
Exploiting Temporal Vulnerabilities for Unauthorized Access in
Intent-Based Networking

Ben Weintraub
MIT Lincoln Laboratory
Lexington, MA, USA

Northeastern University
Boston, MA, USA

weintraub.b@northeastern.edu

Jiwon Kim
Purdue University

West Lafayette, IN, USA
kim1685@purdue.edu

Ran Tao
Georgetown University
Washington DC, USA
rt822@georgetown.edu

Cristina Nita-Rotaru
Northeastern University

Boston, MA, USA
c.nitarotaru@northeastern.edu

Hamed Okhravi
MIT Lincoln Laboratory
Lexington, MA, USA

hamed.okhravi@ll.mit.edu

Dave (Jing) Tian
Purdue University

West Lafayette, IN, USA
daveti@purdue.edu

Benjamin E. Ujcich
Georgetown University
Washington DC, USA
bu31@georgetown.edu

ABSTRACT
Intent-based networking (IBN) enables network administrators to
express high-level goals and network policies without needing to
specify low-level forwarding configurations, topologies, or pro-
tocols. Administrators can define intents that capture the overall
behavior they want from the network, and an IBN controller com-
piles such intents into low-level configurations that get installed in
the network and implement the desired behavior.

We discovered that current IBN specifications and implementa-
tions do not specify that flow rule installation orderings should be
enforced, which leads to temporal vulnerabilities where, for a lim-
ited time, attackers can exploit indeterminate connectivity behavior
to gain unauthorized network access.

In this paper, we analyze the causes of such temporal vulnerabil-
ities and their security impacts with a representative case study via
the ONOS IBN implementation. We devise the Phantom Link attack
and demonstrate a working exploit to highlight the security impacts.
To defend against such attacks, we propose Spotlight, a detection
method that can alert a system administrator of risky intent updates
prone to exploitable temporal vulnerabilities. Spotlight is effec-
tive in identifying risky updates using realistic network topologies
and policies. We show that Spotlight can detect risky updates in
a mean time of 0.65 seconds for topologies of over 1,300 nodes.

CCS CONCEPTS
• Security and privacy→ Network security; Information flow
control; • Networks→ Programmable networks.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670301

ACM Reference Format:
Ben Weintraub, Jiwon Kim, Ran Tao, Cristina Nita-Rotaru, Hamed Okhravi,
Dave (Jing) Tian, and Benjamin E. Ujcich. 2024. Exploiting Temporal Vulner-
abilities for Unauthorized Access in Intent-Based Networking. In Proceedings
of the 2024 ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670301

1 INTRODUCTION
Over the last decade, software-defined networking (SDN) has been
deployed in a variety of production settings to ease the burden on
network administrators in managing control plane operations with-
out manual intervention on every switch1. More recently, intent-
based networking (IBN) allows an administrator to express network
policies without configuring individual network devices with spe-
cific flow rules. Instead, administrators define intents that capture
the overall behavior they want from the network, then an SDN
controller translates them into low-level flow rules and communi-
cates with the network devices to implement the desired behavior.
IBN has been standardized by the Open Networking Foundation
(ONF) [53], the Internet Engineering Task Force (IETF) [21, 45], and
the 3rd Generation Partnership Project (3GPP) [5–7].

Once an administrator defines their desired policy, two steps
take place prior to enforcing such policy. First, each intent is com-
piled into a set of flow rules through intent compilation. Then, the
individual flow rules corresponding to each intent are sent to the
devices through intent installation. Given the complexities of the
inherently distributed system, it becomes challenging to ensure

DISTRIBUTION STATEMENTA. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary
of Defense for Research and Engineering.
1We use “switch” and “forwarding device” synonymously throughout the paper.

https://orcid.org/0000-0002-9527-5888
https://orcid.org/0000-0003-3324-8283
https://orcid.org/0009-0007-4430-5462
https://orcid.org/0000-0002-9649-6789
https://orcid.org/0000-0003-1450-3744
https://orcid.org/0000-0002-7506-9593
https://orcid.org/0009-0001-3433-9972
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670301
https://doi.org/10.1145/3658644.3670301

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

that the intended behavior of all flow rules becomes actionable and
consistent at the same time when flows are updated.

Addressing such update inconsistencies is critical for security.
For instance, given a security network policy, a host should never
have connectivity to a host to which it is not explicitly granted
access. When a host does become connected to an unauthorized
host that it was not connected to before the update started and will
not be connected to after the update completes, we refer to this
as a temporal vulnerability. If such connectivity is the result of a
malicious action we refer to it as a temporal attack. We also refer to
the resulting additional connectivity as unauthorized connectivity.

Although prior work has studied the problem of inconsistent
updates in SDN, no work has focused on the security implications
to the IBN layer or the security implications of inconsistent data
plane updates. Several models for consistent updates have been
proposed [48, 51, 61], but unfortunately none of them have been
widely adopted, likely due to both memory and time overhead. The
introduction of intents as a new abstraction presents additional at-
tack vectors, while inconsistent updates and their potential impact
on security continue to remain an unsolved problem. As a feature,
IBN provides conditions under which flow rules will be recomputed
and redeployed. This implies an expanded threat model in which
an attacker can influence when and how this redeployment occurs.
These capabilities increase the attacker’s control over the system,
and have not been considered in prior work. IBN-related security
has focused on secure ACL update plans [71], provenance analy-
sis [72], and automatic bug discovery [42], but none have identified
any temporal vulnerability during intent updates. To the best of
our knowledge, no work has studied temporal vulnerabilities in
IBN caused by inconsistent updates.

Overview. In this paper, we focus on IBN temporal attacks. We
explore different approaches that can be exploited by an attacker
to conduct such attacks: monitoring flow installation, delaying
installation of specific rules, or forcing intents recompilations by
an honest controller, all with the goal of creating an inconsistency
that gives the attacker unauthorized access.

We demonstrate a concrete delay attack, which we refer to as
the Phantom Link attack. In this attack, we show that an attacker-
controlled host is able to create transient connections to other hosts
that are not specified by the intent. In other words, despite an intent
dictating where a host is able to connect, we are able to create short-
lived connections to other hosts. Additionally, we are able to extend
this unauthorized connectivity for long enough to show that an
exploit can be delivered. We are, to the best of our knowledge, the
first to show how an attacker can gain unauthorized connectivity
via inconsistent flow rule updates without access to the controller
or switches.

Solving the problem of inconsistent updates is challenging. On
one side, existing IBN standards [5–7, 21, 45] do not specify update
consistency guarantees or how updates ought to be implemented.
As a result, developers may design or implement update consis-
tency differently. Defenses implemented in popular controllers,
like barriers and stripe keys, are insufficient to protect against our
attacks. Stripe keys can only enforce the ordering when sending
flow rule operations. They do not guarantee the install ordering

among switches. An attacker can exploit this by selectively delay-
ing updates to some switches. Likewise, barrier messages can only
enforce the flow rule processing order on a single switch. We exploit
improper flow rule update ordering between multiple switches, so
barrier messages are not an effective defense. We demonstrate our
attacks for the ONOS IBN implementation. Changing standards
takes time; meanwhile, administrators are left either unaware or
unable to deal with such inconsistencies and the vulnerabilities
they introduce.

On the other side, enforcing consistent updates in the entire
network is costly and not always necessary. We propose a solution
designed to empower administrators without paying the network
cost of enforcing global consistency on all the flow rule updates.
Our approach instead is to identify high-risk intent updates before
attempting to install the resulting flow rules on the network.

We propose Spotlight, a system that identifies updates prone to
temporal vulnerabilities. We first show a strawman approach that
finds all possible orders in which flow rules can be installed, which
we then inspect individually to verify if it would lead to a transient
connection outside the expectations of the IBN administrator. This
approach is costly and is only feasible on small networks, but finds
all such risky updates. We then present a faster method based on
link prediction algorithms that scales better to large network graphs.
Although this faster algorithm does not guarantee to find all risky
updates, we show that, with proper tuning, we are able to identify
risky updates in all properly tuned trials, even on topologies with
over 1,300 nodes in a mean time of 0.65 seconds—this presents a
speedup of 76.8× over the exhaustive search approach.

Empoweredwith Spotlight, an administrator can decide how to
handle such risky updates. Our experimental evaluation shows that
their number is small, thus for example, the administrator might
decide to use a consistent update enforcement for those particular
intents such as those previously proposed [48, 51, 61].

Contributions. We make the following contributions:

• We explore the space of temporal attacks in IBN and show
different ways in which an attacker can exploit them: by
monitoring intent installation, by forcing intent recompila-
tion, or by delaying intent installation.
• We demonstrate an exploitable concrete temporal attack that
controls the order of flow rules by delaying the installation
of an intent at a particular switch. We refer to this attack as
the Phantom Link attack.
• We design the Spotlight detection method to identify high-
risk IBN updates.
• We implement and evaluate Spotlight, and show that it
can detect risky updates in a mean time of 0.65 seconds for
topologies of over 1,300 nodes. We open source Spotlight
for the benefit of the community2.

Ethics. We identified a novel vulnerability in the well-known ONOS
SDN controller. We responsibly disclosed our discovery to the
ONOS security response team of developers. Our attack was as-
signed CVE-2024-24270.

2https://zenodo.org/doi/10.5281/zenodo.11642349

https://zenodo.org/doi/10.5281/zenodo.11642349

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2 BACKGROUND
2.1 Software-defined Networking (SDN)
Software-defined networking (SDN) differs from traditional net-
working by separating how traffic forwarding decisions are made
(i.e., the control plane) from the traffic itself (i.e., the data plane), cen-
tralizing the control into a logically centralized SDN controller, and
exposing programmable APIs to developers who want to extend
the control plane functionality [43].

2.1.1 Programming the network. To program the network, the SDN
controller sends flow rules to the network’s forwarding devices (e.g.,
switches and routers). Flow rules contain “match-action” fields that
specify parameters of incoming packets that should be matched and
a specific action to be taken. For instance, a typical flow rule may
specify (1) an ingress port to match, (2) an egress port to forward
the packet out on, and (3) a set of header fields (e.g., IP destination
address for routing) to match. A flow rule is triggered if the packet
is received on the ingress port and matches the specified pattern,
in which case the packet is sent out on the egress port.

Flow rules can be installed or removed by the controller at any
time, either actively or passively (e.g., timeout due to lack of match-
ing packets). A controller may send out many flow rule updates (i.e.,
installations, removals, or modifications) as part of a single logical
update in which the goal is to establish or remove connectivity
between at least two endpoints (i.e., hosts).

2.1.2 Update consistency in the data plane. Although the SDN ar-
chitecture is logically centralized, it is a distributed system consist-
ing of SDN controller instances and switches. Distributed systems
often aim to provide consistency a property dictating that all partic-
ipants see the same view of operations and execute intended state
changes in a well-defined order.

