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Abstract—The openness of the Android operating system in-  While there has been work studying mobile malware prop-
creased the number of applications developed, but it also fro-  agation, the problem oinfection containmentin wireless
duced a new propagation vector for mobile malware. We model o \yorks was less studied. The work of [15] analytically
the propagation of mobile malware using epidemiology theor . . . Lo .
and study the problem as a function of the underlying mobility studied containment of infection ina mobile ne_atwc_;rk throug
models. We define the optimal approach to heal an infected sgsn ~ countermeasures such as reducing communication range of
with the help of a set of static healers that distribute patcles, nodes during an infection outbreak. The work does not censid
as the T-Cover problem and show that it is NP-HARD. We  yagistic mobility models and does not propose concrete pro

then propose two families of healer protocols that trade-df time ¢ Is to depl d activat h t The
recovery and energy consumed by sending patches. The first en 0cols 1o deploy and aclivate such countermeasures. wor

uses randomization to ensure a small recovery time but may sult  in [16] introduced replicative and non-replicative patcis-d

in healers sending more patches than needed. The second oneseminations assuming a network cost function and proved tha

Ustesh SyStgn: _fteedbaCk tolt ‘?P“milze energy Const!med vt\)/y Sﬁndingthe dynamic control strategies have a simple optimal sirect
atches, but it may result in a larger recovery time. We show A ; S o

tphrough simulationsyusing the NS-3 %imulator thyat despitedcking However, the Impractlcal d_etermlnatlon of the healgr ation

knowledge of the future, our protocols obtain a recovery tine time and the lack of inclusion of the resource cost incurrgd b

within a 10x bound of the oracle solution that knows the arrival ~ each patch dissemination make the techniques difficult phyap

time of the infected nodes. directly to energy constrained realistic scenarios.

In this paper, we take the first step towards designing
] i ) countermeasures for malware propagation under the presenc

With the advent of Google’s Android, the number of wirelesg yeajistic mobility in a practical scenario. We investiga
devices with complex capabilities and supporting 0Open@Uryhe dependence of infection spread on the underlying nigbili
operating systems has significantly increased. While the®10p nqqe| in order to systematize the design of countermeasures
ness of operating systems induces developers’ motivatfonye introduce the concept diealersto mimic the recovery
also introduces a new propagation vector for mobile malwarﬁrocess in a standard epidemic model and we focustatic
Recent reports show a significant increase in malware tr;u;gethemers i.e., immobile healers, which represent a realistic

Android devices [1, 2]. , , model because they can be directly mapped to real-world
Significant research focused on propagation modeling, dgsenarios. For instance, static healers can be considered a
tection, and application profiling of malware in the contekt | jar base stations (where no two stations cover the same
wired networks [3]-{7]. Those results do not model mobilg| jn most cases) and the mobile nodes can be considered as
malware which spreads directly from device to device Dysers carrying mobile phones (moving with a certain mapilit

using short-range communication such as WiFi or Bluetoot,qqe) Unlike [12], our static-healers are not white-werm
Mobile malware propagation has been studied using mean figlfly 4o not deactivate infected nodes. Our contributions are
compartmental models [8] which assume that each infected

node will contact every neighbor once within one time stepWe show that the infection spread in mobility models that
i.e, the infectivity is equal to the connectivity. Such modelgnimic human behavior is slower than standard mobility medel
do not take into account that mobile malware does not spreéde to different contact rate and spatial distribution abar

at an even contact rate, as spreading requires devices toteydstics. We compare the Truncated Levy Walk (TLW) and
within each other’s proximity which in turn depends on useRandom Waypoint (RWP) mobility models and show that the
mobility. Most previous research on mobile malware haseeithepidemic spread in TLW igelatively slowercompared to RWP.

not considered mobility [9]-[11] or has given limited catsi- This finding indicates that when designing countermeasure
ations to it [12, 13]. Approaches that considered mobild@yén mechanisms, the time constraints are less tight than leeliev
used popular models like the random waypoint model whicland that time-dependent assumptions can be relaxed to some
as it has been shown, does not realistically mimic humagxtent, resulting in relatively lower consumption of energ
mobility [14]. « We model countermeasures to malware spread using static

|I. INTRODUCTION



& - Recovery Rate: transition

from infected to recovered status mobile malware propagation. We selected TLW because it was
_ o o shown to mimic human mobility. Unless otherwise noted, we
‘s | R use a node velocity of 0.6 m/s to mimic low velocity realistic
human mobility in both mobility models throughout the paper
3 - Infection Rate: transition Random Waypoint (RWP): RWP is a widely used mobility

