Leveraging Textual Specifications for
Automated Attack Discovery in
Network Protocols

Cristina Nita-Rotaru

Khoury College of Computer Science

Northeastern University

This work was supported by NSF grants CNS-1814105, CNS-1815219, and GRFP-1938052

How to get assurance about protocols?

» Proving security properties:
Consider adversaries @
» Design Requirement
» Model checking: l

Check invariants
» Design
» Implementation
» Testing (fuzzying):
Random inputs, grammar-based
» Implementation

» Deployement

Cristina Nita-Rotaru > 2

Our work in this space

» Provable security
» QUIC [S&P 2015], TLS 1.3/TFO ESORICS 2019]
» Secure routing [ACM CCR 2017]
» Post-quantum [NDSS 2021]

» Compliance checking
» loT stacks, TLS: CHIRON [DSN 2017]
» X509 certificates: SymCerts [S&P 2017]
» NLP-learning of specifications: [IAAl 2019], [S&P 2022]

» Adversarial testing
» State machine replication: Gatling [NDSS 2012], Turret [ICDCS 2013]
» Routing: Turret-W [WiSec 2012, TON 2016]
» SDN: BEADS [RAID 2017,USENIX SECURITY 2017]
» TCP: Snake [DSN 2015], TCPwn [NDSS2018], BBR [RAID 2020]

Cristina Nita-Rotaru b 3

Challenges

» Specification of requirements

» Uneven culture of formally defining goals
across research communities

» Difficulty of formalizing some goals Requirement
» Assurance of designs

» Models do not capture optimizations and other
choices made at implementation time
» Assurance of implementations

» Providing testcase coverage while addressing]
scalability and complexity Design

» Ensuring testing in realistic scenarios similar to
deployment conditions

» Machine learning will add complexity and
attack vectors

It is important to have a formal specification
of the protocol to begin with

Cristina Nita-Rotaru b 4

Fermal)}-Specification of Internet Protocols

“RFC documents contain technical specifications and
organizational notes for the Internet.”

3.4. Establishing a connection

. The "three-way handshake" is the procedure used to establish a
} PrOd uced b the I ETF descrl be connection. This procedure normally is initiated by one TCP and
) responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the procedure. When simultaneous attempt
occurs, each TCP receives a "SYN" segment which carries no

Several examples of connection initiation follow. Although these

. V4
the ma I n Inte rn et S rOtOCO|S acknowledgment after it has sent a "SYN". Of course, the arrival of
an old duplicate "SYN" segment can potentially make it appear, to the
recipient, that a simultaneous connection initiation is in progress.
h d d] t' Proper use of "reset" segments can disambiguate these cases.
SUcn as aadressing, routing,
examples do not show connection synchronization using data-carrying
segments, this is perfectly legitimate, so long as the receiving TCP
tra nspo rt Or Secu re p rotoco S doesn't deliver the data to the user until it is clear the data is
) valid (i.e., the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state). The three-way handshake

SUCh as TLS 1.3 a nd QU |C reduces the possibility of false conmections. It is the
» Statuses: Internet Standard, REC 793

September 1981
Transmission Control Protocol

P ro p Ose d Sta n d a rd , Be St Functional Specification
C u r re nt P ra Ct i Ce’ ig\giiﬁzzzziiggroihistziggiiig.between memory and messages to provide

. . The simplest three-way handshake is shown in figure 7 below. The
EX e rl m e nta | I nfo rm at I O n a I figures should be interpreted in the following way. Each line is
)) numbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segment from TCP A to TCP B, or arrival of a
segment at B from A. Left arrows (<--), indicate the reverse.

L] L]
a n d H IStO rIC Ellipsis (...) indicates a segment which is still in the network
(delayed). An "XXX" indicates a segment which is lost or rejected.

Comments appear in parentheses. TCP states reoresent the state AFTER

Cristina Nita-Rotaru > 5

TCP

» Transport protocol used by vast majority

of Internet traffic
» Including traffic encrypted with TLS

» Including network infrastructure protocols

/TCP functionality is

described in over 20 RFCs

like BGP

» Thousands of implementations

» Over 5,000 implementation variants
detectable by nmap

» Provides:
Reliability
In-order delivery

v

Flow control

vV VvV Vv

Congestion control

RFC 2861
RFC 5827
RFC 6937
RFC 3708
RFC 4653

Qc 5682

RFC 793

RFC 5681
RFC 2581
RFC 2001
RFC 6298
RFC 6582
RFC 2883
RFC 6528

o

RFC 7323
RFC 3390
RFC 3465
RFC 2018
RFC 3042
RFC 6675

RFC 401;

Cristina Nita-Rotaru

D 6

... attacked for over 35 years!

2015

2010

2005

2000

1995

1990

1985

Leveraging State Information for Automated Attack Discovery in Transport
Protocol Implementations. S. Jero, H. Lee, and C. Nita-Rotaru. In the 45th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

June 2015. Best paper award.