The update consistency problem in the data plane3 arises from the
ordering of flow rule updates [62]. If an SDN controller sends mul-
tiple flow rule updates at one time, some switches may receive and
install the updates before others. That leads to an inconsistent (and
insecure) forwarding state, since in-transit packets may be subject
to some indeterminate mixture of the old and new rule set. Foerster
et al. [25] describe consistency in terms of ensuring that there are
no loops and no blackhole routing (connectivity consistency), that
certain configured properties must remain satisfied at all times (pol-
icy consistency), and that no flows should be created that violate
link capacities (congestion-aware consistency). Additionally, per-
packet consistency [61] ensures that every packet flowing through
the network should behave as though it is being routed before any
updates occurred, or after all updates have occurred.

To ensure update consistency, McGeer [51] proposes two-phase
commits, which trades off space (preserving scarce TCAM memory
on switches) with communication (extra communication cost). Re-
itblatt et al. [62] propose installing new flow rules before removing
old ones and tagging packets with information that directs them
on which set of flow rules to follow. Liu et al. [48] propose a faster
algorithm for consistent updates, but this comes at the cost of a
relaxed model of consistency.

3A similar update consistency challenge arises in the control plane, but prior work
(e.g., [17, 56, 64]) has addressed this challenge and we leave it out of scope. We refer
the reader to Bannour et al. [14] for a survey on distributed SDN control planes.

Compile

Failed

 InstallingNetwork
event

Installed

 Network
event

Withdrawing

Withdrawn

Administrator requests new intent

Administrator
requests

intent removal

Figure 1: Intent compilation and installation of a single intent
within a generic intent state machine model. Intents (and
their low-level updates) are impacted by administrator events
(e.g., requesting a new intent be installed, withdrawing an
existing intent) or by network events (e.g., topology change).

2.2 Intent-based Networking (IBN)
Intent-based networking extends the programmability of SDN but
aims to simplify network management through abstraction. Rather
than focusing on “how” the network should implement some de-
sired outcome or policy, IBN enables administrators to describe
“what” they want the network to do through intents. Administra-
tors can define high-level intents (e.g., “connect host A to B with
minimum bandwidth X”) without concerning themselves with im-
plementation details in the data plane such as flow rules, network
configuration protocols, or underlying topology.

IBN has been standardized by the Open Networking Foundation
(ONF) [53], the Internet Engineering Task Force (IETF) [21, 45], and
the 3rd Generation Partnership Project (3GPP) [5–7]. IBN shares a
common model where a logically centralized intent controller (or
IBN controller) coordinates and manages all intents based on an
intent state machine. IBN has been implemented in open-source
software such as the Open Network Operating System (ONOS) [54],
OpenDaylight (ODL) [47], and the Open Network Automation Plat-
form (ONAP) [46]. Proprietary IBN controllers have also been de-
veloped by Juniper [35], Cisco [20], Huawei [31], and IBM [32].

We use the ONOS IBN implementation as a running example
throughout the rest of this paper because of its representative fea-
tures and production-quality implementation.

When an IBN controller attempts to fulfill an administrator’s
intent, the intent is compiled from a high-level abstraction to low-
level flow rules and installed into the network by the controller
sending those flow rules to the network’s switches. Figure 1 shows
the intent compilation and installation within the intent state ma-
chine. An administrator requests an intent to be installed, which
gets compiled into low-level flow rules. The compilation or installa-
tion can fail if the intent’s requirements do not meet the network’s
current resources. Network events, such as topology changes, can
impact failed intents (i.e., resources may become available allowing
the intent to be installed) or impact installed intents (i.e., resources

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

may become unavailable preventing the intent from being fulfilled).
An administrator can withdraw an intent when no longer needed.

3 CURRENT PRACTICES OF SECURE
UPDATES IN IBN

Since IBN abstracts away many of the low-level implementation
details in terms of flow rule compilation and installation, we now
consider the security impacts of flow rule update consistency on
the specification, design, and implementation of IBN.

We found a gap between the academic literature on programmable
network updates and how they are implemented in IBN. We an-
alyze the ONOS IBN implementation as an illustrative example
of how update consistency is implemented, its shortcomings, and
its security impacts. Based on the ONOS case study, we highlight
several challenges in addressing these impacts, and we sketch our
contributions to how we solve those challenges.

3.1 Case Study: ONOS IBN implementation
We examined ONOS v2.7.1 to understand how updates are imple-
mented within the compilation and installation phases.

3.1.1 Compilation. Within the compilation stage, an administra-
tor’s intent is compiled into “middle intents” (i.e., intents that are
not yet ready to be installed and need further refinement) and “in-
stallable intents” (i.e., intents that are ready to be installed). The
compilation iteratively processes middle intents until they become
installable intents. Installable intents are added to a queue to be
installed. As a result, installable intents that are generated earlier
during the compilation will be ordered before the installable intents
that are generated later in the final queue.

Security implications:No ordering mechanism exists to ensure
that intents are compiled in a particular order (e.g., FIFO). That
prevents an administrator from being able to have fine-grained
control over or assurances about potentially conflicting intents.

3.1.2 Installation with striping. Within the installation phase, for
each switch, ONOS assembles a list of flow rule operations (i.e., the
flow rule and whether it should be installed or deleted). Flow rule
operations are separated into batches based on the switch to which
they are being sent. ONOS implements “stripe keys” such that each
batch can be assigned a key, and “[batches] with the same key will
be executed sequentially. Operations [batches] without a key or
with different keys might be executed in parallel. This parameter is
useful to correlate different operations [batches] with potentially
conflicting writes” [4].

We found that ONOS does correctly implement the in-order
sequential execution of flow rule operation batches with the same
stripe key—but only if a stripe key is assigned.4 If utilized, the stripe
key mechanism is an effective way to enforce a certain order when
sending flow rule operation batches to the switches, but it does
not enforce any ordering on the receiving and processing of those
batches among the switches.

4Specifically, ONOS selects the thread that will send the batch based on the batch’s
stripe key, where the thread index equals to the stripe key mod the number of threads
(i.e. the remainder of dividing the stripe key with the thread count). This ensures the
batches with the same stripe key will be sent out sequentially on the same thread,
even if the batches are intended for different switches.

Critically, we also found that when the batches are assembled,
no stripe keys are actually assigned. In other words, the stripe key
mechanism is implemented and available in the code, but not used
when installing or deleting flow rules via the IBN subsystem.

Security implications:Although flow ordering mechanisms ex-
ist in ONOS, they are not used by the IBN subsystem. Furthermore,
even if they were used, there is no assurance that the flows will be
applied in a consistent order once they are updated on the switches.
That lack of assurance can cause indeterminate behavior through
race conditions and allow unauthorized data plane connectivity.

3.1.3 Installation with barrier messages. ONOS implements mes-
sage ordering through “barriers” that separate groups of requests
that should be processed. The controller sends an initial group of
requests, followed by a barrier request, followed by a second group
of requests. The switch may reorder any requests within the initial
group but must complete all requests and send a barrier reply to
the controller before attempting to process the second group. We
found that ONOS places a barrier request between each batch of
flow rule operations sent to a single switch. However, barriers are
not used to enforce ordering for batches sent to multiple switches.

Security implications: Although single-switch updates can be
ordered, multi-switch updates (which are common for intents) are
not ordered. The lack of ordering could cause indeterminate behav-
ior and introduce security-critical race condition vulnerabilities.

3.1.4 Automated recompilation and redeployment. Anetwork event
can cause intents in ONOS to be recompiled. Network events could
include changes to topology, workload, or security administration.
All intents are recompiled after a network event, but flow rule
updates will only be distributed if they differ from the flow rules
before the event. A network event does not imply that any flow rule
updates will occur, but flow rule updates do imply that either an
administrator made an intentional policy change at the controller,
or a network event occurred.

Security implications: Intents provide convenience to ostensi-
bly ease the responsibilities of network and security administrators.
However, they do so by offloading some responsibility of flow rule
management to network event detection modules. These network
events can be manipulated to intentionally fool the controller into
performing an intent recompilation and flow rule redeployment
in a way that would be much more difficult if updates relied on a
human administrator.
3.2 Challenges to Secure Updates
Based on the insights from our investigation into the ONOS IBN
implementation, we consider several fundamental challenges about
why inconsistent updates pose security risks in IBN and what the
current obstacles are in defending against them.

3.2.1 Challenge 1: Inconsistent updates cause exploitable network
conditions. Although data plane update consistency properties and
guarantees have been proposed in academic literature [16, 25, 44,
61, 62, 66, 78], we discovered that major open-source SDN and IBN
controllers like ONOS do not explicitly verify or enforce any notion
of consistent ordering in traditional SDN, much less IBN.

In contrast to relatively static traditional networks, SDN and IBN
enable more dynamic changes that theoretically allow for frequent
network reconfiguration. Prior work has shown how such frequent

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

reconfiguration can lead to denial of service impacts [28]. As a result,
attackers could leverage the inconsistencies in frequent updates to
gain unauthorized communication access within the data plane.

Our contributions: We demonstrate the efficacy of an attacker
exploiting such inconsistencies by proposing three temporal attacks
(Section 4.2) and devising a working exploit in the ONOS IBN
implementation (Section 4.3) to demonstrate the impact of such
attacks on overall network security.

3.2.2 Challenge 2: Does IBN promise consistent updates? (If not,
should it?) Given that IBN implementations are susceptible to at-
tacks that leverage update inconsistencies, does the root cause come
from the implementation, design, or specification? We surmise that
the ONOS IBN implementation does not provide consistent updates
in the data plane because there is no well-defined specification that
says that it ought to provide such properties, nor do code or network
traces indicate the presence of a consistent update mechanism.

Unfortunately, the existing IBN standards [5–7, 21, 45] do not
specify update consistency guarantees or how updates ought to
be implemented. As a result, developers may design or implement
update consistency differently. If not properly specified, adminis-
trators could incorrectly assume that their IBN implementation
implements update consistency securely when it may not.

Our contributions: We propose a set of invariant conditions
(Section 5.2) that can be used to verify when inconsistent updates
within IBN cause security-critical impacts on the network.

3.2.3 Challenge 3: Efficiently detecting security-impacting updates.
Even if the right conditions can be detected, the state space of all
possible updates (i.e., the set of all possible flow rules for all possible
data plane paths that enable connectivity for an intent) becomes
difficult to manage. However, not all updates will cause security-
critical vulnerabilities to manifest. Even if consistent updates were
implemented, such updates could impose a performance penalty
on updates that do not cause vulnerabilities.

Our contributions: We propose a defense, Spotlight, and
design a fast detection algorithm (Section 5.5) that can reduce the
searchable state space for only security-relevant consistent updates.

4 TEMPORAL ATTACKS IN IBN
We describe how an adversary can execute temporal attacks in
IBN by exploiting inconsistencies in intent installation and in the
remote connection between the controller and switches. We first
describe the attacker model including objective and capability. Then
we introduce different types of temporal attacks and demonstrate a
concrete temporal attack, Phantom Link. Finally, we reproduce the
Phantom Link on the emulated network and show that by exploiting
this attack, an attacker can construct unauthorized connectivity
between a victim and a malicious server.

4.1 Threat Model
Network policy with intents. We refer to network devices comprising
hosts, switches, and controllers. Hosts are end devices and may
be workstations, servers, databases, or any device with which a
user might want to interact. Switches are forwarding devices that
receive network packets and forward them according to installed
flow rules. Controllers are the control plane devices that decide
which flow rules should be installed on which switches.