from susceptible to infected status model [17]-[19] and includes pause times between changes in

direction and/or speed [20]. A mobile node begins by staying
) ) in one location for a certain time period (pause time). Ohéz t
healer nodes. Static healers once placed in the area, ggfe elapses, the mobile node chooses a random destination i

independently to deploy a patch when they sense nodestif simulation area and a speed that is uniformly distribute
Fhelr proximity. A healer.-based solution optimizes: (|¢Me between[vmin, vmaz]. The mobile node then travels toward
it takes to heal the entire system by patching all the infectgpo newly chosen destination at the selected speed. Upon

nodes and (ii) the total number of patches broadcasted. Wgival, the node pauses for a specified time period andsstart
formulate the optimal solution based on static healers as a the whole process again (see Fig. 2(a)).

Cover problem and show that the TAVER is NP-HARD. The initial random distribution of mobile nodes is not

« We design ORACLE, dog(n) greedy approximation algo- representative of the manner in which nodes distribute them
rithm that computes the optimal healing time knowing thge|ves when moving as the instantaneous mobile node neighbo
placement of the static healers atite future i.e. the exact percentage possess high variability [21]. We use the approa
time instances when the infected nodes arrive within each gfiggested by [22] and discard the initial 1000 seconds of
the healer’s proximity. simulation time produced by RWP in each simulation trial.

« We propose a novel healer placement strategy using bluguncated Levy Walk (TLW): Rheeet. al. recently [14]
noise distribution generating Poisson Disk Sampling. Vsh reported that human walks performed in outdoor settings of
that unlike random placement that results in many overtappi tens of kilometers resemble a truncated form of Levy walks
healers which cover the same area, our method allows healgstnmonly observed in animals such as spider monkeys, birds
to cover disjoint areas, thus enabling them to indepenglening jackals. ALevy walkis a type of random walk in which
cover more infected nodes. the increments are distributed according to a heavy-tailed

« We design two families of healer protocols, RH and PHprobability distribution,i.e., their tails are not exponentially
that trade-off time recovery and energy consumed by sendibgunded. The distribution used is a power law of the form
patches. RH uses randomization to ensure a small time recgv= z~* wherel < «a < 3. TLW is a random equivalent
ery but may result in healers sending more patches than deed@obility model for human walks in that it can describe some
PH uses system feedback to optimize the energy consumedifiportant characteristics of human walks (e.g. flight léngt
sending patches, but it may result in a larger time recoveryause time and inter-contact time) despite being a random
We compare our protocols with the ORACLE protocol angnodel. Intuitively, Levy walks consist of many short flights
show through simulations that despite lacking knowledge efnd exceptionally long flights that nullify the effect of $uc
the future, both RH and PH protocols obtain a recovery timghort flights (see Fig. 2(b)).
within a 10x bound of the oracle.

The rest of this paper is organized as follows.describes B. Infection and Recovery Models

our system m_odel_, our assumptions and ir_ltrodgces the rty_)bili We adapt two classic epidemic models (S and SIR) to take
models used in this papejlll analyzes the infection dynamics jni, account mobility. First we give a brief overview of the
as a function of the und_erlylng mobl_llty modefgV |nt_roduces Sl and SIR models, then describe how we use them to model
our healers andV provides simulation result$VI discusses malware propagation and node recovery in a mobile network.
related research argVll concludes the paper. S| Model. The Sl-model is a two-state compartmental epi-
Il. SYSTEM MODEL demic model,i.e, a node can stay in one of two states:
In this section, we construct a framework for analyzing th&uSceptibleandinfected A susceptible node is vulnerable and
propagation of malware over a mobile ad hoc network th&@n Pe exploited to be infected which in turn can infect other
relies on epidemic theory to capture both the spatial intea susceptible nodes. In this model, once a susceptible node is

of nodes and the temporal dynamics of infection propagatioffifected, it stays that way. The parameter that charaeteriz
the model is the infection rates.

A. Mobility Models SIR Model. The SIR Kermack-McKendrick model [23] as-

Due to the difficulties in adapting real-trace data to longumes that an infected node can be recovered. Specifically a
running simulations [11], we decided to use analytical n®denode can be in one of the following statessceptibleinfected
derived from real-trace data instead. Specifically, we b&e tand recovered Nodes flow from the susceptible group to the
Random WaypoinfRWP) and Truncated Levy walTLW) infected group and then to the recovered group [24] as shown
mobility model to generate synthetic mobility traces. We sen Figure 1. The model is characterized by two parametees, th
lected RWP because it is a typical mobility model used toystudnfection rateS and the recovery rata.

