) Methodology: We apply the same methodology to TCP
and DCCP. We use the intermediary representations obtained
with the models with best results for transition extraction
(LINEARCRF+R and NEURALCRF+R), and Gold. We then
extract FSMs and transpile them to PROMELA programs. All
FSMs are presented in Appendix D.

10



Transitions extraction errors

Cristina Nita-Rotaru 37

TABLE VI: Average Results for Different Segmentation Strategies (LINEARCRF)

Segmentation Token-level Span-level
Acc Weighted F1 Macro F1 Strict Exact Partial Type

Token 60.37 59.58 44.76 31.36 36.14 59.78 58.81
Chunk 62.02 61.25 46.36 33.48 39.11 62.19 62.14
Phrase 58.95 56.61 49.58 63.98 85.65 85.65 63.98

TABLE VII: Examples of FSM Extraction Errors

FSM Transition Error Type Reason Text Excerpt
Gold TCP FIN_WAIT_1

FIN!���! LAST_ACK Not Found Target state not
explicit

CLOSE-WAIT STATE: Since the
remote side has already sent FIN,
RECEIVEs must be satisfied by
text already on hand, but not yet
delivered to the user.

Gold DCCP PARTOPEN
DCCP-CLOSE?��������! OPEN Incorrect Text is ambigu-

ous
The client leaves the PARTOPEN
state for OPEN when it receives
a valid packet other than DCCP-
Response, DCCP-Reset, or DCCP-
Sync from the server.

LINEARCRF+R and
NEURALCRF+R

SYN_SENT
SYN!ACK!������! SYN_RECEIVED Partially Recov-

ered (expected
SYN?ACK!)

Receive action
is not explicit

If the state is SYN-SENT then
enter SYN-RECEIVED, form a
SYN,ACK segment and send it.
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Can we automatically extract formal 
specifications of protocols (FSM) from RFC?

Can we synthesize attacks based on 
the extracted FSM? 



Attack synthesis
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} Look at attacks through a formal methods lens
} Given a program with a specification, an attack is a  

counterexample violating some (security) property
} Approach

} Define an attacker as a process that when composed with 
target system, results in a protocol property violation 

} Look for counterexamples on the composed system

What is the attacker program?
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than CLOSED” using the set complement. It also handles
explicitly labeled intermediate states, so that sentences like “the
machine goes to CLOSED, then REQUEST, then PARTOPEN”
are interpreted as CLOSED �! REQUEST �! PARTOPEN rather
than CLOSED �! PARTOPEN,REQUEST �! PARTOPEN. It
uses the helper function EXTRACTTRANLBL to guess the
transition label `, recursing upward in the ancestry of T at
most six times until the result is well-formed. Pseudocode for
EXTRACTTRAN is given in the Appendix.

Heuristic Transition Pruning. After adding the potential
transitions extracted from each transition block T to a set
Tpos, we filter Tpos using three heuristics. First, we remove any
possible transition t 2 Tpos that does not type-check, that is, for
which t /2 S⇥ ({✏, timeout}[ (I [O)⇤)⇥S. Second, we apply
a “call and response” heuristic, where if Tpos contains some
transitions s

x?y!���! s
0, s x?�! s

0, and s
y!�! s

0, then the latter
two are discarded because they are likely noise generated by
the first one. Third, we apply a “redundant epsilons” heuristic,
where if Tpos contains some transitions s

✏�! s
0 and s

`�! s
0,

where ` 6= ✏, then the ✏-transition is discarded because it is
likely noise generated by the `-transition. The transitions T is
the remaining filtered set Tpos.

VII. TASK: ATTACKER SYNTHESIS

In this section we use attacker synthesis as an exemplifying
application for FSM extraction.

A. Attacker Synthesis
LTL program synthesis, also known as the LTL imple-

mentability problem, is to deduce for an LTL property � if
there exists some program P that makes � true. For example, �
could be the homework assignment to implement multi-PAXOS,
and the program synthesis problem would be to automatically
compute a satisfying code submission. The problem is known
to be doubly exponential in the size of the property [40].