We assume that a network’s security policy is defined and en-
forced using intents, for example as in NetViews [12, 13]. All intents
are assumed to be correctly defined by the administrator, which is
to say that the steady-state final connectivity after all updates are
made is the intended configuration.

Temporal attacks. Given the system description above, we assume
a default-deny model: a host should never have connectivity to
a host to which it is not explicitly granted access. When a host
does become connected to an unauthorized host that it was not
connected to before the update started and will not be connected
to after the update completes, we refer to this as a temporal vul-
nerability. If such connectivity is the result of a malicious action
we refer to it as a temporal attack. We also refer to the resulting
additional connectivity as unauthorized connectivity.

Attacker model. We consider an IBN network controlled by an IBN
controller, which may be built upon an SDN controller and act as a
subsystem within such an SDN controller [24, 47, 54]. We assume
hosts in the data plane may be malicious but the controller and
switches are not. An adversarymay also have the ability to influence
intent installation, but cannot install arbitrary intents directly. We
assume that a malicious host has a goal of connecting to one or
more hosts that are disallowed by the security policy. Even short-
lived temporal vulnerabilities are considered a successful attack in
the adversary’s eyes if the connection is long enough to deliver a
malicious payload. Additionally, we assume the attacker can hide
its abnormal behavior from detection by using multiple machines
and can retry the attack multiple times if prior attempts fail.

Table 1 shows a toolkit of possible attack capabilities leveraged by
the attacker based on existing known attack methods. The attacker
can learn the network’s flow rules by using SDNMap [10] and infer
intents from the learned rules. To saturate a target link, the attacker
can find a virtual network topology by learning a “layer-3 link map”
through traceroute [36]. In the case of SDN with in-band control,
the attacker can discover “a shared link” used for both the control
and the data plane and attack a target switch [18]. By fingerprinting
SDN applications, the attacker may be able to execute the Switch
Delay attack (Section 4.2.3), which depends on a specific application
(e.g., ARP proxy in ONOS [54] and ODL [47]).

4.2 Temporal Attacks
We show how temporal vulnerabilities can occur not only when
installing an intent that connects two endpoints5 (e.g., two hosts),
but also while modifying or recompiling an intent, in which case
the controller may induce temporal vulnerabilities.

As described earlier in Section 3.2, the inconsistency of flow
rule installation allows temporal vulnerabilities in IBN. Because
the intents are installed in a random and indeterminate order, un-
expected behavior can happen in terms of network connectivity.
Such behavior can be characterized as:
• Lack of connectivity: Examples include blackholes where
packets are dropped, or loops where packets are forwarded
without ever reaching their destination. The outcome is a
denial of service of a victim(s), or the entire network.

5Unless specified, we assume an intent is constrained by its endpoints.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

Table 1: Existing attack tools, tools’ capabilities, and tools’ use in temporal attacks.

Tools Capabilities Use

SDNMap [10] Fingerprinting flow rules Intent speculation
Crossfire [36], Crosspath [18] Disrupting a link or a switch Intent recompilation (Section 4.2.2)
Cao et al. [19] Fingerprinting SDN apps Switch Delay attack (Section 4.2.3)

f1

s1

s3s2

s5

f2

s4h1 h2

(a) The initial path compiled from the waypoint intent.

f1

s1

s3s2

s5

f2

s4h1 h2

(b) The final path compiled from the waypoint intent.

f1

s1

s3s2

s5

f2

s4h1 h2

(c) An intermediate path that bypasses both firewalls.

Figure 2: An indeterminate ordering installation of flow rules
can cause a modification to a waypoint intent to suffer from
temporarily bypassing the waypoints, which violates the
intended security policy.

• Additional connectivity: The random order of installation
can also result in additional connectivity between devices
in the network that was not intended by the network secu-
rity policy. In this case, the outcome is unauthorized access
between two or more hosts.

We note that just because the controller does not enforce a certain
order of the flow rules installation does not necessarily mean that
unauthorized access is allowed. An attacker can either discover such
unauthorized access by monitoring the installation of intents, or
can enforce a certain order by delaying flow installation at certain
switches, or by forcing the controller to create them by triggering
the recompilation of intents.

We describe these methods in more detail:

4.2.1 Discovering unauthorized connectivity by network monitoring.
A controller can modify an existing intent to change any endpoint
of the intent. When two ends of the intent have been changed,
the controller may induce unauthorized connectivity. For example,
suppose an intent 𝐼 allows a connection from ℎ𝑎 → ℎ𝑏 and the

controller modifies 𝐼 to allow a connection from ℎ𝑐 → ℎ𝑑 , which
shares part of its path with ℎ𝑎 → ℎ𝑏 . While updating the intent
𝐼 , if the switch that connects ℎ𝑏 and ℎ𝑑 is updated first, it will
allow ℎ𝑎 → ℎ𝑑 . If the switch that connects ℎ𝑎 and ℎ𝑐 is updated
first, it will allow ℎ𝑐 → ℎ𝑏 . As a result, there are two short-lived
indeterminate connectivity possibilities that enable unauthorized
access: ℎ𝑎 → ℎ𝑑 or ℎ𝑐 → ℎ𝑏 .

In addition, the controller can also update the waypoint of a
waypoint intent6. Figure 2 shows an example where the victim
network has initially deployed a waypoint intent that requires the
traffic between hosts ℎ1 and ℎ2 to go through the firewall 𝑓 1. The
assumed path is ℎ1− 𝑓 1−𝑠2−𝑠3−𝑠4−𝑠5−ℎ2, as shown in Figure 2a.
Some time later, the network operator modifies this intent so that
the traffic between the two hosts is required to go through the
firewall 𝑓 2. The eventual new path is ℎ1−𝑠1−𝑠2−𝑠3−𝑠4− 𝑓 2−ℎ2,
as shown in Figure 2b.

Attack mechanism: If the flow rule updates for 𝑠4 and 𝑠5 are
significantly delayed, then there will be an intermediate path where
the traffic goes throughℎ1−𝑠1−𝑠2−𝑠3−𝑠4−𝑠5−ℎ2, which bypasses
both firewalls, as shown in Figure 2c. Although this simple topology
may not be exactly the same in real deployed topologies, such
bypasses can occur as long as the simple topology is a subgraph
within a realistic topology, e.g. if 𝑠2, 𝑠3 and 𝑠4 are connected to
other switches and hosts.

Attack implications: While intent modification can allow tem-
poral attacks, an attacker has to meet strong requirements in order
for this attack to succeed. The attacker needs to have the capabil-
ity to monitor intent updates in the control plane to calculate the
difference between the old set and the new set of intents.

4.2.2 Triggering unauthorized connectivity by intent recompilation.
If an intent can be implemented on one of multiple paths, the
controller can recompile the intent when the established path is no
longer valid. Figure 3 shows an example of temporal connectivity
when resolving a down link. We assume that the controller has two
connectivity intents. The intent with a priority of 200 (𝐼𝐴) sends
packets destined to an IP subnet 10.0.10.0/24 from 𝐻1 to 𝐻3. The
intent with a priority of 100 (𝐼𝐵) forwards packets destined to an IP
subnet 10.0.0.0/8 from 𝐻2 to 𝐻4. If the controller finds the shortest
path for each intent, the path of 𝐼𝐴 will be 𝐻1 − 𝑆1 − 𝑆2 − 𝐻3 and
the path of 𝐼𝐵 will be 𝐻2 − 𝑆1 − 𝑆3 − 𝐻4.

Attack mechanism: If the link 𝑆1 − 𝑆2 is disconnected, the
controller will receive a link down event and recompile the intent
𝐼𝐴 to avoid the failed link, 𝑆1−𝑆2 1 . Since another valid path for 𝐼𝐴
exists (i.e. 𝐻1 −𝑆1 −𝑆3 −𝑆2 −𝐻3), the controller can still implement

6A waypoint intent adds additional constraints to an intent by specifying intermediate
nodes (i.e., waypoints) in the network that the end-to-end path must traverse. Such
waypoint intents can enforce network security policies such as “all traffic between A
and B must go through a firewall”.

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

100

200 𝐻1 → 𝐻3, DST IP: 10.0.10.0/24

𝐻2 → 𝐻4, DST IP: 10.0.0.0/8

𝐻1 𝐻2

𝐻3 𝐻4

𝑆1

𝑆2 𝑆3

𝐻1 𝐻2

𝐻3 𝐻4

𝑆1

𝑆2 𝑆3

𝐻1 𝐻2

𝐻3 𝐻4

𝑆1

𝑆2 𝑆3

(2) Delay on S3(1) S1–S2 Link Down (3) All Updated

Intents:

CONTROL PLANE
DATA PLANE

Figure 3: Execution of a temporal attack while handling a
down link.

𝐼𝐴 by removing outdated rules from the switches in the previous
path and adding new rules to the switches in the new path. If the
flow rule updates for 𝑆3 are delayed, 𝑆3 has outdated rules while
𝑆1 and 𝑆2 have new rules 2 . Since 𝑆3 forwards packets destined
to an IP subnet 10.0.0.0/8 to 𝐻4 because of 𝐼𝐵 , packets from 𝐻1 are
also delivered to 𝐻4, not 𝐻3, until 𝑆3 handles delayed updates from
the controller 3 .

Attack implications: Unlike the intent modification, attackers
residing in a remote host can provoke intent recompilation at will.
To disconnect a link or a switch, the attacker can saturate the target
link [18, 36] or the control channel between the controller and
the target switch [65, 75]. However, the random order of flow rule
installation from intent recompilation does not always guarantee a
successful temporal attack that would allow unauthorized access.

4.2.3 Constructing unauthorized connectivity by delaying installa-
tion of intents. During intent updates, a remote host attacker can
execute the temporal attack by choosing the target switch to delay
during rule installation. We refer to this as the Switch Delay attack.

Attack mechanism: To delay rule installation, the attacker can
attempt to perform denial of service to one of the three parties
involved in the rule installation: the controller, the control channel,
and/or the switch.

First, attacking the controller requires flooding packets sent from
many servers like in a botnets, considering that the controllers show
high performance with thread scalability [22]. Although such DDoS
attacks could succeed, they would paralyze the whole network.

Second, the attacker could saturate the control channel between
the controller and the target switch. The SDN controller can re-
ceive packets of interest from a switch (e.g., PACKET_IN messages
in OpenFlow7). To check link status, the SDN controller listens
for link-layer discovery protocol (LLDP) packets. In our setup, by
flooding 1300-byte LLDP packets with tcpreplay, the remote at-
tacker can achieve 1400 Mbps bandwidth, which can saturate the

7We use OpenFlow [52] and its message types as a representative example of the
data plane configuration protocol, but the attack can generalize to other data plane
configuration protocols (e.g., P4Runtime [55]).