Fig. 1. SIR Model: S, susceptible; I, infected; R, recovered



Mobile Infection Model. The SI model makes the unrealisticthat the time required to infect the system is far less in cdse
assumption that each infected node will contact every wigh RWP differing almost by a factor of 3 from TLW. To the best of
once within one time step,e., the infectivity is equal to the our knowledge, this phenomenon has not been observed before
connectivity. To take into account mobility, we assume thas most earlier research [12, 13] has studied these mobility
nodes are moving according with a mobility model and wenodels in isolation. As protocols are to be designed mostly
define infection spread as a function of a parameterhich for realistic mobility models (TLW in this case), this comes
we call the probability of successful transmissiodt each as a good news in that certain assumptions such as time-
time step, for every nod&’, we find the neighbors oK that constrained-ness of a protocol can be relaxed to some extent
are capable of infecting(. For each of these neighbors, weresulting in relatively lower consumption of energy.

generate a random number from a uniform distribution betwee \We gain insights into the reasons behind the slow infection
[0,1] and if this value is smaller than, then X becomes propagation for TLW by using two metrics: (i) contact rate,
infected. and (i) spatial distributions of node mobility.

Mobile Recovery Model We adapt the SIR epidemic model as) contact Rate: Contact rate is the average number of nodes
follows. Infection is modeled as in the mobile infection rebd o cquntered by any given node over the duration of simulatio
above. We map node recovery through a healer that will changg, piot an empirical cumulative distribution curve (ECDF)
the state of an infected node to recovered through a healiggine contact rate in Fig. 2(d) for RWP and TLW. Observe
mechanism. Once recovered, a node can no longer be infectﬁ%t the median contact rate of nodes in case of RWP is
thus if no new nodes are added the infection will eventually; st always higher than that in TLW. The same effect can
disappear. The healing mechanism is distributed throughpa opserved for thest” percentile indicating that in RWP, a
patch, a healer can send at most once during an interval @fen node comes in contact with a relatively higher numier o

time calledepoch denoted as. We assume that healers arg,gqes thereby increasing its chances of infecting otheesiod
static, resource constrained, and act independently. Wleras or getting infected by other infected nodes.

that there is no packet loss but note that it is stralghtfadwaz_ Spatial Distributions: The spatial distributioni., fre-

to extend our model to a model having packet loss, ency of visits in the simulation area) of the mobility misde

. . . u
This model is charact_e rlzeq by the way the healers are plac%e‘é/eals another reason behind the slow infection propamgati
and by the frequency with which they send paiches. Al healelrn order to evaluate the spatial distribution of infectedle®

are activated once the number of infected nodes in the systtﬁj?at move according to each of the models, we take an approach
reached a system-wide parameter. '

similar to [28]. Specifically, we divide the simulation areto
I11. | NEECTIONDYNAMICS small size cells (e.g., divide a 1000x1600 into 20x20n2 size
In order to understand the infection dynamics of the tw8e"3) and characterize each one of them using a histogram th
aptures the duration of how long an infected node stays in a

mobility models, we first describe our methodology and the . . .
explainythe results that we observed oy particular cell. We end the simulation after 50,000 seconds

Fig. 3(a) shows the resulting spatial distribution and oant

A. Methodology lines for a particular simulation run using RWP. We observe

We use the infection model described in previous sectidhat the spatial distribution has a peak in the middle of the
with the parameter that controls the infection rate; 0.3 [25] ~ area, i.e., an infected node is most likely to be found in the
to mimic a more realistic infection scenario where infeatio central cells of the simulation area and the probabilityt tha
spreads slowly. We generate RWP traces by using [26] aAdnode is located at the border of the area goes to zero.
TLW traces by using the algorithm outlined in [14]. WeFig. 3(b) shows the spatial distribution and contour lines f
perform our simulations using NS-3 [27]. We simulate thdLW. Observe that the non-homogeneous behavior seen in the
behavior of a system with 100, 200, and 300 nodes in a fix@@se of RWP is absent in the case of TLW, i.e., TLW exhibits
area. All results have been averaged over ten simulatios. rud homogeneous spatial distribution. The reason for the non-