Cristina Nita-Rotaru

QUIC

» Protocol developed by Google TLS
and implemented in Chrome TCP session

since 2013 client establishment Server

» Main goal is reducing latency %& ' B
\ A L

4 DES|gn goals TLS key establishment

» Provide security protection
comparable to TLS -

» Reduce connection latency by exchange data

collapsing TCP and TLS QUIC o
functionality in one layer: dient cerver
requires UDP W

» Lists performance of connection !
establishment (0-RTT) as a goal exchange data

—

Cristina Nita-Rotaru P 3

... deployed without security analysis

» The initial document provided some informal arguments
» Specification was incomplete
» Did not include any formal security analysis

» Security proofs were done by the research community
based on analyzing the code

» Fischlin & Gunther, ACM CCS 2014

» How Secure and Quick is QUIC? Provable Security and
Performance Analyses. R. Lychey, S. Jero, A. Boldyreva, and C.
Nita-Rotaru. 36th IEEE Symposium on Security and Privacy
(Oakland), May 2015. Awarded IETF/IRTF Applied Networking
Research Prize, 2016.

» QUIC was standardized in May 2021, as RFC 9000

Cristina Nita-Rotaru P 9

BBR Congestion Control

Packet loss as congestion signal

sender bottleneck link
network switch
i 3 S
queuelcapauty / / oes
(I T ST e e M ([\ A =
t packet
processing

receiver

packets arriving
too fast

rate

delivery
rate

%
\ packet loss

"not enough space"

What is actually needed is to estimate
the bottleneck link and not send faster
than that

How it works: Some queue along path
overflowed due to congestion

<4— large queue buffer ——»
‘IIIIIIIIIIIIIIIIIIIIII H B B f'
|

.. — packet loss
%&[Availab e in Linux TCP implementation
EEEEN = —— = T v

P N
b \packet loss '."
/ | —— Bottlaneck Bandwidth
. / § BER
In modern networks: less effective = = - — - -

Time (RTTs)

Cristina Nita-Rotaru p 10

TCPwn: Automated attacks against
congestion control

» Use model-based testing to identify all
possible attacks in a scalable manner

» Use an abstract model to generate abstract strategies

» Map abstract strategies to concrete strategies
» Execute concrete strategies on implementations to
find attacks causing:
Decreased throughput
Increased throughput

Connection stall

Automated Attack Discovery in TCP Congestion Control Using a Model-
guided Approach. Samuel Jero, Endadul Hoque, David Choffnes, Alan Mislove,

Cristina Nita-Rotaru. NDSS 2018, Feb. 2018. CISCO Network Security
Distinguished Paper Award.

Cristina Nita-Rotaru p 11

... TCPwn applied on BBR

Optimistic acknowledgments Faster
Delayed acknowledgments Slower
Repeated Re-transmission timeout Slower
Re-transmission timeout stall Stalled
Sequence number de-sync stall Stalled

aBBRate: Automating BBR Attack Exploration Using a Model-Based
Approach Anthony Peterson, Samuel Jero, Endadul Hoque, Dave Choffnes,
Cristina Nita-Rotaru. RAID 2020.

We had to derive the model from the code

BBR is currently an Internet Draft not standardized yet

Cristina Nita-Rotaru

Why so many attacks?

» Most of these protocols have complex goals
» Many designs and implementations

» Written in low level languages, that are highly
efficient, but error-prone

» Heavily optimized

» Specifications incomplete, have ambiguities or
contradictory requirements

» Often implemented and deployed before
specified, i.e. the code is the specification

Cristina Nita-Rotaru p 13

Modeling protocols with FSMs

» Model of computation
defined by a list of states,
the initial state, and the
inputs that trigger each
transition

>

Change from one state to
another is called
a transition

For protocols events are
sending , receiving
messages and timeouts

» Protocol fuzzying, model
checking, attack synthesis
rely or may benefit from
FSM

w3 UNUsual even

t

3 client/receiver path

o [GEGSEDTN <

CONNECT/SYN (Step 1 of the 3-way-handshake)

CLOSE/-
————- server/sender path LISTEN/- A
i CLOSE/-
3-way-handshake) SYN/SYN+ACK
" - LISTEN
1 TS
RST/ ! i SEND/SYN =
SYN | : SYN
RECEIVED |« SYN/SYN+ACK (simultaneous op) SENT
Data exchange occurs
ACKI- SYN+ACK/ACK
{ CLOSE/FIN |
CLOSE/FIN FINJACK
A [Active crosg] [Passive crosg]
Y 1 1

FINJACK

FINWAIT1 [CLOSING

ACK/I

FIN WAIT 2

FIN+ACK/ACK

Cristina Nita-Rotaru

b 14

Obtaining an FSM

3.4. Establishing a connection M a n u a I a na Iysis

The "three-way handshake" is the procedure used to establish a . .