𝐻1 𝐻2

𝐻3 𝐻4

𝑆1

𝑆2 𝑆3

2

1

S1-S2 Down

FLOW MOD

ARP Reply

…

ARP Proxy

Intent Manager

IBN Controller

Figure 4: Execution stages of the Phantom Link attack from
Figure 3. The attacker located in 𝐻2 and 𝐻4 executes steps 1
and 2 to allow unauthorized access.

control-channel uplink from the switch8. However, this does not
affect the delay of the flow-rule update message, since the control-
channel downlink to the switch is not affected. Unless the controller
saturates the control-channel downlink by itself, the attacker in the
data plane cannot delay the rule installation.

Finally, the adversary attacks the target switch. If the target
switch crashes, the controller simply removes the erroneous switch
and supports existing intents on the remaining switches. Instead,
the attacker can overload the slow path of the target switch. The
SDN controller listens to ARP packets to monitor hosts, and also
to send ARP reply packets on behalf of the destination host (e.g.,
PACKET_OUT messages in OpenFlow). A remote attacker on a host
connected to the target switch can flood ARP request packets. Due
to the small size of ARP packets, the bandwidth of ARP flooding is
less than 40 Mbps, much lower than the bandwidth of the control
channel. The controller can handle such low-bandwidth PACKET_IN
messages and send back corresponding PACKET_OUT messages to
the target switch. However, the switch becomes slow in handling
control messages while processing flooded PACKET_OUT messages.

An attacker does not necessarily need to gather information to
flood ARP. An attacker can flood crafted ARP request packets by
setting one machine as the destination and another as the source
without needing the victim’s information. Since the IBN controller
will respond with ARP reply packets for these request packets,
the path between the target switch and the controller becomes
saturated, which is within the IBN threat model. Tools like SDNMap
increase the success likelihood of our exploit but are not strictly
required, and if the attack fails due to insufficient knowledge, the
attacker can always try again.

Attack implications: The attacker can delay the flow rule in-
stallation request (e.g., FLOW_MOD in OpenFlow) by flooding ARP
request packets.

8According to a specification of the Pica8 40GbE OpenFlow hardware switch [57], the
bandwidth of the control channel is 1 Gbps.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

4.3 Executing Phantom Link
Among temporal attacks described in Section 4.2, we introduce
Phantom Link, which allows the attacker to exploit temporal attacks
at the discretion of the attacker.

Figure 4 shows the process of executing the Phantom Link attack.
First, the attacker on 𝐻4 executes the Switch Delay attack by flood-
ing ARP request packets 1 . That forces 𝑆3 to handle PACKET_OUT
messages that include ARP reply packets sent from the ARP proxy
in the controller. Then, the attacker in 𝐻2 floods packets to saturate
the target link 2 . That cuts off the 𝑆1 − 𝑆2 link, and the controller
will receive a link-down message from 𝑆1. Since 𝐼𝐴 uses the discon-
nected link, the intent manager in the controller will update the
flow rules of 𝐼𝐴 to bypass the failed link. However, while processing
flooded ARP reply messages, 𝑆3 delays the FLOW_MOD message sent
from the controller. Therefore, the attacker can receive packets
from 𝐻1 until the flow rules have been updated in 𝑆3.

4.3.1 Reproducing Phantom Link. To demonstrate that the attacks
are not just theoretical, we reproduced the Phantom Link attack.We
ran two virtual machines in Google Cloud Platform: 4 vCPUs, 32 GB
memory, and 120 GB balanced persistent disk. On one VM, we ran
ONOS v2.7.1 as an IBN controller (controller VM). On the other VM,
we executed network emulation based on Mininet v2.3.0 with Open
vSwitch v2.14.0 (switch VM) to emulate the scenario described in
Figure 3. Each emulated switch connects to the controller through
OpenFlow 1.3 over TCP. These two virtual machines are connected
to the same network, which shows nearly 8 Gbits per second. We
limited the bandwidth of each management connection to 1 Gbps by
referring to the specification of the OpenFlow hardware switch [57].

To disconnect the target link, the attacker can execute the link-
flooding attack [36] by flooding packets that traverse the target link.
We emulated this attack by simply disabling an emulated interface
of the target link. We executed 10 times to measure the average.

We flooded ARP request packets from 𝐻4 to delay 𝑆3. The band-
width of ARP showed 40Mbps, which is much lower than the 1Gbps
bandwidth of the control channel. After a few seconds for the target
switch to process control messages, we disconnected the 𝑆1 − 𝑆2
link. ONOS recompiled the 𝐼𝐴 intent and sent the FLOW_MOD and
the BARRIER_REQ messages to 𝑆1, 𝑆2, and 𝑆3. The time difference
between these messages was less than 10 ms, while the order of
messages was random. However, the target switch (𝑆3) sent the
corresponding BARRIER_REPLY message to ONOS after 1304.5 ms,
compared to 157.9 ms taken in the remaining switches.

Thus, 𝑆3 allowed temporal connectivity fromwhen normal switches
responded to when the target switch responded, or 1146.6 ms.

4.3.2 Security implications. An attacker can use the Phantom Link
attack as a stepping stone in a larger attack campaign where a
tactical goal is to gain unauthorized access within a network. The
attacker’s ultimate goal may be to send malicious payloads to a
victim host (e.g., malware campaign) or to learn about the network’s
configuration or the traffic being sent across it.

5 Spotlight: TEMPORAL VULNERABILITY
DETECTION FOR IBN

Weprovide some insights into the causes of temporal vulnerabilities,
and propose Spotlight—a defense module that can successfully

mitigate our Phantom Link attack. We describe both the design and
proof-of-concept realization of Spotlight.

5.1 System Model and Goals
Our model considers two roles, each of whom will be interacting
with the system in different ways and under different constraints.
The first role is that of policy administrators who are charged with
implementing network connectivity policies. The policy adminis-
trator enforces whatever network policy has been selected. In the
context of IBN, this means that the policy administrator can add,
remove, or modify intents, as well as perform other network actions
necessary to adhere to the requirements. We assume that policy
administrators are not malicious. The second role is that of users.
They are human actors or software programs at any of the network
hosts endpoints. Users are blind to the constitution of the network
fabric; their only visibility into which is through side-channel infer-
ences based on network operations such as initiating (or receiving)
connections or sending data. Additionally, our model assumes that
the dominant cause of delay in flow rule updates is link latency, so
we treat all updates on a single switch as atomic.

System goals. We aim to design a detector system that can alert
policy administrators if the intent being added may be a high-
risk update. We define high-risk updates to be the modification of
intents such that, if switch flow rules are not updated consistently,
a temporal vulnerability will occur. Spotlight returns an alert to
the policy administrator that the submitted intent has a temporal
vulnerability. Alternatively, it can return all possible orders that
flow rule updates could be installed in that would yield a temporal
vulnerability.

5.2 Causes of Temporal Vulnerabilities
In Section 4.2, we presented several examples of temporal vulnera-
bilities. In this section, we characterize similarities between them,
and identify insights about when a temporal vulnerability may
occur. We use these insights to guide our solution, Spotlight.

For completeness, we define three terms: starting state S0, action
A, and finishing state S𝑓 . The starting state S0 is a stable state of
the IBN; all intents have been compiled and all pending flow rules
have been installed on their respective switches. The finishing state
S𝑓 is the quiescent stable state achieved by the system after the
action A has been executed on the starting state S0. The action A
is the addition, removal, of modification or intents, as well as any
changes to the topology; it represents a transition from S0 → S𝑓 .

We represent an intent being added, removed, or modified as
𝑖 ∈ 𝐼 , where 𝑖 ∈ S0∨𝑖 ∈ S𝑓 . The source and destination of a connec-
tion as specified by an intent are represented as 𝑖 .𝑠𝑟𝑐, 𝑖 .𝑑𝑒𝑠𝑡∀𝑖 ∈ 𝐼 .
An intent that was added to S𝑓 is represented as 𝑖 , and an intent
removed from S0 is represented as 𝑖′. We define a function D
executed by the controller that returns the set of switches that
need to be updated with new flow rules to satisfy a connectivity
intent. Each intent has a boolean pattern matching function written
𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∀𝑖 ∈ 𝐼 , which returns whether or not a particular packet
source or destination will match the flow rules comprising the in-
tent. Using this terminology, we list below the requirements for
extra connectivity:

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(1) At least one intent must have already been installed in the
starting state

|S0 | > 0
(2) The action must include at least one intent being removed

and one being installed in a single update batch—this could
also be the modification of a single existing intent

|S| > 0,S = S𝑓 − S0
(3) There must be partially disjoint paths between the original

intent and new intent that is being installed

0 < |D(𝑖1) ∩ D(𝑖2) | < |D(𝑖1) ∪ D(𝑖2) |
(4) The two intents—original and new—must differ in at least

one endpoint or waypoint

𝑖 .𝑠𝑟𝑐 ≠ 𝑖′ .𝑠𝑟𝑐∨𝑖 .𝑑𝑒𝑠𝑡 ≠ 𝑖′ .𝑑𝑒𝑠𝑡∨𝑖 .𝑤𝑎𝑦 ≠ 𝑖′ .𝑤𝑎𝑦 ∀𝑖 ∈ S0,∀𝑖′ ∈ S𝑓
(5) The packet filter rules must match the source and destination

of both the original and new intents for every switch on the
path. In other words, a temporal vulnerability can only occur
for packets that would be affected by the intent update

𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ1) ∧ 𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ2) ∧ 𝑖′ .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ1) ∧ 𝑖′ .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ2)

∃ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2

5.3 Spotlight Architecture
Our detection module sits logically after the IBN controller com-
pilation stage. The workflow, as indicated in Figure 5, begins with
a policy administrator either modifying an existing intent, or re-
moving an existing intent and then adding a new one 1 . This is a
policy change in which network connectivity is altered between
at least two hosts. The compilation of the intent into flow rules is
unmodified, but after compilation is complete, flow rules are sent
out to the Spotlight detection module instead of being propagated
to the switches over the network 2 .

The detection module processes the flow rules as described in
Section 5.4 and Algorithm 2. If a high-risk update is detected, the
compiled flow rules are cached and details of the vulnerability are
reported to the policy administrator who can decide to pursue safer
alternatives 3 . We have shown with our attack in Section 4 that
updates that have not been fully vetted can entail security risks.
In response, it makes sense to pre-approve updates to ensure that
they are safe. If Spotlight does not find a temporal vulnerability,
the update is considered safe and is forwarded on to the controller
4 , which then distributes the flow rules as usual 5 .
Administrators have several options for what to do with detected

temporal vulnerabilities. We discuss those options and trade-offs
in detail in Section 7.

The Spotlight architecture is designed as a standalone module
and is agnostic to the underlying controller implementation. All
that is required for adapting Spotlight to a different controller is
to import the currently installed flow rules as well as the flow rules
to be installed using Spotlight’s program interface.

5.4 Strawman Detection Algorithm
We first present a strawman detection algorithm that when given
as inputs (1) the flow rules presently installed on the switches in
the network, and (2) the flow rules changes resulting from the IBN

Vulnerability
detected

Update safe

Compiled
flow rules

Propose
intent

Distribute
flow rules

Policy
administrator

1

2

4

3

5

Controller

Spotlight

Figure 5: Spotlight architecture showing typical workflow
of an administrator proposing an intent to be compiled and
installed into the IBN-based network.

