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Abstract—GossipSub is a new peer-to-peer communication pro-
tocol designed to counter attacks from misbehaving peers by
controlling what information is sent and to whom, via a score
function computed by each peer that captures positive and
negative behaviors of its neighbors. The score function depends
on several parameters (weights, caps, thresholds) that can be
configured by applications using GossipSub. The specification
for GossipSub is written in English and its resilience to attacks
from misbehaving peers is supported empirically by emulation
testing using an implementation in Golang.

In this work we take a foundational approach to under-
standing the resilience of GossipSub to attacks from misbehav-
ing peers. We build the first formal model of GossipSub, using
the ACL2s theorem prover. Our model is officially endorsed by
the GossipSub developers. It can simulate GossipSub networks
of arbitrary size and topology, with arbitrarily configured
peers, and can be used to prove and disprove theorems about
the protocol. We formalize fundamental security properties
stating that the score function is fair, penalizes bad behavior,
and rewards good behavior. We prove that the score function is
always fair, but can be configured in ways that either penalize
good behavior or ignore bad behavior. Using our model, we
run GossipSub with the specific configurations for two popular
real-world applications: the FileCoin and Eth2.0 blockchains.
We show that all properties hold for FileCoin. However, given
any Eth2.0 network (of any topology and size) with any number
of potentially misbehaving peers, we can synthesize attacks
where these peers are able to continuously misbehave by never
forwarding topic messages, while maintaining positive scores
so that they are never pruned from the network by GossipSub.

1. Introduction

Gossip protocols are a fundamental building block for
communication in peer-to-peer (P2P) systems. One such
protocol is GossipSub, and is used by popular applications
such as FileCoin [1] and Eth2.0 [2]. As of November 2022,
the market cap of FileCoin is $1.4B USD [3]. Eth2.0 is the
second most valuable cryptocurrency, after BitCoin, with a
November 2022 market cap of $143B USD [4]. A major
concern in P2P systems including GossipSub is the risk
of attacks launched by misbehaving peers. As such attacks

can have significant financial implications, it is critical that
GossipSub is resilient to attacks from misbehaving peers.

GossipSub addresses attacks by misbehaving peers via
fine-granularity dissemination techniques and heuristic de-
fense mechanisms that are carefully controlled by a score
function capturing positive and negative peer behaviors,
globally and within topics. (GossipSub partitions communi-
cation by topics to which peers can subscribe or unsubscribe
– as in pub/sub systems.) Scores calculated using the score
function are local to a peer and are not shared with other
peers. Several aspects of the score function are crucial to its
correctness, e.g.: defining good and bad behavior, specifying
weights that are applied to good and bad behavior in the
score function, and choosing thresholds for making deci-
sions about peer behaviors, to name just a few. Applications
using GossipSub can configure such parameters.

Where does the assurance that GossipSub is indeed
resilient to attacks from misbehaving peers come from?
GossipSub is defined by a prose specification [5], [6] and an
implementation in Golang [7]. The Golang implementation
was subjected to unit tests and manual code review by expert
programmers, and tested under various threat models at scale
using the TESTGROUND network emulator [8], [9].

While the manual reviews and emulations empirically
suggest that the protocol is resilient to attacks, there is
no rigorous specification of what this resilience means or
of what assumptions are necessary for the correctness of
the system. Formal methods can help disambiguate system
specifications and formulate implicit assumptions made by
the system designers. They also can expose flaws in system
requirements, often not captured through testing. In contrast
to testing, formal methods provide mathematical proofs that
show that a system does or does not behave correctly.

Formal methods have been previously applied to gossip
and pub/sub protocols [10], [11], [12], [13], [14], however
with important limitations. First, they studied much simpler
protocols than GossipSub, based on flooding, where data is
disseminated naively across the network without regard for
the bandwidth. Second, they used model checking and made
simplifying assumptions to avoid state-space explosion.