connection. This procedure normally is initiated by one TCP and How to automatlca"y derlve FSM
responded to by another TCP. The procedure also works if two TCP

simultaneously initiate the procedure. When simultaneous attempt

occurs, each TCP receives a "SYN" segment which carries no

*~J
*~J

?

acknowledgment after it has sent a "SYN". Of course, the arrival of > unusual event CONNECT/SYN (step 1 of the 3-way-handshake)
an old duplicate "SYN" segment can potentially make it appear, to the ——— > clientreceiver path e
recipient, that a simultaneous connection initiation is in progress. > serverisender path LISTENI-¢ A)
Proper use of "reset" segments can disambiguate these cases. ; CLOSE/
tep 2 of the =) SYN/SYN+ACK :ILISTEN

Several examples of connection initiation follow. Although these Ty :
examples do not show connection synchronization using data-carrying - i
segments, this is perfectly legitimate, so long as the receiving TCP = ~——7_—] RST- H SEND/SYN - -
doesn't deliver the data to the user until it is clear the data is SYN L SYN

: : : : RECEIVED | .. SYNISYN+ACK (simultaneous open) oeeeeeeeeooos SENT
valid (i.e., the data must be buffered at the receiver until the -«

connection reaches the ESTABLISHED state). The three-way handshake i
reduces the possibility of false connections. It is the Data exchange occurs

ACK- SYN+ACK/ACK
ESTABLISHED |« "2t

[Page 30] ECLOSEIFIN
: CLOSE/FIN FIN/ACK

1 // SPDX-License-Identifier: GPL-2.0-or-later

/% I AU B | I

I Active CLOSE Passive CLOSE‘

Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
Linus Torvalds, <torvalds@cs.helsinki.fi>
Alan Cox, <gwd4pts@gwépts.ampr.org>

Matthew Dillon, <dillon@apollo.west.oic.com> M a n u a | a n a |ySiS

I
*x INET An implementation of the TCP/IP protocol suite for the LINUX E v ! ! i
* operating system. INET is implemented using the BSD Socket E I@“ -»» E i @EWII ;
* interface as the means of communication with the user level. E FIN+ACK/ACH ! ! i
& ! b 1
* Implementation of the Transmission Control Protocol(TCP). E Aere : i i CLOSE/FIN l
; | N i
* Ross Biro [E)IW—WATI ! ! @E i
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> E FINJACK 4 p :
* Mark Evans, <evansmp@uhura.aston.ac.uk> :_______"_“_______"_“____""_“"_Tiinfciut_ _____ i i ________________________ }
* Corey Minyard <wf-rch!minyard@relay.EU.net>

E Florian La Roche, <flla@stud.uni-sb.de> (Go back to start) LOSEL

'3

3

*

*

*

Arnt Gulbrandsen, <agulbra@nvg.unit.no>

Automated FSM construction from traces

Cristina Nita-Rotaru p 15

This talk

Can we automatically extract formal
specifications of protocols (FSM) from RFC?

Can we synthesize attacks based on
the extracted FSM?

Automated Attack Synthesis by Extracting Finite State Machines from Protocol
Specification Documents Maria Leonor Pacheco, Max von Hippel, Ben Weintraub
Dan Goldwasser Cristina Nita-Rotaru. IEEE Security and Privacy, 2022.

https://github.com/RFCNLP

Cristina Nita-Rotaru P 16

What’s in an RFC?

3.4. Establishing a connection

The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the ure. When simultaneous attempt
P receives a thN"js t which carries no
<2cknowledgme;:jaf it . has sent a \SYN'J. Of course, the arrival of
an o P 1cate<"SYN" gbgment can potentially make it appear, to the
recipient, that a" St taneous connection initiation is in progress.
Proper use of "reset" segments can disambiguate these cases.

Several examples of connection initiation follow. Although these
examples do not show connection synchronization using data-carrying
segments, this is perfectly legitimate, so long as the receiving TCP
doesn't deliver the data to the user until it is clear the data is
valid (i.e., the data ed at the receiver until the
connection reaches th§ ESTABLISHED gtate). The three-way handshake
reduces the possibilit nections. It is the

[Page 30]

Cristina Nita-Rotaru

Challenges: How to define the NLP problem

» NLP semantic parsing studies methods for translating
natural language into a complete formal representation

» RFCs do not contain canonical/reference FSMs, they have
mistakes, omissions, ambiguities solved by human
experts

» Unlike traditional NLP semantic parsing problems in our
setting there is not a complete one-to-one translation
between the text and the FSM

How to define a problem we could measure if
we succeeded or not?

Cristina Nita-Rotaru D 18

Challenges: What NLP approach to choose?

» Off-the-shelf NLP tools: Already available typically
trained over news documents
» When applied to technical documents that include many out-
of-vocabulary words (i.e. technical terms), their performance
degrades substantially
» Rule-based systems: Developed to support information
extraction based on the specific format of the textual
input.