Algorithm 1 Strawman detection algorithm
1: Input: 𝐹0, 𝐹Δ, 𝐻, 𝑆

2: Output: 𝑡𝑟𝑢𝑒 ∪ 𝑓 𝑎𝑙𝑠𝑒

3: 𝐺0 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0)
4: 𝐺 ′ ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝐹Δ)
5: for 𝑆 ′ ⊂ 𝑆 do
6: 𝐺𝑢 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑆 ′))
7: for ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2 do
8: 𝑝 ← 𝑝𝑎𝑡ℎ(𝐺𝑢 , ℎ1, ℎ2)
9: if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺0, ℎ1, ℎ2)) then
10: next host pair // hosts were connected before update
11: else if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺 ′, ℎ1, ℎ2)) then
12: next host pair // hosts will be connected after update
13: else if 𝑚𝑎𝑡𝑐ℎ(ℎ1, ℎ2, 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠)),∀𝑠 ∈ 𝑝 then
14: return 𝑡𝑟𝑢𝑒 // temporal vulnerability detected

return 𝑓 𝑎𝑙𝑠𝑒

controller’s compilation of the new intent, performs an exhaustive
search of the state space for possible temporal violations.

We show the pseudocode in Algorithm 1, where 𝐹0 and 𝐹Δ repre-
sent the initial set of flow rules in the system, and the set of changes
to the flow rules, respectively, 𝐻 represents the set of hosts and (𝑆)
represents the set of switches. A flow rule is a tuple of an ingress
port 𝐼 , an egress port 𝐸, and a matching pattern 𝑀 . We assume
the physical topology is static, so all egress ports are connected to
exactly one ingress port on another switch or host. This allows us
to build a graph from the flow rules.

The procedure starts by creating a directed graph𝐺0 = (𝐻+𝑆, 𝐹0)
where the vertices are the hosts and switches, and the edges are
the set of flow rules before the update 𝐹0 (line 3). Next, we create a

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

graph 𝐺 ′ = (𝐻 + 𝑆, 𝐹0 + 𝐹Δ) where the vertices are the same, but
the edges are the set of flow rules after the update (𝐹0 + 𝐹Δ) (line 4).

Following the graph generation, we need to generate the exhaus-
tive set of unique update orderings. As discussed in Section 5.1, we
assume that the updates on a single switch are atomic. Therefore,
we only need to consider the unique subsets of switches 𝑆 ′ ⊂ 𝑆 ,
which, when updated before the other switches, result in temporal
vulnerabilities (line 5). Note that this is a strict subset, because if
the entire set 𝑆 is updated then the update is complete and any
connectivity is either intentional or a mistake by the administrator,
which is out of scope for our system. In practice, when generating
the unique subsets, we restrict 𝑆 to only switches that will receive
flow rule updates for the new intent.

On line 6, we build a new graph with the initial flow rules plus
any changes to the flow rules in the update of switch 𝑆 ′. We then
use the three graphs we have built to test connectivity between all
pairs of hosts. If a host pair is connected in graph 𝐺𝑢 but not in 𝐺0
or𝐺 ′, then extra connectivity may be possible. We test connectivity
by running a shortest path algorithm between each host pair on all
three graphs, which we indicate in Algorithm 1 lines 8, 9, and 11
with the function 𝑝𝑎𝑡ℎ(). As flow rules define directed edges, we
must test the connectivity in both directions.

For any host pairs for which we deem a temporal vulnerability
to be possible, we need to make sure that there exist packets that
will not be filtered out by the flow rules’ pattern matching field. We
show this part of the algorithm on lines 13–15 using the𝑚𝑎𝑡𝑐ℎ()
function which returns 𝑡𝑟𝑢𝑒 if ℎ1 and ℎ2 match the pattern in at
least one flow rule on switch 𝑠 in 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠). Concretely, we
iterate through the switches on the connected path and check if
the source and destination hosts on the path match the patterns of
all the new flow rules on the path.

5.5 Spotlight Detection Algorithm
The strawman approach described above is guaranteed to find all
temporal vulnerabilities that result from an update. However, this
comes at a significant computational cost.

One approach to improve the strawman algorithm is to use link
prediction algorithms for graphs. These schemes rely on calculating
some similarity score for some subset of node pairs, and then esti-
mating the likelihood of a connection based on the pairs’ score [50].
Our insight is that in representing the topology as a graph with the
hosts 𝐻 and switches 𝑆 as nodes, the similarity between a switch
𝑠 ∈ 𝑆 and a host ℎ ∈ 𝐻 is related to the likelihood that the host ℎ is
impacted by a flow rule change on the switch 𝑠 .

While there are many algorithms calculating such similarity
scores, we selected Panther [77] because Panther can quickly calcu-
late similarity for nodes in a topology 𝑇 , which includes all hosts
𝐻 , switches 𝑆 , and their physical connectivity. Panther works by
calculating random paths of length 𝑝 from a node 𝑣 , and returning
the proportion of paths that include each of the top 𝑘 most traversed
nodes. These proportions are the similarity scores for each node in
the top 𝑘 . The similarity score computed by Panther is directly rele-
vant to our use case—when a switch frequently shares a randomly
generated path with a host, we might reasonably expect changes
to the switch flow rules to impact the connectivity of frequently
connected hosts.

Algorithm 2 Spotlight fast detection with similarity cache
1: Input: 𝐹0, 𝐹Δ, 𝐻, 𝑆

2: Output: 𝑡𝑟𝑢𝑒 ∪ 𝑓 𝑎𝑙𝑠𝑒

3: 𝐺0 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0)
4: 𝐺 ′ ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝐹Δ)
5: for 𝑆 ′ ⊂ 𝑆 do
6: 𝐺𝑢 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑆 ′))
7: for ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2 do
8: if ℎ1 ∉ 𝑃 ∧ ℎ2 ∉ 𝑃 [𝑠] ∀𝑠 ∈ 𝑆 ′ then
9: next host pair // neither host is similar to switches in 𝑆 ′

10: 𝑝 ← 𝑝𝑎𝑡ℎ(𝐺𝑢 , ℎ1, ℎ2)
11: if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺0, ℎ1, ℎ2)) then
12: next host pair // hosts were connected before update
13: else if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺 ′, ℎ1, ℎ2)) then
14: next host pair // hosts will be connected after update
15: else if 𝑚𝑎𝑡𝑐ℎ(ℎ1, ℎ2, 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠)),∀𝑠 ∈ 𝑝 then
16: return 𝑡𝑟𝑢𝑒 // temporal vulnerability detected

return 𝑓 𝑎𝑙𝑠𝑒

For our system, Spotlight, we use Panther to calculate a simi-
larity cache which includes the top 𝑘 most similar nodes to each
switch. If we assume that the physical network topology is unlikely
to change often, we can precompute the similarity cache a single
time. We provide an additional argument 𝑃 to our fast algorithm,
which represents the similarity cache.

The difference between the strawman and the fast algorithm in
Algorithm 2 is that we use the preprocessed similarity cache 𝑃 to
inform us about which shortest path calculations can be skipped.
This significantly reduces the state space that needs to be searched.

While the fast algorithm scales much better than the strawman
approach, because it is based on heuristics instead of exhaustive
search, it does not guarantee that it will always find a temporal
vulnerability if it exists. We show in Section 6.2 that the algorithm
is quite successful at detecting the vulnerabilities in practice.

5.6 Implementation
We implemented Spotlight as a Python3 program in 966 lines of
code. We use Python generators to enumerate the unique update or-
derings 𝑆 one at a time, so that the potentially large set of orderings
to check never resides in memory in its entirety.

As described in Algorithm 1 and Algorithm 2, instead of mod-
eling the topology graph based on the physical connectivity, we
opt to create edges between nodes that have flow rules connecting
them. This is because we rely on the assumption that the IBN con-
troller’s compilation stage is correct, and thus it cannot output flow
rules that forward packets on non-existent links. For calculating
shortest paths on these graphs, we use the shortest_path func-
tion included in the NetworkX [27] library, which uses Dijkstra’s
Algorithm [23]. We cache the results of the shortest path calcula-
tions we perform on the initial graph 𝐺0 and the final graph 𝐺 ′

for all pairs of hosts, which we repeatedly use in lines 9 and 11 of
Algorithm 1. We note that our algorithm can be parallelized for
additional execution speedup.

We perform the preprocessing step using the panther_similarit-
y function included with NetworkX. We perform this preprocessing

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

step only once. In practice, an administrator would want to run this
step during topology changes, which we expect to be less frequent
than intent changes.

6 EVALUATION
We evaluate Spotlight on performance and its ability to detect
temporal vulnerabilities. We aim to answer the following questions:

Q1 How does Spotlight’s performance compare to a baseline
exhaustive search algorithm?

Q2 How does Spotlight scale with the topology size?
Q3 How likely is Spotlight to find a temporal vulnerability if

one exists?
Q4 Can we increase detection likelihood with proper tuning?

6.1 Experimental Setup
For evaluating the performance of Spotlight, we must both con-
sider the topologies and the intents installed on the system we are
measuring. We execute our experiments on a machine running
Ubuntu 22.04. Our machine has an Intel Xeon Silver 4114 2.20GHz
CPU with forty cores and 187GB of memory. We run each of the
configurations discussed below ten times.

6.1.1 Fat tree topologies. Variations in network topology will im-
pact the time it takes to detect temporal vulnerabilities. However,
topology size is independent of the pattern of connectivity within
the network. For this work, we perform our evaluations using the
fat tree topology as described by Al-Fares et al. [11] because its short
paths and redundant links make it representative of data center
networks (e.g., Google [67]) and because its single parameterized
input 𝑓𝑘 allows us to generate topologies of increasing size while
maintaining some degree of similarity in connectivity patterns.

The fat tree topology is a tree architecture with four layers.
The top layer is called the core, below which is the aggregate layer
followed by the edge layer. These three layers all consist of switches.
The aggregate and edge switches are organized into 𝑓𝑘 pods each
containing 𝑓𝑘 switches. We define the pods notationally as 𝑝𝑖 ∈
{𝑝0, 𝑝1, . . . , 𝑝 𝑓𝑘−1}. Likewise, we define edge switches of pod 𝑝𝑖 as
𝑝𝑖 .𝑒 𝑗 ∈ {𝑒0, 𝑒1, . . . , 𝑒𝑚−1}, where𝑚 is the number of edge switches
in each pod. The fourth layer, connected to the southbound interface
of the edge switches contains the hosts. We index hosts using a
dot notation of the form 𝑝𝑖 .𝑒 𝑗 .ℎ𝑛 ∈ {ℎ0, ℎ1, . . . , ℎ𝑟−1}, where 𝑟 is
the number of hosts in each pod. There are no direct connections
between pods—pods can only communicate through core switches.

We wrote a Python script to generate all of our topologies using
the NetworkX library [27]. These fat tree topologies vary in size
from 𝑓𝑘 = 4 to 𝑓𝑘 = 16 (36 to 1,344 total nodes). See Table 2 for
more details.