We define arinversion pointto be the time instant where homogeneous behavior in RWP is well known [28]-{30]. In
50% of the population is infected. We use this metric to iatc short, RWP chooses a uniformly distributed destinatiomipoi
the first point in time where the number of infected nodegather than a uniformly distributed angle. This means toaes
surpasses the susceptible ones, thusrting the scenario. In- located at the border of the simulation area are very likely
tuitively, an inversion point characterizes how fast tedtion to move back toward the middle of the area. However, this

is propagating in an epidemic system. is not the case as per the original definition [14] of TLW.
Under a TLW, at the beginning of each step, an infected node
B. Results chooses a direction randomly from a uniform distribution of

Figure 2 shows the infection dynamics in RWP and TLWangle within [0, 2], a finite flight time randomly based on
mobility models. Observe that the inversion point for RWRBome distribution, and its flight length and pause time from
occurs quite early in the simulation (Fig. 2(c) indicates aome chosen probability distributions. In the long run, the
time around 500 seconds) in comparison with TLW (Fig. 2(q)ositions of the random walker (infected node in our case)
indicates times between 1500-3000 seconds). This indicateas been shown to converge to another distribution, calfied t
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Fig. 2. (a),(b) Tracing the path of a single node for RWP and TLW: Observe the short paths in RWP and bursty long paths in TLW,
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its future states, predicting when to broadcast a patch tionoe

Fig. 3. (a) Spatial Distribution of RWP: The non-homogeneous the healing time is hard.

distribution of node mobility indicates the center to be thest

frequented region(b) Spatial Distribution of TLW: The nearly-  |V- DEFENSEPROTOCOLSBASED ON STATIC HEALERS

homogeneous distribution of node mobility indicates thatrex In this section, we discuss defense protocols against mobil

gions are equally frequented. malware. We first present the problem definition, formally
define the static optimal healer activation problem, shoig it

Levy stable distributionwhich leads to super-diffusive paths,NP-hard, and design a greedy approximation algorithm. We

thus making the infected nodes cover the area in a neaflgcuss strategies for healer placement and present twbefam
homogeneous manner. of static healers heuristics: randomized and profile-hased

In summary, in case of RWP, depending on the origin of tha, Problem Definition

infection, the spread can progress r_apl_dly because mo_ﬂsnod Healers have the ability to broadcast a patch periodically
have to pass through a common point in the center which alg

explains why the contact rate of the nodes is higher than trm? every epoctr. We consider the decision problem of when

. . te healer node should be activated (i.e. switched on) mvithi
in TLW. In case of TLW, due to the underlying homogeneou

behavior. th te of infecti tion i v th this time period to deliver a patch, to optimize along two
behavior, the rate of Infection propagation Is nearly the&a ;engjons: (i) the time it takes to heal the entire system, a
irrespective of the point of origin of the infection.

; ) (ii) the total number of patches broadcasted.

Impact on the design of countermeasures: We assume that healers can sense the number of neighbors
. Static healers placement In case of RWP, positioning a surrounding them but cannot determine which of the nodes
few static healers somewhere near the center of the field @3¢ infected/susceptible/recovered. Note that this asze the

a non-overlapping manner should suffice because most nog@splexity of the problem significantly. Consider the exéenp
will traverse the central point in the field anyways. Howevein Fig. 4. Attime slot 1, if the healer decides to utilize iatgh,

this is not the case for TLW, because the node distributidhwill heal three nodes whereas at time siot it can heal only

is uniform across the field, thus requiring a way to optimiz&v0o nodes and at time slat, it can heal five nodes. An oracle
healer placement such that they cover as much field as pessibhat has access to the future will pick a time slot that wilkena
« Healer patch dissemination In case of designing a healer foran effective use of the patch to heal the maximum number of
TLW, having a higher patch dissemination rate will resulain Nodes (in this case, time slot). However, in practice, the
lot of patches being delivered to the same set of nodes siree duture is not availab.le to hea!er nodes. . .

to the low velocity (and thus low contact rate) many nodes may e ask the questionsvhat is an effective strategy for posi-
continue to stay within the proximity of the healer. Therefo tioning the static healers so that two healers will avoid lea

for a system optimizing energy, healer patch dissemination the same set of infected nodes®IHow does the healer decide

a function of the contact rate (details §niV-E). whether it should deliver the patch or wait in anticipation