» Different RFC documents define variables, constraints, and
temporal behaviors totally differently

» Training such systems from scratch requires significant human
effort annotating data with the relevant labels, which could be

different fO(Which approach to choose?

Cristina Nita-Rotaru » 19

Our approach

1. Learn large-scale word-representation for technical language with off-the-shelf tools

2. Define and learn protocol-independent information language from RFC with focused
zero-shot learning to adapt to new, unobserved protocols without re-training

3. Use rule-based mapping from protocol-independent information to a protocol FSM

e+ O

[Monitoring]

(1) Technical
Language Embedding

(2)Zero-shot Protocol
Information Extraction

3)Protocol State

((4)Applications
Machine Extraction

t ot 1 ot , l J
p t t 1 1
retransmi I f f f f | | Attack
X7 ACK ! ! Synthesis
e ! i i
1\ | no | | |
1 . 1 1
: If the ack ..retransmit : : Program
. Train: Test: TCP - ,V- \\\ i Analysj-s
. ! SCP,UDP, .. L N \ ! Model.
\k : 3 P b[FIN_WAIT] 4 \\‘ VN' NT . CheCklng
D | E)
I — 1 A))
1 — 1 N / N A
: : ~| estasLIsHi
1 1
1 1
I i
: :

Cristina Nita-Rotaru » 20

Learn distributed word representations

» Static word representations: learn
a single vector for each word form

» Contextualized representations:
allow the same word form to take
different meanings in different
context; compute different vectors
for each mention
» Example: “The connection is in

error and should be reset with
Reset Code 5”

» State-of-the art: BERT is an neural
architecture based on a
Transformer that computes a
contextualized representation

» BERT models were pre-trained on
the Books Corpus (800M words)
and English Wikipedia (2,500M
words) and are publicly available

Cristina Nita-Rotaru

BERT uses two learning strategies:

* masked language modeling: masks
15% of the words in each sentence and
attempts to predict them

* next sentence prediction: uses pairs of
sentences as input, and learns to
predict whether the second sentence
is the subsequent sentence

Next Sentence Masked Word Masked Word

Masked Sentence A Masked Sentence B

*

Unlabeled Sentence Pair

Use BERT for technical language embedding

» Goalis to learn distributed word

representations for technical / \
Dataset

language

o * Full set of RFC documents
» It was shown that further training publicly available in ietf.org and

on technical language improves rfc-editor.org
 Documents cover different
performance
aspects of computer
» We pre_train BERT using the networking, including protocols,
masked language model and the procedures, programs, concepts,
o meeting notes and opinions.
next sentence prediction . 8,858 documents and about
objective using networking data \475'\4 words /
» No supervision needed for this
step

Cristina Nita-Rotaru b 22

Our general Protocol Grammar

» We use this grammar to
define the protocol semantic
we want to extract from RFCs

» Captures the semantic of a
protocol FSM

» General enough that is
applies to many protocols

» We use it to annotate the RFC

» Four types of annotation tags:

» Definition tags
Reference tags

v

State machine tags

v

Control flow tags

Cristina Nita-Rotaru

bool

type
def-tag

ref-state ::
ref-event ::

ref-tag
def-atom
sm—atom
sm-tag
act—-atom

act-struct::

trn-arg
trn-atom

trn-struct::

ctl-atom

ctl-struct:

ctl-rel
control
e

true | false

send | receive | 1issue

def state | def var | def_event
ref_state id="##"

ref_event id="##" type="type"
ref-event | ref-state
<def-tag>engl</def-tag>
<ref-tag>engl</ref-tag> | engl
trigger | variable | error | timer
<arg>sm-atom</arg> | sm-atom
act-struct | act-struct act-atom
arg_source | arg_target | arg_inter
<trn-arg>sm-atom<trn-arg> | sm-atom
trn-struct | trn-struct trn-atom
<sm-tag>sm-atom</sm-tag>

| <action type="type">act-struct</action>
| <transition>trn-struct</transition>
| sm—atom

ctl-atom | ctl-struct ctl-atom
relevant=bool

<control ctl-rel>ctl-struct</control>
control | ctl-atom | def-atom

e 0 e_1

P 23

Definition tags

» Whey we need them? Main entities related to a protocol,
used to annotate the names of states, events, and variables

» State definition. We annotate it when the name of a state is
introduced in the text

<def state id="##">IDLE</def state>, where ## is replaced by the identifier
» Event definition. Same annotation conventions as states

<def_event id="##">

» Variable definition. Defined in a similar way to events and
states, but they do not include identifiers because they are
not explicitly referenced by annotation in the rest of the text

Cristina Nita-Rotaru D 24

Reference tags

» Why we need them? When an event or state occurs in the text,
it must be linked to an event or state which was tagged
» RFC may formally refer to one event as “ACK”, but throughout the
text these ACKs may also be referred to as “acknowledgments”