6.1.2 Stanford backbone topology. While the fat tree topology is
popular, we consider other topologies for a broader evaluation. We
tested Spotlight on the Stanford backbone topology, a common
topology used in networking research [12, 13, 38, 76] due to its large
size9. The topology consists of two core switches, ten aggregate
switches, and fourteen edge switches. These are arranged in a
tree with the core switches at the root, the aggregate switches
connected as children to the core switches, and the edge switches as
9The Stanford network serves at least 17,000 students and faculty [38].

Table 2: Topologies used for evaluation and probabilities of
finding a temporal vulnerability along with preprocessing
times for all the experiments.

Type 𝑓𝑘 Switches Hosts Prob. Preprocessing (s)

Fat tree 4 20 16 0.98 0.399
Fat tree 7 58 85 0.86 4.062
Fat tree 10 125 250 0.86 49.09
Fat tree 13 205 549 0.88 694.17
Fat tree 16 320 1,024 0.78 644.23
Stanford - 25 26 1.00 0.219
Cisco - 8 12 1.00 0.0442

children to the aggregate switches. We honor precisely the reported
connectivity between switches.

6.1.3 Cisco topology. We also consider a topology provided by
Cisco [12, 13, 76]. Unlike the fat tree and Stanford backbone topolo-
gies, which are intended to support large networks, the Cisco topol-
ogy is designed to act as a distributed firewall. We chose this topol-
ogy because it is one of the few known enterprise topologies, and its
structural differences from the Stanford and fat tree topologies test
the versatility of Spotlight. The Cisco topology is the smallest of
the three with twelve hosts and eight switches. However, while the
Stanford and fat tree topologies are tree-based, Cisco is not, which
allows us to evaluate Spotlight in a less hierarchical network.

6.1.4 Testing intents. To make meaningful comparisons among
topologies, we need to model networks that have similar sets of
intents installed. We model only host-to-host intents such as those
available on ONOS, which simply create connections between any
pair of hosts. We choose to measure the upper bound of detection
time. As such, we choose initial and modified intents that initiate
connections with the number of hops equal to the graph diameter.
For our fat tree graphs, we can follow the same simple procedure for
graphs of all sizes. For the initial intent, we choose the source host
𝑝0 .𝑒0 .ℎ0 and a destination host 𝑝 𝑓𝑘−1 .𝑒𝑚−1 .ℎ𝑟−1. For the updated
intent, we use the same source host but replace the destination host
with 𝑝 𝑓𝑘−1 .𝑒0 .ℎ0. For the Stanford backbone and Cisco topologies,
we also use intents that span the entire graph diameter.

6.1.5 Metrics. The metrics we measure are:

(1) the time to detect the first temporal vulnerability,
(2) the number of temporal vulnerabilities detected per run, and
(3) the preprocessing costs required by Spotlight.

The time to detect the first temporal vulnerability does not in-
clude preprocessing time, which only needs to be done once for a
topology. The clock starts before the state space search begins, and
stops after connectivity is verified between two hosts that should
not have been connected. We have defined a topology and set of
intents such that there are exactly four temporal vulnerabilities
that could lead to unauthorized connectivity. The baseline algo-
rithm is guaranteed to find all vulnerabilities because it performs
an exhaustive search.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

For each experimental run of Spotlight, we collect the number
of temporal vulnerabilities that were verifiably detected. The pre-
processing time is the time it takes to run the Panther similarity
algorithm on the topology. The clock starts before preprocessing
begins and ends immediately after.

6.2 Performance of Spotlight
Figure 6 shows the time it took to detect the first temporal vul-
nerability in the fat tree topology. These are restricted to only the
cases where at least one temporal vulnerability was found, which
as we will see in Section 6.3 was the case for most runs. The x-axis
tracks the number of hosts and switches for each run and the y-
axis, drawn on a log scale, is the time in seconds to detect the first
temporal vulnerability.

We compare the detection time of Spotlight (blue points) to
that of the baseline (red points) (Q1). The detection time for both de-
tector implementations increases with the size of the topology. This
growth, however, is subexponential, as discussed in ??. Additionally,
the baseline algorithm has much greater variance, with a standard
deviation on the largest topology of 17.5 seconds compared to 0.859
seconds for Spotlight. This is likely because there is a larger space
of update orderings over which the temporal vulnerabilities are
distributed. In the largest topology with 1,344 nodes, Spotlight’s
detection time was 0.65 seconds, while the baseline detection time
was 49.9 seconds, a 76.8× speedup (Q2). Spotlight had a mean
detection time of 0.002 seconds on the Stanford backbone topol-
ogy, which contains 51 nodes. The median time to detect the first
violation was 0.00192 seconds for Spotlight and 0.0013 seconds
for the naïve baseline. This resulted in a median speedup of 6.77×
and a maximum speedup of 31.13×. Results were similar for the
Cisco topology, which contains 20 nodes. On this topology, the
mean detection time was 0.00641 seconds—consistent with fat tree
topologies of similar size.

In Table 2, the preprocessing time varies from an average of
0.399 seconds for a small fat tree network to over ten minutes for
the largest topology. The Stanford backbone an Cisco topologies
were preprocessed even faster, 0.219 seconds and 0.0442 seconds,
respectively. The longest preprocessing time was 5,682.21 seconds
(over ninety minutes), though this was an outlier. This can be an
expensive operation but only needs to be computed once per topol-
ogy. If topologies are unlikely to change frequently, such cost could
be amortized over the lifespan of a single topology. For smaller
networks, even those than can support tens of thousands of clients
like Stanford’s backbone, Spotlight’s preprocessing time is quick
and could be recomputed ad hoc at very little cost.

We also tracked the memory usage of Spotlight. We found that
Spotlight used approximately 176.3 MB for our largest 1,300-node
topology. This computation is performed on the controller node,
rather than a switch, and thus is not subject to the same resource
constraints as switch processes.

6.3 Accuracy of Spotlight
Unlike the strawman algorithm, which is guaranteed to find tem-
poral vulnerabilities if they exist, Spotlight uses a probabilistic
method based on graph heuristics and so may not find all vulnera-
bilities.

0 200 400 600 800 1000 1200 1400
Number of switches and hosts in topology

10 2

10 1

100

101

102

103

Fir
st

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

Baseline
Spotlight

Figure 6: Time taken to detect temporal vulnerability as a
function of the number of hosts in the fat tree topology.

In Table 2 column two, we see the probability of Spotlight find-
ing at least one temporal vulnerability across all trials for each node
count (Q3). For small networks, Spotlight finds a temporal vulner-
ability with high probability (98.0%), however the probability drops
as the topology scales in size. This column, however, represents
the probabilities over all configurations and tuning parameters.
For both the Stanford backbone and Cisco topologies, Spotlight
found all temporal vulnerabilities in all trials. These results suggest
that Spotlight is highly reliable for small networks, even without
optimal parameter tuning.

When we isolate the cases where Panther parameter 𝑘 (repre-
senting the size of the similarity cache) is set to twenty, we see that
all temporal vulnerabilities were found in all fat tree topology trials.
This is further substantiated in Figure 7. In this heatmap, the x-axis
is Panther’s 𝑘 , and the y-axis is the number of vulnerabilities found.
Each square represents the proportion of runs of Spotlight with
parameter 𝑘 that found the corresponding number of vulnerabilities
on the y-axis. There is a strong positive trend with increasing 𝑘

suggesting that increasing the size of the similarity cache yields
more found vulnerabilities at a slight cost of storing more data. Any
additional computational cost is borne during preprocessing and
thus does not factor significantly into detection timing.

There is also notably a pattern of stratification where each detec-
tor run finds either zero, two, or four temporal vulnerabilities, but
never one or three. The most likely cause of this is the proximity
of the updated switches in the topology graph. In the intents used
in the evaluation, there are two updated switches near one host,
and two near the other host. The similarity cache is thus likely to
contain the switches in pairs, if at all.

Ultimately, we see that Spotlight can be tuned to find at least
one temporal vulnerability with a very high probability (Q4).

7 DISCUSSION
Mitigating temporal attacks with least-privileges access control. Suf-
ficiently precise pattern matching on the flow rules would prevent

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

3 5 10 15 20
Panther parameter k

4
3

2
1

0Te
m

po
ra

l v
ul

ne
ra

bi
lit

ie
s f

ou
nd 0.08 0.42 0.88 1 1

0 0 0 0 0

0.46 0.46 0.06 0 0

0 0 0 0 0

0.46 0.12 0.06 0 0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Sensitivity of finding vulnerabilities to the Panther
algorithm’s 𝑘 parameter representing the size of the similar-
ity cache.

unauthorized connectivity even in the presence of inconsistent
flow rule updates. However, this puts an additional burden on the
individual security and system administrators. A secure-by-design
model, such as Spotlight, is more effective at securing sensitive
systems because it offers protection even in the presence of overly
permissive access control policies.

Additionally, some security models intentionally group hosts
(e.g., identified by IP addresses) together within flow rule matching
patterns as a data plane optimization to save TCAM space in switch
memory [12], which is an intentional design decision for which
more restrictive policies may not be an option.

Mitigating temporal attacks with update consistency. While consis-
tent update schemes would mitigate temporal attacks, consistent
updates come at significant performance cost. Liu et al. [48] mea-
sured several proposed update schemes and found that even the
fastest scheme increased the median update time by more than
50% even on medium to small fat tree topologies (𝑓𝑘 = 8) with a
relaxed notion of consistency. For more rigorous models, Liu et al.
[48] reported an overhead of more than 400%. These consistent
update schemes also come at a cost of additional TCAM usage, with
even the lowest footprint model using more than 10% additional
memory—already an expensive and scarce resource.

We hypothesize that a mixed-modal solution could provide a
realistic balance. A temporal vulnerability detector like Spotlight
could be used on all intent installations and recompilations, and
only when a temporal vulnerability is detected a consistent update
could be triggered. However, future work is necessary to identify
the likelihood of high-risk updates appearing in the wild, as well
as a comparison of the cost of consistent updates with the cost of
executing a temporal vulnerability detector.

Other vulnerable IBN implementations. Our evaluations use ONOS
as a representative case study. However, we suspect that several
other well known controllers may also be vulnerable. To be robust
against a Phantom Link during intent installation, an IBN controller
must have a mechanism to control the flow rule install ordering

across multiple switches. The popular IBN controller, OpenDaylight
(ODL) [47] does not contain such a mechanism, and so to the best of
our knowledge, it is also vulnerable. ODL is highly scalable [22] and
has a built-in ARP proxy app which can also delay the installation
of rules on the switch; these features provide the same footholds we
used to exploit ONOS. Several other ostensibly independent SDN
environments—ONAP [1], OpenStack [2], and Cisco Open SDN [3]—
use ODL as the underlying SDN controller, and therefore share the
same shortcomings as ODL. We are unable to acquire or examine
the code of closed-source IBN controllers like Juniper Apstra or
Cisco Meraki, so we cannot infer their vulnerability status.