Our contributions. We focus on rigorously studying
GossipSub and its resilience to attacks from misbehaving
peers using ACL2s, a theorem prover based on a purely
functional LISP-based language [15], [16]. ACL2s is highly
expressive, allowing us to express arbitrary computation and



properties over infinite-state systems. Our contributions are:
• A formal model of GossipSub: In contrast to prior works
that studied gossip protocols using heavily simplified or
restricted models, we study GossipSub by modeling every
aspect of its prose specification. Our model is not just an
abstraction, it is an actual executable program that can be
formally reasoned about. When we find the specification
ambiguous, we compare it to the implementation and also
consult the specification authors. Our model can simulate
GossipSub networks of arbitrary size and topology, with
arbitrarily configured peers, and can be used to prove
or disprove protocol properties. It is publicly available at
github.com/gossipsubfm, allowing developers of applica-
tions using GossipSub to verify security properties for the
configuration corresponding to their application, and was
officially endorsed by the GossipSub developers as a formal
specification for the protocol in their documentation [17].
• Security properties and analyses: Since the prose spec-
ification [5], [6] and emulation analysis [8] do not list
properties, we formalize four security properties about the
score function that can be inferred based on a close reading
of these documents. These are necessary for the score-
based defense mechanisms to defend against attacks from
misbehaving peers.
(1) If a peer’s performance for some topic is continuously

non-positive, then, eventually, the peer’s score will be
non-positive.

(2) When a peer misbehaves, its score decreases.
(3) When a peer behaves, its score does not decrease.
(4) Peers are scored fairly: if they appear to behave identi-

cally, they are given identical scores.
We prove that (3) and (4) hold for all GossipSub config-
urations. In contrast, using ACL2s, we automatically find
configurations for which (1) and (2) fail. We prove that
the configuration used by Eth2.0 is one such configuration
where both these properties fail, and we prove that the
FileCoin configuration satisfies all four although it achieves
this by compromising important protocol functionality.
• Attack generation: We show how violations of these
properties for Eth2.0 can be used to create attacks against
the entire network. Our attacks exploit the fact that the
score function can be configured in ways where peers can
misbehave without penalty. Eth2.0 uses one such configura-
tion. To find these attacks we formalize what it means for
the protocol to behave correctly, and then ask the ACL2s
theorem prover if it was possible for the protocol to behave
incorrectly. In contrast, prior emulation and expert code re-
view of GossipSub only looked at specific pre-programmed
attack scenarios, e.g., where an honest peer is surrounded
by malicious peers who delay or drop messages forwarded
from the honest peer, or where the network is saturated
with malicious peers who instantaneously stop forwarding
data. We take a more general approach, formalizing what it
means for GossipSub to behave correctly, and then asking
whether any attack scenarios exist – including unknown
ones – in which the protocol might behave incorrectly. We
synthesize and verify attacks violating the first property for
Eth2.0. These attacks can be carried out on any Eth2.0

network, regardless of the topology or size, and allow peers
to continuously misbehave, by never forwarding messages in
target topics, while maintaining positive scores so that they
are never pruned from the network by the GossipSub layer of
Eth2.0. Finally, we also show that FileCoin uses GossipSub
configurations that violate the GossipSub specification.

Ethics. We submitted responsible disclosures to the Gos-
sipSub developers at Protocol Labs, as well as the Ethereum
Foundation. Both groups provided feedback, agreeing with
our results. The Ethereum Foundation is working on a patch,
and notified maintainers of popular Ethereum implemen-
tations about the issue. An alternative to waiting for a
patch is to use flooding at the cost of increased network
consumption, which GossipSub was designed to avoid.

2. Background

We provide background on gossip protocols and attacks
against them. We then overview previous work applying for-
mal methods to gossip protocols and describe our approach.

2.1. Gossip Protocols and Misbehaving Nodes

P2P systems construct logical networks without requir-
ing peers to maintain information about the global topol-
ogy of the P2P network. Peers maintain information about
their neighbors, peers they can communicate with directly.
Communication between peers that are not neighbors is
achieved through gossip protocols that propagate informa-
tion throughout the network by having each peer disseminate
information using its local information about other peers.

P2P systems are engineered to deal with not only system
dynamics, such as churn where peers join and leave the
system as desired, peer failures, and network partitions, but
also with attacks from misbehaving peers. Such misbehaving
peers can be Sybils, or peers that have been compromised by
an attacker. In Sybil attacks, a single attacker orchestrates a
multitude of identities (called Sybils) to gain unfair influence
over the network [18]. In the absence of a central entity
for authentication, defenses against Sybils have focused on
examining the network topology and looking for anomalies
in this graph. In many real systems such solutions requiring
global information are impossible, so more local approaches
were proposed, e.g., examining the geo-location of IP ad-
dresses (this is not a robust defense, considering how easy
is to fake IP addresses), or imposing a network topology
that constrains an attacker in what identity they can assume
in the system. More recently, some systems focused on the
functionality of the application itself and made acting as
part of the system incur a computation cost (proof-of-work)
– as in BitCoin, where the constraint is computational, and
the correctness of the system relies on assumptions about
the computational power available to the attacker and the
theoretical complexity of the proof-of-work problem. Recent
solutions against Sybil attacks were also proposed for social
[19], [20], [21], [22] and vehicular [23], [24] networks,
where such attacks are also prevalent.
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In gossip protocols, the main impact that misbehaving
nodes can have is to disrupt communication by dropping or
delaying application data or P2P control messages. Gossip
protocols that do not use flooding are more vulnerable to
attacks from misbehaving nodes as a small number of nodes
can disrupt communication, potentially across the entire
system. Since peers are expected to deliver application and
control messages, maintain the logical network, and signal
operational status, a potential defense against misbehaving
nodes is to observe peer behavior and use this information
to decide to whom new messages should be forwarded.