LTL attacker synthesis is slightly different. In this work we
consider a centralized attacker synthesis problem for protocols,
where the attacker has just one component. Other variations
on the problem are formulated in [18]. Suppose P k Q is a
system consisting of some programs P and Q, and � is an
LTL correctness property which is made true by the system;
that is P k Q |= �. Consider the threat model where Q

is the vulnerable part of the system. The attacker synthesis
problem is to replace Q with some new attacker A having
the same inputs and outputs as Q, such that the augmented
system behaves incorrectly, that is, P k A violates �. We only
consider attackers which succeed under the assumption that
(a) the attack eventually terminates, and (b) when the attack
terminates, the vulnerable program Q is run. The program
synthesizer must compute a program that satisfies � in all of its
(non-empty set of) executions, but the attacker synthesizer only
needs to compute a program that violates � in one execution.

B. Attacker Synthesis with KORG

KORG is an open-source attacker synthesis tool for protocols.
It requires three inputs: (1) a PROMELA program P representing

the invulnerable part of the system; (2) a PROMELA program
Q representing the vulnerable part of the system, as well as
its interface (inputs and outputs) in YAML format; and (3) a
PROMELA LTL property � representing what it means for the
system to behave correctly. KORG computes 9-attackers (at-
tackers for which there exists a winning execution) by reducing
the attacker synthesis problem to a model-checking problem
over the system P k DAISY(Q), where the vulnerable program
Q is replaced with a nondeterministic search automaton (called
a Daisy Gadget) having the same interface as Q. The model-
checker then computes an execution that violates the correctness
property, and KORG projects the component of the execution
representing the gadget’s actions into a new PROMELA program,
which is the synthesized attacker [18].

PROMELA program P

PROMELA vulnerable
program Q

PROMELA LTL
correctness property �

KORG SPIN

“P k DAISY(Q) |=  ?”

Counterexamples

Synthesized Attackers

Fig. 6: KORG work-flow. With our NLP pipeline, the user
need only supply the orange inputs and the system RFC. The
property  is automatically computed from � to ensure the
attacker eventually terminates, at which point the original code
Q is run. The DAISY gadget is defined in [18].

C. TCP and DCCP Attacker Synthesis with KORG

We focus on the TCP and DCCP connection establishment
and tear-down routines as representative protocols for attacker
synthesis. The TCP connection routine was previously studied
using the attacker synthesis tool KORG (Fig. 6); now we
conduct a similar analysis for both TCP and DCCP using
the same tool, but we automatically extract FSMs using NLP.
We want to show that the FSMs extracted from our NLP
pipeline can be used directly for attacker synthesis, alleviating
the considerable engineering effort required to hand-model the
system under attack. We show the effectiveness of the FSM
extraction on this task in Section VIII-B.

Our NLP pipeline and FSM extraction produce an FSM.
In order to use the extracted FSM for attacker synthesis, we
transpile it to PROMELA. For example, if we begin with the TCP
RFC, then the result will be a PROMELA program describing
the TCP connection routine.

For each of TCP and DCCP, we hand-write four LTL proper-
ties in PROMELA based on a close reading of the corresponding
RFC. Our TCP properties are given in Equation 3, and our
DCCP properties are given in Equation 4. We define the
vulnerable PROMELA program Q to be a generic message
channel between peers. For each of the four �i, we feed the
inputs P,Q, and �i to KORG and generate attackers. But how
do we know if these attackers are legitimate, since they were
generated with a potentially incorrect program P ? We solve
this by testing the attackers against a Canonical PROMELA

8

} Model the attacker as a Daisy process 
that nondeterministically exhausts the 
space of input and output events of a 
vulnerable process