» State reference. States are referenced by surrounding the
state’s name with the <ref state id="##"> tag, where ##
corresponds to the appropriate SID that was included with the
state’s <def state> tag

enter <ref _state id="2">SYN-SENT</ref state> state

» Event reference. Same convention as state references. The
event reference must also include the type of event, where the
three possible types are: send, receive, and compute

a <ref_event type="send" id="10">SYN</ref event> segment

Cristina Nita-Rotaru p 25

State machine tags

» Transition. Denotes a state change. We use argument tags <arg_source>, <arg_target> and
<arg_intermediate> to specify the segment in the text

<transition>The server moves from the <arg_source>OPEN state</arg_source>, possibly through the
<arg_inter>CLOSEREQ state</arg_inter>, to <arg_target>CLOSED</arg_target></transition>

“OPEN”, “CLOSEREQ” and “CLOSED” would also be enclosed in a <ref_state> tag.
» Variable. Certain variables may be tracked as part of the state machine.
<variable>SND.UP <- SND.NXT-1</variable>
» Timer. This tag is used if a timer value is changed or set
<timer>start the time-wait timer</timer>
» Error. If a context results in an error or warning being thrown
<error>signal the user error: connection aborted due to user timeout</error>

» Action. Three types of actions: send, receive and issue. We use an argument tag <arg> to
specify the argument in the text being sent, received or computed.

<action type="send">Send <arg>a SYN segment</arg></action>.
SYN” would also be enclosed in a <ref event> tag: <ref eventid="10">SYN</ref event>

Cristina Nita-Rotaru D 26

Control flow tags

Why we need them? To
indicate that some flow
control or conditional logic is
about to follow

Flow control logic contains a
<trigger> tag, which captures
the event that triggers some
action in the state machine,
followed by one or more of
the state machine tags

A single block of control tags
may contain multiple state
machine tags

» Multiple state machine tags
organized in a list. In this
case, the implication is that
the state machine tags
should all be executed if the
initial trigger condition is true

Cristina Nita-Rotaru

<control>
<trigger>
if active and the foreign socket is
specified,
</trigger>
<action type="issue">
issue <arg>a <ref_event 1d="10">SYN</ref_event>
segment</arg>.
</action>
<variable>
An initial send sequence number (ISS) 1is
selected.
</variable>
<action type="send">
A <arg><ref_event 1id="10">SYN</ref_event>
segment of the form
<SEQ=ISS><CTL=SYN></arg> 1is sent.
</action>
<variable>
Set SND.UNA to ISS, SND.NXT to ISS+1,
</variable>
<transition>
enter the <arg_target><ref_state
1d="2">SYN-SENT</ref_ state>
state<arg_target>
</transition>
</control>

Protocol information extraction

» Zero-shot approach: Have a system that can adapt to new,
unobserved protocols without re-training the system

» We build on our general protocol grammar and the technical
language embedding learnt with BERT and further trained on
protocols RFC dataset (about 9000 documents).

» We identify a list of protocols and annotate them with our
grammar

» Our goal is to parse the document according to our grammar,
using a sequence-to-sequence model

» We segment paragraphs into smaller units (individual words,
chunks or phrases). Then, we map each unit to a particular tag

B-trigger I-trigger B-transition I-transition O B-action O

I I I I I [

If passive enter the LISTEN state and return

Cristina Nita-Rotaru D 28

Linear-Chain Conditional Random Fields
(LINEARCRF)

» Uses a set of extracted features over each chunk

» Conditional Random Fields model the prediction as a
probabilistic graphical model

» Chain Conditional Random Fields specifically consider
sequential dependencies in the predictions

» Lety be atag sequence and x an input sequence of
textual units, maximize the conditional probability:

__ply,=x)
p(y|w> - Zy/ p(y,7m>

T
p(z,y) = [[exp(f e, yi-1, 24 6))
t=1

fis a linear scoring function learned with parameter vector 0 over a feature vector x;

» We use the LINEARCRF provided by the pystruct library

Cristina Nita-Rotaru » 29

Bidirectional LSTM CRF layer (NEURALCRF)

» LSTMs are recurrent neural
networks, a class of neural

network that can learn long-

term dependencies
» Architecture:

>

BERT encoder is used to
create chunk-level
representations from word
seguences

Resulting sequence of
chunks is then processed
using a Bidirectional LSTM
(BiLSTM)

A softmax activation is used
to obtain scores for the
labels

CRF on top to leverage the
sequential dependencies
also in the output space

B-Trigger

B-Transition

I-Transition

»
>

leﬂ
Soft
max

»
»

L]

o
-
*

777 TTFT TYT
[BiLSTM]
o o d
BERT [BERT [BERT

1 1 1
eajealeales

J

1 1 1 1 1
CEEE I

T

If SND.UNA > ISS

T

change the connection state

]

J

Y
to ESTABLISHED .