2.2. Formal Methods for Gossip Protocols

Formal methods (FM) refer to tools and techniques used
to specify and reason about systems with mathematical
rigor, using logic. Mathematical specifications of systems
can be used to formalize all possible system behaviors
as well as properties that systems are expected to sat-
isfy. There are many formal techniques for either proving
or disproving that systems, or abstractions thereof, satisfy
properties. One class of tools, which includes interactive
theorem proving, has high expressiveness, allowing one to
specify arbitrary, Turing-complete computational systems
and properties. Such tools require well-trained human proof
engineers with the ability to interact with the tools in or-
der to obtain formal, mechanically-checked proofs. Another
class of tools includes decision procedures for restricted
fragments of logic, such as temporal logic. Such tools can be
used in a more automated way, although they impose severe
limitations on what can be expressed, e.g.: properties over
integers with only addition, multiplication, and equality, due
to their undecidability, are already too expressive to be han-
dled by such tools. Examples of such decision procedures
include automated theorem provers (such as SMT solvers),
model checkers, type checkers, and static analyses based on
abstract interpretation. Using decision procedures effectively
often requires reasoning about expressible abstractions of
systems, e.g., abstractions based on types or abstract do-
mains or finite-state abstractions [25], [26].

Prior works applying FM to gossip protocols. Mul-
tiple prior works proposed general frameworks for veri-
fying pub/sub protocols, but did not consider security or
attacks [10], [11], [27]. In a similar vein, Dı́az et. al.
model-checked a pub/sub architecture for discoverable web
services [13]. Dagand et. al. created OPIS, an OCAML
framework for building and reasoning about distributed
systems, which included a formal framework for defining
gossip protocols. Systems built in their tool can be evaluated
using the ISABELLE and COQ theorem provers, or using
a model checker and simulator of their own design [28].
Bakhshi et. al. surveyed formal methods techniques that
could be applied to gossip protocols [29]. A subsequent
work built a pen and paper framework for modeling dissem-
ination in gossip protocols by abstracting their behaviors to
just pair-wise interactions [30]. Van Ditmarsch et. al. built
an epistemic model checker as part of their framework to
improve dissemination in gossip protocols [31]. Two prior

works studied gossip protocols using probabilistic model
checking [12], [14]. Because of state-space explosion, all
the model checking papers had to abstract the protocol logic
and/or restrict the properties they studied.

Gossip protocols that were previously studied with for-
mal methods used (partial or total) flooding, so that even
if misbehaving nodes decide not to forward data, in a
sufficiently well connected network, every message will
eventually reach every node. Thus, prior works that applied
formal methods to gossip protocols focused on proving that
all messages were eventually fully disseminated. This ap-
proach does not apply for protocols that balance bandwidth
overhead with data delivery (such as GossipSub) as they
have different specifications and safety properties.

2.3. Our Approach

We study GossipSub, a gossip service that addresses
attacks from misbehaving nodes by using a score function to
capture peer behavior combined with defense mechanisms
that adaptively modify the local network topology. We use
interactive theorem proving because methods based on de-
cision procedures, such as model checking, cannot be used
to study the actual infinite-state protocol. While theorem
proving requires more human effort, it allows us to provide
a formal, executable model of the protocol, to formalize
properties that the protocol should satisfy, and to prove or
disprove such properties for various configurations.

Note that in an interactive theorem-prover, we can ar-
ticulate any Turing machine (including infinite-state sys-
tems) and any predicate logic property about it, but, the
prover might not be able to prove or disprove the prop-
erty without expert human guidance. In contrast, sym-
bolic model-checkers like SPIN [32], TAMARIN [26], and
PROVERIF [25], only support restricted models and logics
that lend themselves to automated analysis. For example,
SPIN supports finite Kripke Structures and Linear Temporal
Logic properties, while PROVERIF supports an applied π-
calculus with cryptographic primitives, and properties relat-
ing to secrecy, authentication, and process-equivalence.