of a higher number of nodes in the futur&%thout loss of



generality, we consider the energy consumption in deliggri  We now show thatls has a MSC iffI; has a T-@VER.
the patch is much higher than any other communication &gtiviSuppose thaf, has a MSCC' = {S;,, ..., Si, }, wherek > 1.
initiated by a healer. Intuitively, we are solving the peml Since eachS;; € C wherej = 1,...,k, has a corresponding
of effectively distributing a patch without knowing the i@el 73, € 7 andg, o Si; = U, therefore{J; ;5. cc Ti; =
distribution of infected nodes. U = 7. Thus, {T},, ..., T;, }, wherek > 1 is a T-COVER
of I;. Conversely, suppose th&/ = {T;,,...,T;,}, where
k > 1, is a T-QovER of I;. Similarly we can prove that
In the following, we formally define the static optimal healefor each 7;, € W, we have a corresponding;, € S
activation problem, show it is NP-hard, and design insteadand thusU(z‘,j)\TijeW Si;, = U. Therefore, we conclude that

B. Design of an Oracle Optimal Healer

greedy approximation algorithm. {Si,, ..., Si, }, wherek > 1, is a MSC ofI. [ |
Let us call the task of designing a strategy for an optimal
healer as the T-GVER problem. Algorithm 1 Greedy Approximation (ORACLE)

L . _ Input Let Z be the list of all infected nodesy; be the set of infected nodes
Definition 1. (T'COVER)' Given a SyStem]t 7 (I’ T)’ where seen at each timg w; be the list of costs associated with each arrival at

T be the set of all infected nodes afid= | J, i, where each Initially :

T; is the set of infected nodes seen by all the healers at time £ is the set of elements that are not covered as yet
. . heal ist within th f h C' is the set of covered elements

instance:. Let no two healers exist within the range of eac w is the weight vector

other, and that a patch from a healer can heal all infected R=ZandC =4¢

nodes within its range and will consume one time unit. Therepeat

T-CoVER problem finds a set¥ C 7 with min cardinality Igtficbe thesset that minimizess=7
so that it covers the entire set of infected nodesvith |1V | R— RE{S;}
patches. until R = ¢

return C

For example, le = {1,2,3,4} and7 = {11, 7>, T3} where
Tv = {1}, o = {1,2,3} andT; = {3,4} be the sets of  According to the above theorem, we can employ any heuris-
infected nodes seen by the healer, then thed&Ris W = ic that solves the set cover problem to solve the GvER

{T2,T5} meaning that a patch should be deployed at timesopiem, Algorithm 1 gives a greedy approximation for the

t =2 andt = 3 for optimality. . T-CoVER. The algorithm takes as input the arrival times of
We now prove that the T-QVER problem is NP-HARD by the infected nodes. Hers; is the set of infected nodes seen

re_dgction to the minimum set cover problem. First we state th; any one time instant and we equate the weight veator
minimum set cover problem. to the time of arrival — cost of healing nodes at a later time
Definition 2. (MIN SET COVER (MSC)). Let S = is higher b_ecause it introduces delay. The main loop itsrate
{S1, S5, ..., Sm} be a collection of finite sets, whers;’'s for O(n) time, where|Z| = n. The minimum can be
elements are drawn from a universal dét= (J, S;. The found in O(log m) time, using a priority heap, where there
MSC of I, = (U,S) is a setC with min cardinality where ar€m Sets in a set cover instance giving us a total time of

CccSandg Si=U. O(nlog(m)). Fig. 5(a) shows that even in the presence of
: hundreds of thousands of node sets, we are able to compute
For example, assumé&/ = {1,2,3,4,5} and S = the optimal solution in under 8 seconds.

{51752753754}, Wheresl = {172,3}, Sy = {2,4}, S3 =
{3,4} and S, = {4,5}. The MSC isC' = {51, 54}. The MmsC  C. Effective Healer Placement
problem is NP-HARD. Consequently, the following is entailed. Since the healers are static, the healer placement has an
impact on our defense protocols and thus their coverage area
depends on their placement strategy. Our simulations showe
Proof: We prove the theorem by providing a polynomialthat a naive placement using uniform random distribution
time reduction from the NP-ERD MSC problem. Consider resulted in a scenario where many healers ended up covering
I, = (U,S) is an instance of MSC problem havirlg as the same region thereby leaving a lot of uncovered area.
the universal set an¢ = {51,552, ..., 5.} whereS; C U, Therefore, what we need is a type of a constraint that rejects
andJ;“, S; = U. We construct an instanck = (Z,7) of certain configurations that place healers very close to each
the T-CovER problem as follows. Suppose the universal seither. This problem can be directly reduced to a problem from
U corresponds to the set of infected nodesThe intuition the field of computer vision which involves producing samgli
behind this mapping is that witli; we want to cover each patterns with a blue noise Fourier spectrum.
element inU and accordingly we aim to cover all the infected Formally, the problem can be defined as the limit of a
nodes inZ of I;. EachS; € S is mapped to a time instance uniform sampling process with a minimum-distance rejectio
T; € T as selection of sets ifi; corresponds to selecting thecriterion. Successive points are independently drawn filoen
time instances inf; when a patch is to be broadcasted. Thisiniform distribution|0, 1]. If a point is at a distance of at least
reduction can be easily done in polynomial time. R from all points in the set of accepted points, it is added to