Cristina Nita-Rotaru

Features (all are standard in NLP pipelines)

» Vocabulary: Bag-of-word features for all stemmed forms of the words in
the training data

» Capitalization Patterns: all letters are in lower case, all letters are
capitalized, the first letter is capitalized, the word is in camel case, the
word has only symbols, the word has only numeric characters, or the
word has any other form of alpha-numeric capitalization

» Logical and Mathematical Expression Patterns: Different patterns
corresponding to logical and mathematical expressions

» Dictionary Features: Indicator features for a held-out dictionary of
reserved state and variable names

» Part-of-Speech Tags: Part-of-speech (POS) tags for all observed words
(e.g. noun, verb, adjective). We use an off-the-shelf tagger

» Position Features: Position and relative position for each word in a chunk

» How we use them:
» LINEARCRF: features vector used as the input x, for each textual unit t

» NEURALCRF: features vector concatenated to the resulting vector u, from the
BERT encoder, before being inputted to the BiLSTM layer

Cristina Nita-Rotaru b 31

From segmentation to grammar semantics

» Use exact lexical matching to identify explicit mentions to
states and events in the predicted sequences using a
dictionary built on the definition tags

» For triggers, transitions, actions, variables, and errors we use
an off-the-shelf Semantic Role Labeler (SRL) to identify
predicted actions as either send, receive, or issue, depending
on the verb used, as well as to identify the segment in the text
being sent, received, or issued

» Example: given a sentence like “Send a SYN segment”, an SRL model
would identify the verb “to send” as the predicate, and “SYN
segment” as the argument

» (We experiment with a simple set of rules to correct some
easy cases that the prediction models fail to identify)

» We refer to these models as LINEARCRF+R and NEURALCRF+R

Cristina Nita-Rotaru p 32

FSM extraction

<control relevant="true">
<trigger><def state id="3">REQUEST</def state></trigger>
<transition>A client socket enters this state, from <arg_source><ref state
id="1">CLOSED</ref state></arg_source>,</transition> after <action type=send>sending a
<arg><ref_event type="send" id="1">DCCP-Request</ref_event> packet</arg> to try to
initiate a connection.</action>
</control>

» We need a procedure to extract an FSM from the intermediary
representation

» Contain pointers for where to look in the intermediary
representation in order to guess the source and target states, and
labels, for the FSM transitions.

» Might describe no transitions at all
» Might describe multiple transitions at once
» Might describe only part of a transition

Cristina Nita-Rotaru

p 33

Evaluation of NLP task

» Gold: FSM obtained with the entire annotation;
documents annotated using the grammar we defined;

» LinearCRF: FSM obtained with the linear model

» NeuralCRF: FSM obtained with the neural networks
model

» LinearCRF+R: same but with some rules
» NeuralCRF+R: same but with some rules

» 6 protocols: BGP, DCCP, LTP, PPTP, SCTP, TCP

Cristina Nita-Rotaru D 34

Protocol semantic extraction

Model Token—level Span—level
Acc Weighted F1 | Macro F1 | Strict | Exact
Rule-based 31.08 25.94 29.37 41.58 | 41.78
BERT-base 58.93 56.72 51.33 60.77 | 84.18
BERT-technical 62.38 60.31 52.50 62.84 | 83.81
LINEARCRF 58.95 56.61 49.58 63.98 | 85.65
LINEARCRF+R 58.60 56.79 50.62 63.52 | 85.18
NEURALCRF 64.42 64.18 54.95 68.81 | 86.83
NEURALCRF+R | 62.79 62.50 53.64 66.22 | 86.10
Protocol LI.NEARCRF NE.URALCRF # Control
Strict Exact | Strict Exact | Statements
BGPv4 5299 82.56 | 57.34 86.86 6
DCCP 69.74 92.773 | 75.60 93.25 150
LTP 67.25 9444 | 74.22 9441 65
PPTP 84.21 96.05 | 87.34 98.73 25
SCTP 52.21 6549 | 58.54 65.85 19
TCP 5746 82.64 | 59.82 §81.90 31

Cristina Nita-Rotaru

FSM extraction: Transitions

» We extract all states

TCP FSM Canonical | Extracted | Correct Partially Incorrect | Not Found
Correct

Gold 18 8 8 2 4
LINEARCRF 28 2 3 23 15
LINEARCRF+R 20 30 7 10 13 3
NEURALCRF 11 2 3 6 15
NEURALCRF+R 30 7 10 13 3

: Partially
DCCP FSM Canonical | Extracted | Correct Correct Incorrect | Not Found
Gold 24 15 1 8 18
LINEARCRF 8 1 5 2 28
LINEARCRF+R 34 17 6 3 8 25
NEURALCRF 20 9 1 10 24
NEURALCRF+R 19 8 3 8 23