Non-static topologies. While no topology is ever truly static, we
argue that this is not necessarily a limitation for Spotlight. Inten-
tional topology changes (e.g., adding links) takes non-negligible
time, during which the Panther algorithm precomputation of the
new topology is possible. Conversely, when the topology changes
quickly due to link or switch failure, the naïve algorithm will still
find all temporal vulnerabilities because the controller is alerted of
the failure; as a result, the intent recompilation will be triggered.
Meanwhile, the Panther algorithm will not see any reduction in
likelihood of finding any new temporal vulnerabilities because
link/switch failures do not create any new paths through the net-
work topology which were not already taken into account.

8 RELATEDWORK
IBN security. IBN abstracts away many implementation details to
simplify network management and can be utilized to enhance the
security of the overall network [41]. The LAI language [71] au-
tomatically generates ACL update plans that satisfy the network
operators’ intents. Herbaut et al. [29] propose an efficient con-
formance checking approach based on intents. Intent-based cloud
services [40] provides security services to both the service providers
and consumers to apply security policies without security expertise.
While such approaches can improve the network’s security, they
do not consider the attack surface of the IBN architecture itself and
do not mitigate temporal vulnerabilities.

Several security tools have been proposed for understanding
IBN’s attack surface. ProvIntent [72] generates a provenance of
how IBN events affect the network state while bridging the seman-
tic gap between high-level intent and low-level implementation.
Intender [42] proposes a semantically-aware fuzzing framework
with a new feedback mechanism, intent-state transition guidance.
While these tools are complementary to Spotlight, they cannot
identify temporal vulnerabilities during intent updates.

Network verification. Network verification checks that network poli-
cies are satisfied and that no constraints are violated. Early work in
verification, such as header space analysis [37, 38], Anteater [49]
and VeriFlow [39], check for network invariants (e.g., blackhole
routing and loops) in the control path between an SDN controller
and switches. However, such tools focus on singular updates (i.e.,
one flow rule at a time) rather than groups of updates (e.g., mul-
tiple flow rules for end-to-end connectivity) that are typical of
IBN updates. Plankton [58] builds on VeriFlow’s computation of
packet equivalence classes and provides model checking for the for-
warding behavior in the converged states of routers. Tiramisu [8]

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ben Weintraub et al.

provides verification algorithms for policies about failure resilience,
quantitative path metrics, and path existence.

More recently, runtime verification checks network conditions in
real time. Tools such as Delta-net [30], P4Consist [66], VeriDP [78],
and Hydra [63] check data plane consistency, increasingly within
the P4 [15] programmable data plane. None of this prior work
focuses on the unique considerations and semantics of IBN—they
only examine lower levels of abstraction.

Policy composition. Policy composition analyzes how to satisfy
multiple new and existing policies, as well as identify and report
unresolvable conflicts to users. Policy Graph Abstraction (PGA) [59]
expresses user-submitted networking policies in the form of input
graphs and provides algorithms to combine those input graphs into
a conflict-free graph, which represents the final composed policy.
PGA also maintains the invariants specified in each user-submitted
policy. Unresolvable conflicts are reported to the user. Janus [9]
extends PGA to additionally support QoS and dynamic policies.
Genesis [70] proposes policy composition and compilation in multi-
tenant networks. Policies are described in a new language called
the Genesis Policy Language. A modular SMT-based algorithm is
designed to enforce the policies. Although the aforementioned prior
work addresses the correctness and optimality of policy composi-
tion, none of the prior work focuses on the ordering of operations
and the temporal faults that may arise due to improper ordering.

SDN security. Both attacks and defenses of SDNs have been studied
numerous times in the literature [26, 33, 34, 60, 65, 68, 69, 73, 74].
Since IBNs are an extension of SDNs, these attacks and defenses are
also applicable to IBNs, but the focus of this paper is on temporal
attacks that are especially pernicious on IBNs.

9 CONCLUSION
In this paper, we identified a vulnerability in IBN caused by the
reordering of low-level flow rules from intents. The vulnerability
can be exploited by an attacker to obtain unauthorized access to
a host. We discussed means to achieve such attacks and demon-
strate one type of attack, Phantom Link. We proposed Spotlight
a detection method that can alert a system administrator of risky
intents prone to temporal faults that can be exploited by an attacker.
We demonstrate that Spotlight is fast and effective in identifying
such risky intents using realistic network topologies and policies.

ACKNOWLEDGMENTS
The authors thank our anonymous shepherd and the reviewers for
their helpful comments, which improved this paper. The first author
would also like to thank his friends, Marcus and Bekah Coenen:
your courage in these times is an inspiration. This material is based
upon work supported by the National Science Foundation under
Grant No. CNS-2339882.

REFERENCES
[1] [n. d.]. https://wiki.onap.org/display/DW/Controllers
[2] [n. d.]. https://docs.openstack.org/networking-odl/ocata/installation.html
[3] [n. d.]. https://www.cisco.com/c/en/us/td/docs/net_mgmt/open_sdn_controller/

1-1/admin/guide/b_OSC11_Admin_Guide/b_OSC11_Admin_Guide_chapter_
00.pdf

[4] [n. d.]. ONOS GitHub FlowRuleOperations.java. https://github.com/
opennetworkinglab/onos/blob/master/core/api/src/main/java/org/onosproject/
net/flow/FlowRuleOperations.java. Accessed: 2024-01-12.

[5] 3GPP. 2020. Study on scenarios for Intent driven management services for mobile
networks (Release 17). https://www.3gpp.org/DynaReport/28812.htm.

[6] 3GPP. 2022. Management and orchestration; Intent driven management services
for mobile networks (Release 17). https://www.3gpp.org/DynaReport/28312.htm.

[7] 3GPP. 2022. Study on enhanced intent driven management services for mobile
networks (Release 18). https://www.3gpp.org/DynaReport/28912.htm.

[8] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.
Tiramisu: Fast multilayer network verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). 201–219.

[9] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella,
Ying Zhang, and Wenfei Wu. 2017. Supporting Diverse Dynamic Intent-based
Policies using Janus. In Proceedings of the 13th International Conference on emerg-
ing Networking EXperiments and Technologies. ACM, 296–309.

[10] Stefan Achleitner, Thomas La Porta, Trent Jaeger, and Patrick McDaniel. 2017.
Adversarial network forensics in software defined networking. In Proceedings of
the Symposium on SDN Research. 8–20.

[11] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. In Proceedings of the ACM
SIGCOMM 2008 conference on Data communication. ACM, 63–74.

[12] Iffat Anjum, Daniel Kostecki, Ethan Leba, Jessica Sokal, Rajit Bharambe, William
Enck, Cristina Nita-Rotaru, and Bradley Reaves. 2022. Removing the Reliance on
Perimeters for Security using Network Views. In Proceedings of the 27th ACM
SACMAT. ACM, New York NY USA, 151–162.

[13] Iffat Anjum, Jessica Sokal, Hafiza Ramzah Rehman, Ben Weintraub, Ethan Leba,
William Enck, Cristina Nita-Rotaru, and Bradley Reaves. 2023. MSNetViews:
Geographically Distributed Management of Enterprise Network Security Policy.
In Proceedings of the 28th ACM SACMAT (SACMAT ’23). ACM, 121–132.

[14] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. 2017. Distributed SDN
control: Survey, taxonomy, and challenges. IEEE Communications Surveys &
Tutorials 20, 1 (2017), 333–354.

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[16] Kai Bu, Xitao Wen, Bo Yang, Yan Chen, Li Erran Li, and Xiaolin Chen. 2016.
Is every flow on the right track?: Inspect SDN forwarding with RuleScope. In
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 1–9.

[17] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. 2015. A distributed
and robust SDN control plane for transactional network updates. In 2015 IEEE
conference on computer communications (INFOCOM). IEEE, 190–198.

[18] Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu, Mingwei Xu, and Yuan Yang.
2019. The {CrossPath} Attack: Disrupting the {SDN} Control Channel via
Shared Links. In 28th USENIX Security Symposium (USENIX Security 19). 19–36.

[19] Jiahao Cao, Zijie Yang, Kun Sun, Qi Li, Mingwei Xu, and Peiyi Han. 2019. Finger-
printing {SDN} applications via encrypted control traffic. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). 501–515.

[20] Cisco Networks. 2024. Intent-Based Networking: Cisco. https://www.cisco.com/
c/en/us/solutions/intent-based-networking.html.

[21] Alexander Clemm, Laurent Ciavaglia, Lisandro Granville, and Jeff Tantsura.
2022. Intent-Based Networking - Concepts and Definitions (RFC 9315). https:
//datatracker.ietf.org/doc/rfc9315/.

[22] Mohamad Darianian, Carey Williamson, and Israat Haque. 2017. Experimental
evaluation of two openflow controllers. In 2017 IEEE 25th International Conference
on Network Protocols (ICNP). IEEE, 1–6.

[23] Edsger Wybe Dijkstra. 1959. A note on two problems in connexion with
graphs:(Numerische Mathematik, 1 (1959), p 269-271). (1959).

[24] AndrewD Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian,WaqarMohsin,
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, et al.
2021. Orion: Google’s {Software-Defined} Networking Control Plane. In 18th
USENIX NSDI. 83–98.

[25] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2019. Survey of
Consistent Software-Defined Network Updates. IEEE Communications Surveys &
Tutorials 21, 2 (2019), 1435–1461. https://doi.org/10.1109/COMST.2018.2876749

[26] Steven R. Gomez, Samuel Jero, Richard Skowyra, Jason Martin, Patrick Sul-
livan, David Bigelow, Zachary Ellenbogen, Bryan C. Ward, Hamed Okhravi,
and James W. Landry. 2019. Controller-Oblivious Dynamic Access Control in
Software-Defined Networks. In 2019 49th Annual IEEE/IFIP DSN. 447–459.

[27] Aric Hagberg and Drew Conway. 2020. Networkx: Network analysis with python.
URL: https://networkx. github. io (2020).

[28] Robert Hanmer, Sheng Liu, Lalita Jagadeesan, and Muntasir Raihan Rahman.
2019. Death by babble: Security and fault tolerance of distributed consensus
in high-availability softwarized networks. In 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE, 266–270.

https://wiki.onap.org/display/DW/Controllers
https://docs.openstack.org/networking-odl/ocata/installation.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/open_sdn_controller/1-1/admin/guide/b_OSC11_Admin_Guide/b_OSC11_Admin_Guide_chapter_00.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/open_sdn_controller/1-1/admin/guide/b_OSC11_Admin_Guide/b_OSC11_Admin_Guide_chapter_00.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/open_sdn_controller/1-1/admin/guide/b_OSC11_Admin_Guide/b_OSC11_Admin_Guide_chapter_00.pdf
https://github.com/opennetworkinglab/onos/blob/master/core/api/src/main/java/org/onosproject/net/flow/FlowRuleOperations.java
https://github.com/opennetworkinglab/onos/blob/master/core/api/src/main/java/org/onosproject/net/flow/FlowRuleOperations.java
https://github.com/opennetworkinglab/onos/blob/master/core/api/src/main/java/org/onosproject/net/flow/FlowRuleOperations.java
https://www.3gpp.org/DynaReport/28812.htm
https://www.3gpp.org/DynaReport/28312.htm
https://www.3gpp.org/DynaReport/28912.htm
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
https://datatracker.ietf.org/doc/rfc9315/
https://datatracker.ietf.org/doc/rfc9315/
https://doi.org/10.1109/COMST.2018.2876749

Exploiting Temporal Vulnerabilities for Unauthorized Access in Intent-Based Networking CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[29] Nicolas Herbaut, Camilo Correa, Jacques Robin, and Raul Mazo. 2021. SDN
Intent-based conformance checking: application to security policies. In 2021 IEEE
7th International Conference on Network Softwarization (NetSoft). IEEE, 181–185.