Automated Attacker Synthesis for Distributed Protocols. Max von Hippel, Cole 
Vick, Stavros Tripakis, Cristina Nita-Rotaru, March 2020. SafeComp 2020.
github.com/maxvinhippel/attackerSynthesis
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Using RFC-extracted FSMs 
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} Apply KORG to two protocols DCCP and TCP
} Several state machines: 

} Canonical: FSMs from books, manually derived by experts
} Gold: obtained with the grammar annotation
} LINEARCRF+R: predicted by the linear model
} NEURALCRF+R: predicted by the neural network model

} Select several properties by reading the RFC, hand-write 
them in LTL, and use them to find violations on each of 
the corresponding extracted FSMs

} Once we obtain a violation on an extracted model, we call 
them candidate attacks, we need to check them against 
the canonical FSM to see if they are confirmed or not
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} TCP:
φ1 =“No half-open connections.” 
φ2 =“Passive/active establishment 
eventually succeeds.” 
φ =“Peers don’t get stuck.” 
φ4 =“SYN_RECEIVED is eventually 
followed by ESTABLISHED, FIN_WAIT_1, 
or CLOSED.” 

} DCCP:
θ1 =“The peers don’t both loop into 
being stuck or infinitely looping.” 
θ2 =“The peers are never both in 
TIME_WAIT.” 
θ3 =“The first peer doesn’t loop into 
being stuck or infinitely looping.” 
θ4 =“The peers are never both in 
CLOSE_REQ.” 



Evaluation: Properties supported

Cristina Nita-Rotaru 44

} First we check what properties are supported by the 
extracted models

We synthesize attackers that invalidate the properties from
Eqn. 3 for TCP and Eqn. 4 for DCCP. Given a property and
a PROMELA program, we can only use KORG if the program
supports the property. We check what properties are supported
by each program and present the results in Table IV.

We ask KORG to synthesize at most 100 attackers which we
refer to as candidate attackers because they might not work
against the protocol’s Canonical PROMELA program. We check
the candidate attackers against the corresponding Canonical
PROMELA program; those that succeed are confirmed attackers.
Unconfirmed attackers can be thought of as false positives.

TABLE IV: Properties Supported by Each PROMELA Program
(checkmark/x-mark means property is supported/not supported).

TCP PROMELA program |= �1 |= �2 |= �3 |= �4

Canonical 3 3 3 3
Gold 3 3 7 7
LINEARCRF+R 3 3 7 3
NEURALCRF+R 3 3 7 3
DCCP PROMELA program |= ✓1 |= ✓2 |= ✓3 |= ✓4
Canonical 3 3 3 3
Gold 3 3 3 3
LINEARCRF+R 3 3 3 3
NEURALCRF+R 3 3 3 3

2) Supported Properties: Why do noisier models for TCP
support a property the Gold model does not support? As shown
in Table IV, the TCP Gold PROMELA program does not support
property �4, while the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs do. This might seem counterintu-
itive, as the Gold PROMELA program is derived from the Gold
intermediary representation, which is theoretically less noisy
than the LINEARCRF+R and NEURALCRF+R intermediary
representations. Recall that �4 relates to connection tear-down
from the TCP state SYN_RECEIVED. Upon investigation, we
found that the TCP Gold PROMELA program violates �4

because of a single erroneous transition from SYN_RECEIVED
to CLOSE_WAIT, and a missing SYN? event in the transi-
tion from SYN_SENT to SYN_RECEIVED. While the TCP
LINEARCRF+R and NEURALCRF+R PROMELA programs
contain similar erroneous transitions from SYN_RECEIVED,
they nonetheless satisfy �4 because their erroneous transitions
are never enabled. Basically, the same erroneous transition
manifests in all three TCP PROMELA programs, but in the
TCP Gold PROMELA program the code is reachable, while
in the TCP LINEARCRF+R and NEURALCRF+R PROMELA
programs it is unreachable.