We use the ACL2 Sedan (ACL2s) [33], [34] theorem
prover, which extends ACL2 [35], [36] with an advanced
data definition framework (Defdata) [37], the cgen frame-
work for automatic counterexample generation [38], [39],
[40], a powerful termination analysis based on calling-
context graphs [41] and ordinals [42], [43], [44], a property-
based modeling/analysis framework, and IDE support.

In contrast to other theorem-provers, ACL2s allows us
to build an executable model using the Defdata framework,
and then generate attack specifications against that model
using the cgen framework – which rivals or out-performs
other state of the art tools such as ALLOY or LEAN’s
hammer tactic [39]. And since ACL2s is LISP-based, the
model is more expressive and readable to the average soft-
ware engineer than, e.g., COQ or LEAN code. Reasoning
in ACL2s is facilitated by a collection of proof methods
including rewriting, numerous decision procedures, and a
large collection of libraries. Thus, we model GossipSub by
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implementing it as a fully functional computer program in
ACL2s, and then we reason about it, all in the same system.

Our model can be used for large-scale simulations, as a
formal specification for GossipSub, and also as a reference
with which to prove or disprove properties of GossipSub. To
the best of our knowledge, we are the first to fully formalize
an executable model of a non-trivial gossip protocol not
entirely based on flooding, and then automatically prove and
disprove properties about that protocol.

3. GossipSub

In this section, we overview the design of GossipSub,
provide more details about the score function, and describe
how GossipSub was validated by its designers.

3.1. Overview

The basic approach to quickly disseminate information
in a P2P system is where every peer forwards every new
message to all of its neighbors, flooding the network. Be-
cause data travels on all possible paths in the P2P network,
this approach is the most resilient to attacks from misbehav-
ing nodes that do not correctly forward messages. However,
all this dissemination incurs a significant bandwidth cost.

GossipSub was proposed to decrease this bandwidth
cost by using a mechanism called lazy pull to balance
speed of message dissemination with bandwidth consump-
tion. Specifically, the metadata of messages are periodically
disseminated in a controlled manner, whereas full messages
are sent upon request. GossipSub partitions data in topics
to which peers can subscribe or unsubscribe as in pub/sub
systems. For each topic, nodes create and maintain a dis-
semination topology. If the node subscribes to the topic, the
topology is called a peer mesh, otherwise it is a peer fanout.
A peer’s meshes and fanouts are subsets of its peer-list, and
the mesh and fanout for a given topic are disjoint.

Unfortunately, by avoiding flooding, GossipSub be-
comes less resilient to attacks against communication from
malicious nodes. In such attacks, malicious nodes either
do not forward data, or do so on a delayed schedule. To
address this, GossipSub uses a set of defense mechanisms
based on a score that is locally maintained by each peer for
each of its neighbors, capturing their observable positive and
negative behaviors. A positive/negative score is intended to
indicate good/bad behavior, respectively. Peers re-calculate
scores periodically and use them to adjust their meshes and
fanouts, determining to whom they will send data.
• Message dissemination. Each peer p is initialized with
a mutable list of other peers and their subscriptions – these
listed peers are the neighbors of p. Over time new neighbors
can join and existing neighbors can leave the network.
Peers and their neighbors communicate over topics. We
denote by p.T the set of topics peer p is aware of and by
p.S the set of topics that p subscribes to. Both sets are
mutable and we define p.U = p.T \ p.S to be the topics
to which p does not subscribe. Each peer p communicates
full-messages on a subscribed topic s only to a subset of
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Figure 1. Example GossipSub network where cubes denote peers, each
ellipse contains all the peers that subscribe to a particular (colored) topic.