Cristina Nita-Rotaru

p 36

Transitions extraction errors

FSM Transition Error Type Reason Text Excerpt
Gold TCP FIN_WAIT_1 RELEN LAST_ACK Not Found Target state not | CLOSE-WAIT STATE: Since the
explicit remote side has already sent FIN,
RECEIVEs must be satisfied by
text already on hand, but not yet
delivered to the user.
Gold DCCP PARTOPEN ——— %%E%, opEN Incorrect Text is ambigu- | The client leaves the PARTOPEN
ous state for OPEN when it receives
a valid packet other than DCCP-
Response, DCCP-Reset, or DCCP-
Sync from the server.
LINEARCRF+R and | SYN_SENT -2y SyN_RECEIVED | Partially Recov- | Receive action | If the state is SYN-SENT then
NEURALCRF+R ered (expected | is not explicit enter SYN-RECEIVED, form a

SYN?ACK!)

SYN,ACK segment and send it.

Cristina Nita-Rotaru

TCP FSM extracted by our models

ACK?

FIN? ACK!

(FIN? ACK! ACK?) or
(ACK? FIN!) or

(SIN! ACK!)

—>| CLOSED
SYN! SYN!
Y™
SYN!
LISTEN SYN_SENT
ACk»
> p
il (SYN! ACK!) or
(SYN! ACK!) or (ACK? FIN!)
(ACK? FIN!)
SYN_RECEIVED ESTABLISHED
FIN?
ACK!
FIN!
ACK? FIN?
ACK!
FIN? ACK?
Ak FIN_WAIT_I CLOSE_WAIT
ACK? - (v)
ACK!
FIN? ACK! ACK?
SYN! ACK!
CLOSING

T

L FIN?

FIN_WAIT_2

ACK! ACK? L

ACK?

(SYN! ACK!) or

(ACK? FIN!)

(SYN! ACK!) or (ACK? FIN!)

Cristina Nita-Rotaru

ACK?

TIME_WAIT

U

FIN? ACK! ACK?

LAST_ACK

U

FIN? ACK! ACK?

This talk

Can we automatically extract formal
specifications of protocols (FSM) from RFC?

Can we synthesize attacks based on
the extracted FSM?

Cristina Nita-Rotaru

Attack synthesis

» Look at attacks through a formal methods lens

» Given a program with a specification, an attack is a
counterexample violating some (security) property
» Approach

» Define an attacker as a process that when composed with
target system, results in a protocol property violation

» Look for counterexamples on the composed system

[What is the attacker program? }

Cristina Nita-Rotaru » 40

KORG

» Model the attacker as a Daisy process
that nondeterministically exhausts the
space of input and output events of a

vulnerable process X Q
! .

Ho:

“P || DAISY(Q) = v?”

KORG SPIN

Counterexamples

Synthesized Attackers

Automated Attacker Synthesis for Distributed Protocols. Max von Hippel, Cole
Vick, Stavros Tripakis, Cristina Nita-Rotaru, March 2020. SafeComp 2020.

github.com/maxvinhippel/attackerSynthesis

Cristina Nita-Rotaru

Using RFC-extracted FSMs

» Apply KORG to two protocols DCCP and TCP

» Several state machines:
» Canonical: FSMs from books, manually derived by experts
» Gold: obtained with the grammar annotation
» LINEARCRF+R: predicted by the linear model
» NEURALCRF+R: predicted by the neural network model
» Select several properties by reading the RFC, hand-write

them in LTL, and use them to find violations on each of
the corresponding extracted FSMs

» Once we obtain a violation on an extracted model, we call
them candidate attacks, we need to check them against
the canonical FSM to see if they are confirmed or not

Cristina Nita-Rotaru » 42

Protocol properties we used

» TCP: » DCCP:

$1 =“No half-open connections.” 01 =“The peers don’t both loop into
$2 =“Passive/active establishment being stuck or infinitely looping.”
eventually succeeds.” 02 =“The peers are never both in

¢ =“Peers don’t get stuck.” TIME_WAIT”

$4 =“SYN_RECEIVED is eventually 03 =“The first peer doesn’t loop into
followed by ESTABLISHED, FIN_WAIT 1, being stuck or infinitely looping.”

or CLOSED.” 04 =“The peers are never both in

CLOSE_REQ.”

Cristina Nita-Rotaru D 43

Evaluation: Properties supported

» First we check what properties are supported by the

extracted models

TCP PROMELA program

-
—

-
N

-
=~

Canonical

Gold
LINEARCRF+R
NEURALCRF+R

DCCP PROMELA program

>
p—

D
[\

Canonical

Gold
LINEARCRF+R
NEURALCRF+R

NSSSNNTISSSNTT

NSSSNNTISSSNTT

NSSNTISS >N
>
Ny

Cristina Nita-Rotaru

P 44

Why weren’t these properties supported

» TCP Gold does not support two properties

» Why: Remember that Gold is not finding all 20 states of the
canonical, due to ambiguities and not explicit mentioning of
both states of the transition

» TCP Gold P program does not support

property ¢4, while the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs do

» Why: The same erroneous transition manifests in all three TCP
programs, but in the TCP Gold program the code is reachable,
while in the TCP LINEARCRF+R and NEURALCRF+R programs it
is unreachable

Cristina Nita-Rotaru D 45

Evaluation: Candidate attacks

Candidates Unconfirmed
Guided by . Candidates
Guided by .