Why do TCP and DCCP have such different support
for properties intended to capture comparable behavior? In
Table IV, we notice that the TCP Gold, LINEARCRF+R, and
NEURALCRF+R PROMELA programs all violate �3, meaning
they all have stuck states. For DCCP, all PROMELA programs
support ✓1 and ✓3, meaning they never self-loop into a stuck
state, or self-loop forever. Notably, either case would constitute
a stuck state. It seems strange that the TCP PROMELA programs
would be so susceptible to stuck states, while the DCCP
PROMELA programs are apparently invulnerable to a closely
related problem. Further investigation revealed that in contrast

to TCP, DCCP does not support active/active establishment.
Hence in order for a DCCP PROMELA program to support
connection establishment, it requires both an active and a
(matching) passive establishment routine. The DCCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs
all capture the active establishment routine but not the passive
one. Therefore, in all three PROMELA programs, none of the
states containing self-loops are reachable, and so ✓1 and ✓3

are vacuously supported.
3) Examples of Attacks: Table V presents the candidate

attackers generated for all programs and properties and false
positives. We present some examples of confirmed attack-
ers. Each example A is named following the convention
protocol.M.↵.N , where protocol is TCP or DCCP, and A

was the N
th PROMELA program output by KORG when given

the protocol PROMELA program M and property ↵.
• TCP.NEURALCRF+R.�1.32 injects a single ACK to Peer

2, causing a desynchronization between the peers which
can eventually cause a half-open connection, violating �1.

• DCCP.LINEARCRF+R.✓4.32 injects and drops messages
to and from each peer to first (unnecessarily) start and
abort numerous connection routines, then guide both peers
at once into CLOSE_REQ, violating ✓4.

• DCCP.NEURALCRF+R.✓2.96 is programmatically differ-
ent from DCCP.LINEARCRF+R.✓4.32, but violates ✓4

using basically the same approach.

TABLE V: Candidate and Unconfirmed Attacks Synthesized
using each PROMELA Program P and Correctness Property '.
If P does not support ', KORG cannot generate any attackers.

Candidates
Guided by '.

Unconfirmed
Candidates
Guided by '.

TCP PROMELA program �1 �2 �3 �4 �1 �2 �3 �4

Canonical 1 9 36 17 0 0 0 0
Gold 2 0 0 0 0 0 0 0
LINEARCRF+R 1 0 0 0 0 0 0 0
NEURALCRF+R 1 0 0 0 0 0 0 0
DCCP PROMELA program ✓1 ✓2 ✓3 ✓4 ✓1 ✓2 ✓3 ✓4
Canonical 0 12 0 1 0 0 0 0
Gold 0 1 0 1 0 0 0 0
LINEARCRF+R 8 2 13 1 2 0 13 0
NEURALCRF+R 5 2 9 1 2 0 9 0

4) Candidate Attackers: Why does property �2 not yield
candidate attackers with TCP? In detail, �2 says: “if the two
peers infinitely often revisit the configuration where the first is
in LISTEN while the second is in SYN_SENT, then eventually
the first peer will reach ESTABLISHED”. In the TCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs,
the tear-down routine is incomplete, so a connection cannot be
fully closed. Moreover, the timeout transitions needed to abort a
connection establishment are missing. Hence these PROMELA
programs cannot capture the antecedent of �2, where two
peers “infinitely often revisit the configuration where the first
is in LISTEN while the second is in SYN_SENT”. Since the
PROMELA programs satisfy �2 only vacuously, they cannot be
used by KORG to generate candidate attackers with �2.

11



Why weren’t these properties supported
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} TCP Gold does not support two properties
} Why: Remember that Gold is not finding all 20 states of the 

canonical, due to ambiguities and not explicit mentioning of 
both states of the transition

} TCP Gold P program does not support
property φ4, while the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs do
} Why: The same erroneous transition manifests in all three TCP 

programs, but in the TCP Gold program the code is reachable, 
while in the TCP LINEARCRF+R and NEURALCRF+R programs it 
is unreachable
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We synthesize attackers that invalidate the properties from
Eqn. 3 for TCP and Eqn. 4 for DCCP. Given a property and
a PROMELA program, we can only use KORG if the program
supports the property. We check what properties are supported
by each program and present the results in Table IV.