Theorem. The T-CoVER problem isNP-HARD.
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Fig. 5. (a) Oracle Performance: The algorithm terminates in less than 8 seconds even in longlation scenarios(b) Poisson

Disk Sampling: Healers are no longer placed very close to each other thenebgasing their coverage of the simulation args.

Motivating Backoff: Most consecutive patches do not heal infected nodes indiicttat it is better to backoff after a patch delivery.
EXECUTION

Intiaization  PHASE " cn elapsed Algorithm 2 outlines the pseudo-code for the randomized
Q - O if rand() < p: healer. Varying will generate a family of randomized healers.
INTIALEZATION Schedule(patch) On one hand, setting = 1 (RH(,—1)) makes the healer
broadcast a patch at every epoch and thus attempts to meimiz
Fig. 6. State Machine of a Randomized Healer the time it takes to heal the system. However, notice that

that set. Otherwise, it is rejected. The choicefb€ontrols the the number ,Of patches dgllvered vyould be equal tTgm,
here D, is the simulation duration. On the other hand,

minimum allowable distance between points. This procedu?% . .
called Poisson Disk Samplin§31] has been actively studied settingp < 1 makes the healer broadcast a patch only during

and many efficient algorithms exist. Due to space constrainf:ertamt_epof?s' Thhe time iﬁken to Seal ;he tsyhsterr(; IT. |n\xe(;s_el
we do not discuss this algorithm further but refer the reag@foportional top whereas the number of patches delivered 15

to the linear algorithm outlined by [31]. We adapted thig'redIy proportional to it.

algorithm by settinglt = 2r, wherer is the range of our o e e e e B and with (PHB) backoff
each healer. Fig. 5(b) clearly highlights the merits of gsin — :
put Epoch lengthr, observation timel’(> 1) and maximum backoff

. . . |
this specific sampling process - healers are no longer cmserlmitia"y:
each other and hence cover more of the simulation area. t < 0, A « 1, state + LEARNING, nezt_epoch_time + 0

backof f_enabled <+ true if n > 1

. . Start sensing_timer(A)
D. Famlly of Randomized Healers Upon the expiration ofsensing_timer:

. P . t+—t+ A
We first present a heuristic where a healer randomly decides ", " = EARNING then

at what time within an epoch to send a patch. Note that a healer  if ¢ < T then

will decide to send a patch regardless of the number of nades i elssec‘"d"“m—of—”eighbo” in proximity
its vicinity. Fig. 6 depigts the state machir}(? qf th.e randaedi Estimatethreshold from the recordechum_of_neighbors at
healer RH). It contains two states, amitialization phase eachA

state <— EXECUTION

where anepoch timeiis started and aexecution phas#here :
X X . next_epoch_time <— t + T

the healer prepares to deliver a patch. Bpoch timerfires Startsensing_timer(A)
a callback function that has two responsabilities: (i) p&ck else; .

: : : if currentnum_of_neighbors > threshold then
random tlm_e from the interval0, 7], where 7 is the epoch Broadcasta patch
length that is used to schedule a broadcast, calledpiteh if backof f_enabled = true then
timer and (i) re-schedule thepoch timerto be fired for the Randomly seleck between(0,7)

. Startepoch_timer(next_epoch_time —t + Kk X T)

next epochr depends on the range of the healer and velocity clse
of the mobile node. When thgatch timerexpires, the healer Startepoch_timer(next_epoch_time — t)
broadcasts a patch with a probability we call it the patch else

- Start ing_ti A
deployment probability ant sensing_timer(4)

Upon the expiration ofepoch_timer:
if backof f_enabled = true then

Algorithm 2 Randomized Healers (RH) ool 7 get-current time()
Input Epoch lengthr and patch deployment probabiliy t < next_epoch_time
Initially : next_epoch_time <t + T

startepoch_timer(r)

= . Start sensing_timer(A)
Upon the expiration ofepoch_timer:

select a duratiort randomly from (0, ) E. Family of Profile Healers

startpatch_timer(t) L. .