[30] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
network verification using atoms. In 14th USENIX NSDI. 735–749.

[31] Huawei. 2024. Huawei Launches the Intent-Driven Networking for CloudFabric
Solution. https://www.huawei.com/en/news/2018/6/Intent-Driven-Networking-
CloudFabric-Solution.

[32] IBM Newsroom. 2021. IBM Brings AI-Powered Automation Software to Network-
ing to Help Simplify Broad Adoption of 5G.

[33] Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, HamedOkhravi, Richard Skowyra,
and Sonia Fahmy. 2017. BEADS: Automated Attack Discovery in OpenFlow-
Based SDN Systems. In Research in Attacks, Intrusions, and Defenses. Springer,
311–333.

[34] Samuel Jero, William Koch, Richard Skowyra, Hamed Okhravi, Cristina Nita-
Rotaru, and David Bigelow. 2017. Identifier Binding Attacks and Defenses in
Software-Defined Networks. In 26th USENIX Security Symposium (USENIX Secu-
rity 17). USENIX Association, Vancouver, BC, 415–432.

[35] Juniper Networks. 2024. Juniper Apstra. https://www.juniper.net/us/en/products/
network-automation/apstra.html.

[36] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. 2013. The crossfire attack. In
2013 IEEE symposium on security and privacy. IEEE, 127–141.

[37] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real time network policy checking using header
space analysis. In 10th USENIX NSDI. 99–111.

[38] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In 9th USENIX NSDI. 113–126.

[39] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Brighten Godfrey.
2012. Veriflow: Verifying network-wide invariants in real time. In Proceedings of
the first workshop on Hot topics in software defined networks. 49–54.

[40] Jinyong Kim, Eunsoo Kim, Jinhyuk Yang, Jaehoon Jeong, Hyoungshick Kim, Sang-
won Hyun, Hyunsik Yang, Jaewook Oh, Younghan Kim, Susan Hares, et al. 2020.
Ibcs: Intent-based cloud services for security applications. IEEE Communications
Magazine 58, 4 (2020), 45–51.

[41] Jiwon Kim, Hamed Okhravi, Dave (Jing) Tian, and Benjamin E. Ujcich. 2024.
Security Challenges of Intent-Based Networking. Commun. ACM 67, 7 (2024).

[42] Jiwon Kim, Benjamin E. Ujcich, and Dave (Jing) Tian. 2023. Intender: Fuzzing
Intent-Based Networking with Intent-State Transition Guidance. In 32nd USENIX
Security Symposium (USENIX Security 23). 4463–4480.

[43] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2014. Software-defined
networking: A comprehensive survey. Proc. IEEE 103, 1 (2014), 14–76.

[44] Maciej Kuzniar, Peter Peresini, and Dejan Kostić. 2014. Providing reliable FIB
update acknowledgments in SDN. In Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. 415–422.

[45] Chen Li, Olga Havel, Aiana Olariu, Peo Martinez-Julia, Jéferson Campos Nobre,
and Diego Lopez. 2022. Intent Classification. Number RFC 9316. https://doi.org/
10.17487/RFC9316

[46] Linux Foundation. 2024. Open Network Automation Platform (ONAP). https:
//www.onap.org/.

[47] Linux Foundation. 2024. OpenDaylight (ODL). https://www.opendaylight.org/.
[48] Sheng Liu, Theophilus A Benson, and Michael K Reiter. 2019. Efficient and safe

network updates with suffix causal consistency. In Proceedings of the fourteenth
EuroSys conference 2019. 1–15.

[49] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the data plane with
anteater. ACM SIGCOMM CCR 41, 4 (2011), 290–301.

[50] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. 2017. A Survey of
Link Prediction in Complex Networks. Comput. Surveys 49, 4 (Dec. 2017), 1–33.

[51] Rick McGeer. 2012. A safe, efficient update protocol for openflow networks. In
Proceedings of the first workshop on Hot topics in SDNs. ACM, 61–66.

[52] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM computer communica-
tion review 38, 2 (2008), 69–74.

[53] ONF. 2016. Intent NBI – Definition and Principles. https://opennetworking.org/
wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf.

[54] Open Networking Foundation. 2024. Open Network Operating System (ONOS).
https://opennetworking.org/onos/.

[55] P4.org API Working Group. 2024. P4Runtime Specification. https://github.com/
p4lang/p4runtime.

[56] Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. {SCL}: Simplifying Distributed {SDN} Control Planes. In 14th
USENIX NSDI. 329–345.

[57] Pica8. 2014. Pica8 P-5401 Specification. https://www.pica8.com/wp-content/
uploads/pica8-datasheet-32x40gbe-p5401.pdf

[58] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification

through model checking. In 17th USENIX NSDI. 953–967.
[59] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya

Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
2015. PGA: Using Graphs to Express and Automatically Reconcile Network
Policies. In Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. ACM, London United Kingdom, 29–42.

[60] Leila Rashidi, Daniel Kostecki, Alexander James, Anthony Peterson, Majid
Ghaderi, Samuel Jero, Cristina Nita-Rotaru, Hamed Okhravi, and Reihaneh Safavi-
Naini. 2021. More than a Fair Share: Network Data Remanence Attacks against
Secret Sharing-based Schemes. In Proceedings of the Network and Distributed
System Security Symposium (NDSS’21) (San Diego, CA).

[61] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for network update. ACM SIGCOMM Computer Communica-
tion Review 42, 4 (Sep 2012), 323–334. https://doi.org/10.1145/2377677.2377748

[62] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. 2011. Consistent
updates for software-defined networks: change you can believe in!. In Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks. ACM, Cambridge
Massachusetts, 1–6. https://doi.org/10.1145/2070562.2070569

[63] Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi Ventre,
Carmelo Cascone, Daniele Moro, Charles Chan, Nick McKeown, and Nate Foster.
2023. Hydra: Effective Runtime Network Verification. In Proceedings of the ACM
SIGCOMM 2023 Conference. 182–194.

[64] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. 2016. In-band synchronization
for distributed SDN control planes. ACM SIGCOMM Computer Communication
Review 46, 1 (2016), 37–43.

[65] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. 2013. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security. 413–424.

[66] Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur Hecker, and Stefan
Schmid. 2020. P4consist: Toward consistent p4 sdns. IEEE Journal on Selected
Areas in Communications 38, 7 (2020), 1293–1307.

[67] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. ACM SIGCOMM
Computer Communication Review 45, 4 (Sept. 2015), 183–197.

[68] Richard Skowyra, Kevin Bauer, Veer Dedhia, and Hamed Okhravi. 2016. Have No
PHEAR: Networks Without Identifiers. In Proceedings of the 2016 ACM Workshop
on Moving Target Defense (MTD ’16). ACM, 3–14.

[69] Richard Skowyra, Lei Xu, Guofei Gu, Veer Dedhia, Thomas Hobson, Hamed
Okhravi, and James Landry. 2018. Effective Topology Tampering Attacks and De-
fenses in Software-Defined Networks. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 374–385.

[70] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017. Genesis: synthe-
sizing forwarding tables in multi-tenant networks. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. ACM, 572–585.

[71] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. 2019.
Safely and automatically updating in-network ACL configurations with intent
language. In Proceedings of ACM SIGCOMM. 214–226.

[72] Benjamin E. Ujcich, Adam Bates, and William H. Sanders. 2020. Provenance for
intent-based networking. In 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 195–199.

[73] Benjamin E. Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard Skowyra,
James Landry, Adam Bates, William H. Sanders, Cristina Nita-Rotaru, and Hamed
Okhravi. 2018. Cross-App Poisoning in Software-Defined Networking. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 648–663.

[74] Benjamin E. Ujcich, Samuel Jero, Richard Skowyra, Steven Gomez, Adam Bates,
William H. Sanders, and Hamed Okhravi. 2020. Automated Discovery of Cross-
Plane Event-Based Vulnerabilities in Software-Defined Networking. In Proceed-
ings of the Network and Distributed System Security Symposium (NDSS’20).

[75] Haopei Wang, Lei Xu, and Guofei Gu. 2015. Floodguard: A dos attack prevention
extension in software-defined networks. In 2015 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE, 239–250.

[76] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins, Vyas Sekar, and Srinivasan
Seshan. 2017. PSI: Precise Security Instrumentation for Enterprise Networks.. In
NDSS.

[77] Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, and Juanzi Li. 2015.
Panther: Fast Top-k Similarity Search on Large Networks. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, Sydney NSW Australia, 1445–1454.

[78] Peng Zhang, Hao Li, Chengchen Hu, Liujia Hu, Lei Xiong, Ruilong Wang, and
Yuemei Zhang. 2016. Mind the gap: Monitoring the control-data plane consis-
tency in software defined networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies. 19–33.

https://www.huawei.com/en/news/2018/6/Intent-Driven-Networking-CloudFabric-Solution
https://www.huawei.com/en/news/2018/6/Intent-Driven-Networking-CloudFabric-Solution
https://www.juniper.net/us/en/products/network-automation/apstra.html
https://www.juniper.net/us/en/products/network-automation/apstra.html
https://doi.org/10.17487/RFC9316
https://doi.org/10.17487/RFC9316
https://www.onap.org/
https://www.onap.org/
https://www.opendaylight.org/
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://opennetworking.org/onos/
https://github.com/p4lang/p4runtime
https://github.com/p4lang/p4runtime
https://www.pica8.com/wp-content/uploads/pica8-datasheet-32x40gbe-p5401.pdf
https://www.pica8.com/wp-content/uploads/pica8-datasheet-32x40gbe-p5401.pdf
https://doi.org/10.1145/2377677.2377748
https://doi.org/10.1145/2070562.2070569

	Abstract
	1 Introduction
	2 Background
	2.1 Software-defined Networking (SDN)
	2.2 Intent-based Networking (IBN)

	3 Current Practices of Secure Updates in IBN
	3.1 Case Study: ONOS IBN implementation
	3.2 Challenges to Secure Updates

	4 Temporal Attacks in IBN
	4.1 Threat Model
	4.2 Temporal Attacks
	4.3 Executing Phantom Link

	5 Spotlight: Temporal Vulnerability Detection for IBN
	5.1 System Model and Goals
	5.2 Causes of Temporal Vulnerabilities
	5.3 Spotlight Architecture
	5.4 Strawman Detection Algorithm
	5.5 Spotlight Detection Algorithm
	5.6 Implementation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance of Spotlight
	6.3 Accuracy of Spotlight

	7 Discussion
	8 Related Work
	9 Conclusion
	References