We ask KORG to synthesize at most 100 attackers which we
refer to as candidate attackers because they might not work
against the protocol’s Canonical PROMELA program. We check
the candidate attackers against the corresponding Canonical
PROMELA program; those that succeed are confirmed attackers.
Unconfirmed attackers can be thought of as false positives.

TABLE IV: Properties Supported by Each PROMELA Program
(checkmark/x-mark means property is supported/not supported).

TCP PROMELA program |= �1 |= �2 |= �3 |= �4

Canonical 3 3 3 3
Gold 3 3 7 7
LINEARCRF+R 3 3 7 3
NEURALCRF+R 3 3 7 3
DCCP PROMELA program |= ✓1 |= ✓2 |= ✓3 |= ✓4
Canonical 3 3 3 3
Gold 3 3 3 3
LINEARCRF+R 3 3 3 3
NEURALCRF+R 3 3 3 3

2) Supported Properties: Why do noisier models for TCP
support a property the Gold model does not support? As shown
in Table IV, the TCP Gold PROMELA program does not support
property �4, while the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs do. This might seem counterintu-
itive, as the Gold PROMELA program is derived from the Gold
intermediary representation, which is theoretically less noisy
than the LINEARCRF+R and NEURALCRF+R intermediary
representations. Recall that �4 relates to connection tear-down
from the TCP state SYN_RECEIVED. Upon investigation, we
found that the TCP Gold PROMELA program violates �4

because of a single erroneous transition from SYN_RECEIVED
to CLOSE_WAIT, and a missing SYN? event in the transi-
tion from SYN_SENT to SYN_RECEIVED. While the TCP
LINEARCRF+R and NEURALCRF+R PROMELA programs
contain similar erroneous transitions from SYN_RECEIVED,
they nonetheless satisfy �4 because their erroneous transitions
are never enabled. Basically, the same erroneous transition
manifests in all three TCP PROMELA programs, but in the
TCP Gold PROMELA program the code is reachable, while
in the TCP LINEARCRF+R and NEURALCRF+R PROMELA
programs it is unreachable.

Why do TCP and DCCP have such different support
for properties intended to capture comparable behavior? In
Table IV, we notice that the TCP Gold, LINEARCRF+R, and
NEURALCRF+R PROMELA programs all violate �3, meaning
they all have stuck states. For DCCP, all PROMELA programs
support ✓1 and ✓3, meaning they never self-loop into a stuck
state, or self-loop forever. Notably, either case would constitute
a stuck state. It seems strange that the TCP PROMELA programs
would be so susceptible to stuck states, while the DCCP
PROMELA programs are apparently invulnerable to a closely
related problem. Further investigation revealed that in contrast

to TCP, DCCP does not support active/active establishment.
Hence in order for a DCCP PROMELA program to support
connection establishment, it requires both an active and a
(matching) passive establishment routine. The DCCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs
all capture the active establishment routine but not the passive
one. Therefore, in all three PROMELA programs, none of the
states containing self-loops are reachable, and so ✓1 and ✓3

are vacuously supported.
3) Examples of Attacks: Table V presents the candidate

attackers generated for all programs and properties and false
positives. We present some examples of confirmed attack-
ers. Each example A is named following the convention
protocol.M.↵.N , where protocol is TCP or DCCP, and A

was the N
th PROMELA program output by KORG when given

the protocol PROMELA program M and property ↵.
• TCP.NEURALCRF+R.�1.32 injects a single ACK to Peer

2, causing a desynchronization between the peers which
can eventually cause a half-open connection, violating �1.

• DCCP.LINEARCRF+R.✓4.32 injects and drops messages
to and from each peer to first (unnecessarily) start and
abort numerous connection routines, then guide both peers
at once into CLOSE_REQ, violating ✓4.