startepoch_timer (1) One limitation of the RH approach is that healers may send
Upon the expiration ofpatch_timer: more patches than needed since they decide to send patches

Broadcasta patch with probabiliyy regardless of how many infected nodes are present in their
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o Complete > LEARNING PHASE ) ) ] )
or Epoch elapsed In this section, we describe our evaluation methodology and
> ———— .
——— Record number of present the performance of the various healer based defense
stimate threshold neighbors in proximity . . .
EXECUTION PHASE mechanisms outlined iflV.
Epoch elapsed
O if num_neighbors() > threshold: A. Evaluation Methodology
Schedule(Patch)
_ _ To evaluate the performance of the two families of healers,
Fig. 7. State Machine of a Profile Healer we simulate these healers using the ns-3 [27] network simu-

proximity. We propose a new approach, PH, where a heallator using a network containing 300 nodes. We perform two
attempts to learn the arrival distribution of nodes and subsdifferent sets of experiments, one with nodes having RWP and
quently determine whether or not it is cost effective towdglia the other with TLW as their mobility model. We assume that
patch. The decision is made based on a threshold that captutee range of each healer is 20 meters andejbpech lengthr,
the number of nodes in its vicinity. Each healer can exist iis 30 seconds (so that each node stays within the range of a
one of three states as depicted in Fig. 7 -iaitialization healer for one epoch length on an average before leaving the
phasewhich sets up all the relevant timers|earning phase coverage area of the healer). In addition, 10% of the pojoulat
where the healer passively records the number of neighborgsi assumed to be initially infected to enable bootstrapping
is observing during each epoch, andexecution phasehere the system. We can technically start with one infected node
the healer utilizes information that it learnt during theygous (which was our initial attempt), but we observed that this/on
phase to decide whether or not to deliver a patch. delays infection spread and increases the chance thatigrfec
The goal oflearning phasés to learn the distribution of node will disappear. Healers are placed in the system using the
arrivals specific to a healer's locality for a certaibservation Strategy outlined ir§lV-C and are activated when the fraction
time 7" which is a multiple ofr. Specifically, the goal is of infected nodes exceeds 70% of the total population to give
to learn a threshold of nodes that will determine whethdhe system sufficient time to warm-up. We note that 70% is
the healer should send a patch or not. We use two metriéie possible worst case scenario and projects the capalufti
() MSD = Mean + 1.5 x Standard Deviation and (i) the healer. In real-world scenarios, this value dependsoan h
M = Median. MSD is well-known for normal distributions fast one can setup healers during an epidemic outbreak. Once
and makes the healer broadcast a patch only if the numbertia¢ healers are activated, they follow the protocols oedlim
neighbors exceeds its estimate of " percentile whereas §IV-D and §IV-E. All results are averaged across 10 runs of
the second metric considers only the median. M is very robuggch experiment, to obtain statistically significant resuby
to outliers - it handles cases where a healer observes a biatying theseedof a pseudo-random number generator. To
of infected nodes during an epoch. Algorithm 3 describes thineasure the performance of each protocol, we define:
healer in detail (in this case, we uge= 1). « Total recovery timelt represents the amount of simulation
During our simulations, we observed that relying solely on a  time required by the set of healers to recover at least 95%
thresholdwas leading to a wastage of patches - due to the low of the nodes in the system.
contact rate we observed Kill-B. Consider Fig. 5(c) which  « Total number of patchest represents the count of patches
depicts the healing sequence of a set of five healers during th  deployed by the set of healers to heal the system such that
epochs of one simulation run. Points situate® atidicate that at least 95% of the total number of nodes are recovered.

the healer deployed a patch as the number of neighbors Wagte that we chose 95% to account for scenarios similar to
above the threshold but the patdid not heal any infected therare block problen{32] in p2p networks - we observed the
nodes. Any other number indicates the number of infectgstesence of infected nodes that take exceedingly long time t
nodes healed with that patch. Observe that most patches @ffer the range of healers because they are wandering along

going to wastei.e,, they are not healing any nodes. In the worsihe edge of the field and hence prolong our simulation.
case, it takes at leadcaler range gaconds for a node to go out