TCP PROMELA program | ¢1 ¢2 ¢3 ¢4| ¢1 @2 @3 ¢4
Canonical 1 9 36 17/0 0 0 O
Gold 2 0 0 0|0 O 0 O
LINEARCRF+R 1 0 0 O (0 O 0 O
NEURALCRF+R 1 0 0 0|0 O 0 O
DCCP PROMELA program | 01 62 03 604|601 62 603 04
Canonical O 12 0 1 (0 0 0 O
Gold O 1 o0 1 (0 O 0 O
LINEARCRF+R 8 2 13 1 |2 O 13 O
NEURALCRF+R 5 2 9 112 0 9 O

Cristina Nita-Rotaru

Examples

» TCPNEURALCRF+R.$1.32 injects a single ACK to Peer 2,
causing a desynchronization between the peers which can
eventually cause a half-open connection, violating ¢1

» DCCP.LINEARCRF+R.04.32 injects and drops messages to
and from each peer to first (unnecessarily) start and abort
numerous connection routines, then guide both peers at

once into CLOSE_REQ, violating 64

Cristina Nita-Rotaru » 47

Why we missed attacks for TCP

» Properties $3 and ¢4 not supported so we could not find
violations against them

» Property ¢2 is supported but did not not yield candidate
attackers

» 2 says: “if the two peers infinitely often revisit the
configuration where the first is in LISTEN while the second is in
SYN_SENT, then eventually the first peer will reach
ESTABLISHED”

» TCP Gold, LINEARCRF+R, and NEURALCRF+R PROMELA
programs, the tear-down routine is incomplete, so a
connection cannot be fully closed

» Timeout transitions needed to abort a connection
establishment are missing

Cristina Nita-Rotaru D 48

Limitations

» Our NLP models could not extract Canonical FSMs from
RFCs, ambiguities and not explicit mentioning for Gold,
difference between Gold and models due to errors in
prediction

» Attacker synthesis with partial or incorrect FSM can
result in missing attacks or unconfirmed attacks

» Attacks we found are dependent on property selection

MORE WORK TO BE DONE !!!!

Cristina Nita-Rotaru p 49

Beyond attack synthesis

» Textual specifications will not go away, they are part of
human interactions

» How to write better textual specifications, more
amendable to automation

» The automation can be used as a grammar check for
textual specification

» Check that desigh changes do not introduce new
problems

» Check compatibility between modules
» Apply to other domains

Cristina Nita-Rotaru » 50

Summary

» Show that it is possible to
automate attacker synthesis
against protocols by using
textual specifications such as
RFCs

» Show how to automatically
extract FSMs from RFCs

» Apply the extracted FSMs to
attack synthesis

Check out the code! |
https://github.com/RFCNLP N Y P

" ISEC Building

Cristina Nita-Rotaru p 51

Relevant publications

» Leveraging State Information for Automated Attack Discovery in Transport Protocol
Implementations. S. Jero, H. Lee, and C. Nita-Rotaru. IEEE/IFIP DSN 2015. Best paper award.

» How Secure and Quick is QUIC? Provable Security and Performance Analyses. R. Lychey, S. Jero,
A. Boldyreva, and C. Nita-Rotaru. IEEE Symposium on Security and Privacy 2015. Awarded
IETF/IRTF Applied Networking Research Prize, 2016.

» Automated Attack Discovery in TCP Congestion Control Using a Model-guided
Approach. Samuel Jero, Endadul Hoque, David Choffnes, Alan Mislove, Cristina Nita-Rotaru.
NDSS 2018. CISCO Network Security Distinguished Paper Award.

» aBBRate: Automating BBR Attack Exploration Using a Model-Based Approach. Anthony
Peterson, Samuel Jero, Endadul Hoque, Dave Choffnes, Cristina Nita-Rotaru. RAID 2020.

» Automated Attacker Synthesis for Distributed Protocols. Max von Hippel, Cole Vick, Stavros
Tripakis, Cristina Nita-Rotaru, March 2020. SafeComp 2020.

» Automated Attack Synthesis by Extracting Finite State Machines from Protocol
Specification Documents Maria Leonor Pacheco, Max von Hippel, Ben Weintraub
Dan Goldwasser Cristina Nita-Rotaru. IEEE Security and Privacy, 2022.

https://github.com/RFCNLP

Cristina Nita-Rotaru p 52