• DCCP.NEURALCRF+R.✓2.96 is programmatically differ-
ent from DCCP.LINEARCRF+R.✓4.32, but violates ✓4

using basically the same approach.

TABLE V: Candidate and Unconfirmed Attacks Synthesized
using each PROMELA Program P and Correctness Property '.
If P does not support ', KORG cannot generate any attackers.

Candidates
Guided by '.

Unconfirmed
Candidates
Guided by '.

TCP PROMELA program �1 �2 �3 �4 �1 �2 �3 �4

Canonical 1 9 36 17 0 0 0 0
Gold 2 0 0 0 0 0 0 0
LINEARCRF+R 1 0 0 0 0 0 0 0
NEURALCRF+R 1 0 0 0 0 0 0 0
DCCP PROMELA program ✓1 ✓2 ✓3 ✓4 ✓1 ✓2 ✓3 ✓4
Canonical 0 12 0 1 0 0 0 0
Gold 0 1 0 1 0 0 0 0
LINEARCRF+R 8 2 13 1 2 0 13 0
NEURALCRF+R 5 2 9 1 2 0 9 0

4) Candidate Attackers: Why does property �2 not yield
candidate attackers with TCP? In detail, �2 says: “if the two
peers infinitely often revisit the configuration where the first is
in LISTEN while the second is in SYN_SENT, then eventually
the first peer will reach ESTABLISHED”. In the TCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs,
the tear-down routine is incomplete, so a connection cannot be
fully closed. Moreover, the timeout transitions needed to abort a
connection establishment are missing. Hence these PROMELA
programs cannot capture the antecedent of �2, where two
peers “infinitely often revisit the configuration where the first
is in LISTEN while the second is in SYN_SENT”. Since the
PROMELA programs satisfy �2 only vacuously, they cannot be
used by KORG to generate candidate attackers with �2.
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} TCP.NEURALCRF+R.φ1.32 injects a single ACK to Peer 2, 
causing a desynchronization between the peers which can 
eventually cause a half-open connection, violating φ1 

} DCCP.LINEARCRF+R.θ4.32 injects and drops messages to 
and from each peer to first (unnecessarily) start and abort 
numerous connection routines, then guide both peers at 
once into CLOSE_REQ, violating θ4



Why we missed attacks for TCP

Cristina Nita-Rotaru 48

} Properties φ3 and φ4 not supported so we could not find 
violations against them 

} Property φ2 is supported but did not not yield candidate 
attackers 
} φ2 says: “if the two peers infinitely often revisit the 

configuration where the first is in LISTEN while the second is in 
SYN_SENT, then eventually the first peer will reach 
ESTABLISHED”

} TCP Gold, LINEARCRF+R, and NEURALCRF+R PROMELA 
programs, the tear-down routine is incomplete, so a 
connection cannot be fully closed 

} Timeout transitions needed to abort a connection 
establishment are missing



Limitations 
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} Our NLP models could not extract Canonical FSMs from 
RFCs, ambiguities and not explicit mentioning for Gold, 
difference between Gold and models due to errors in 
prediction

} Attacker synthesis with partial or incorrect FSM can 
result in missing attacks or unconfirmed attacks

} Attacks we found are dependent on property selection

MORE WORK TO BE DONE !!!!



Beyond attack synthesis
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} Textual specifications will not go away, they are part of 
human interactions

} How to write better textual specifications, more 
amendable to automation

} The automation can be used as a grammar check for 
textual specification

} Check that design changes do not introduce new
problems

} Check compatibility between modules
} Apply to other domains 



Summary

} Show that it is possible to 
automate attacker synthesis 
against protocols by using 
textual specifications such as 
RFCs

} Show how to automatically 
extract FSMs from RFCs

} Apply the extracted FSMs to
attack synthesis

51

Check out the code! 
https://github.com/RFCNLP

Cristina Nita-Rotaru

ISEC Building
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