of range of a healer. Therefore, for shorter epochs, cotigecu B. Results for Family of Randomized Healers
patches are delivered to the same set of nodes. We address thFig. 8(a)-(e) shows the temporal view of infection propaga-
issue by introducing @andom backoffi.e., once a patch hastion and the recovery of the system for RH and PH families
been broadcast, the healer selects a random backoff delayising RWP and TLW. The graphs show that regardless of the
from the interval(0,7), wheren is the maximum backoff in protocol, the required recovery time is always smaller iseca
epochs, and skips that many epochs. Algorithm 3 also descritof RWP than TLW which is due to RWP’s higher contact rate.
the backoff algorithm in detail (in this case, we uge> 1). Fig. 8(a) shows the required recovery time for randomized
We refer to this algorithm as PHB. healers wittp = 1, i.e, RH(,=1). The upper graph is for TLW
We also propose an optimization where the algorithm dyand the lower one is for RWP. Additionally, we also point out
namically estimates the decision threshold, evérepochs, the recovery time required by ORACLE using a vertical line.
and uses the newly estimated threshold in the ffégpochs. In case of RWP, ORACLE requires 587 seconds to heal the
We refer to this algorithm as D-PHB. system whereaR H ,,_1) requires almost double this timieg.,
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Fig. 8. Comparison of Healer Families (a)-(e) Infection propagation and recovery with the valabtained using our ORACLE
shown as the vertical lines, (f) Summary of the performarafelsealer families for TLW

1,241 seconds. In TLWRH ,—,) requires about eight times the left one for the total number of patches and the right one
the optimal recovery time. We also note that the recovergtinfor the total recovery time. Each point is the average of 10
required byRH ,—1) is the minimum time that we can achievedifferent runs of the simulation and is plotted along its 95%
using healers that do not depend on system feedbaak ( confidence intervals. With the increase in maximum backoff
estimating the arrival distribution of nodes). values, the total recovery time is increasing rapidly inecas

Fig. 8(b) shows the results fdRH ,,—o.5), i.€., each healer PHBy;sp in comparison with PHB;. On the other side, the
deploys a patch per epoch with a probability= 0.5. It is  total of number of patches is decreasing rapidly for RHB
expected thatRH,_,.5) requires more time thaH_,y in comparison with PHB;. We conjecture that if the recovery
to heal the system since now the healers skip some epoctisie is to be optimized, then PHB is a better solution; but if
In comparsion with the recovery time required B#{,—.), the energy of the healers is to be optimized, then the RkIB
RH,—o5) shows 48% increase in case of RWP and 31% a better choice. However, the downside of PHB is its large
increase in case of TLW. observation time. D-PHB is a solution to this downside of PHB
We also include the performance of D-PKBin Fig. 9. The
results demonstrate that D-PHBperforms as good as PHB

Let Xasp and Xy represent a profile-based heal&r iy terms of both the metrics. So if the large observation time
that utilizes MSO)= Mean + 1.5 x Standard Deviation) g unacceptable, D-PHB heals the system as fast as PHiB

and M= Median) as its threshold, respectively. Fig. 8(C)and does not require any observation time.
shows the performance of PH for the RWP and TLW mobilit

models. PH;sp requires more time to heal the system i
comparison with the other twaRH healers. Since we are
more interested in the human-mimicking mobility model, w . .
evaluate PHB and D-PHB for only TLW in Fig. 8(d) angHiowever, in order to gchleve the fastest recoveRyi(,-1

Fig. 8(e), respectively. Due to space limitation, we prése as to deploy the maximum amoupt of patches. In terms of
the performance of PHB and D-PHB with maximum backoff"® number of patches, Rihp requires the Ieagt number of

n =2 and M as the threshold value in Fig. 8(d)- 8(e). WheRatches but at the cost of_ a Iarge recovery time. However,
we compare Physp, PHBy, and D-PHB, using the TLW F_’HBM performg best since it requires only 6% more recovery
mobility model, PHB;sp outperforms the other two in terms IMe In comparison W H(,—1) and only 30% more patches

of total recovery time. than that of Phizsp.

To measure the impact of different maximum backoff values Our results show that each of the schemes has advantages
on the PHB,;sp and PHBy, we varied the maximum backoff and disadvantages. Randomized healers offer the immediate
from 2 epochs to 16 epochs. Fig. 9 shows the results aflvantage that they do not rely on system feedback nor do
this experiment. We also include the resultsfoff(,_,) as a they have to estimate node arrival distributions. They wdg
baseline of the performance. We use two Y-Axes for this grapheneficial in a time-constrained system as randomized tseale

C. Results for Family of Profile Healers

ummary: Fig. 8(f) summarizes results for TLW for both
metrics obtained by each of the healers. ObserveRtiag,_, )
é)utperforms the others in terms of the total recovery time.
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