its s-subscribing neighbors, denoted p.M(s) and called a
mesh. Likewise, a peer p communicates full-messages on a
topic u to which it does not subscribe only to a subset of
its u-subscribing peers p.F (u), called a fanout. Meshes and
fanouts are mutable, as are subscriptions, meaning a peer
might unsubscribe from a topic, delete its corresponding
mesh, and build a corresponding fanout; or vice versa.
• Metadata dissemination. Metadata about recently re-
ceived mesh and fanout messages are periodically broadcast
to a newly randomly selected subset of peers, allowing meta-
data to disseminate quickly with low overhead, so peers can
request specific messages from whoever has that content.
• GossipSub threat model. The GossipSub developers
assume the following (implicitly or explicitly): applications
frequently inject new messages for dissemination; every
network peer runs the same application with the same
configuration; and the goal of honest peers is the rapid, on-
demand, total dissemination of uncorrupted data, with low
overhead. Honest peers follow the GossipSub state machine,
responding to requests and forwarding data as quickly as
possible, whereas malicious ones can perform any of the fol-
lowing network actions: sending valid or invalid messages,
forwarding data with any amount of delay, dropping data to
be forwarded, or sending any GossipSub control message at
any time. The goal of the malicious peers is to misbehave by
dropping or delaying data forwarding or by sending invalid
messages, without their malicious actions being detected.
• Defense mechanisms. GossipSub restricts the mesh and
fanout peers to only those who appear less likely to be
malicious nodes. This determination is made based on a
score function that each peer computes about each of its
neighbors. The score function is used to remove (prune)
and add (graft) peers, e.g., in Fig. 1, if peer A penalizes B
for sending invalid messages, causing B’s score to become
negative, then B will be pruned from A’s meshes.

3.2. The Score Function

Peer behavior. The goal of the score function is to measure
good and bad behaviors of peers. At a high level, the
score function takes as input a list of counters, that count
specific good and bad behaviors of the peer being scored.
Some of these counters are indexed by topic (and are called
topic-specific) while others are not (and are called global).
For example, the invalid message deliveries counter for a
neighbor q on a topic t counts the number of invalid message
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deliveries the scoring peer p has received from q on the
topic t. Some of the counters decay periodically, so that
recent events influence the score more than historical ones,
and the degree to which each counter decays is specific to
the counter (and topic, if the counter is topic-specific) and
configured by the application. These counters are used to
compute indicators that measure good and bad behaviors of
the peer being scored, such as, the indicator P6(t) which
equals the invalid message deliveries, squared. Such indica-
tors might be non-continuous, and might take as input more
than one counter. Like the counters, some of the indicators
are topic-specific while others are global.

The score function multiplies the good behavior indica-
tors with positive weights, and the bad behaviors indicators
with negative weights, and then combines the resulting
values using weighted and capped summations. A positive
score is considered good, otherwise it is considered bad.

There are only two good behaviors in the GossipSub
score function: staying in the mesh for a long time, and
delivering messages on a subscribed topic within some
threshold time window. The score function defines five
possible bad behaviors: delivering messages on a subscribed
topic at an insufficiently high rate, failing to quickly deliver
a requested message on a subscribed topic, sending an
invalid message (e.g., one that does not type-check), being
co-located on the same IP address as another peer, or trying
to re-graft during the backoff period after being pruned.
There is also an application-specific indicator that can be
positive or negative, and which is totally controlled by the
application. This allows the application to reward or penalize
behaviors that it considers to be good or bad, respectively.

We denote the per-topic indicators with the shorthand
Pj(t), where j identifies the indicator and t is the topic.
This is the notation used by the GossipSub developers and
should not be confused with our lower-case notation for
peers. To be clear, when we discuss how the peer p uses
the per-topic indicator Pj(t) while scoring the peer q, we
are really referring to p.Pj,q(t), an indicator that is local
to the scoring peer p and indexed by the indicator name j,
peer being scored q, and topic t. Likewise, when we discuss
how the peer p uses the global indicator Pk while scoring
the peer q, we are really referring to p.Pk,q, an indicator that
is local to p and indexed by the indicator name k and peer
being scored q. For each topic t, there are five topic-specific
indicators: P1(t), P2(t), P3(t), P3b(t), and P4(t). The global
indicators are P5, P6, and P7. All indicators are weighted
in the score function with corresponding weights.
Per-Topic Indicators. We describe them below.

P1(t): Time in Mesh. It is the amount of time quanta a
peer has continuously been a member of p.M(t) capped by
a small positive constant time in mesh cap that is configured
topic-by-topic by the application. P1(t) is multiplied with a
small positive constant configurable topical weight w1(t).

P2(t): First Message Deliveries. The number of mes-
sages on the topic t for which the peer was one of our
first deliverers (as measured by a constant, topic-specific,
application-configured temporal threshold), multiplied by
the topic-specific first message deliveries decay, rounded

down to zero if it falls below DecayToZero, and capped
above by the positive corresponding first message deliveries
cap. P2(t) is multiplied with a positive weight w2(t).

P3(t): Mesh Message Delivery Rate. Let the mesh mes-
sage deliveries on a topic t be the number of messages
delivered to p by q on t, multiplied at each time-step by a
topic-specific mesh message deliveries decay, and rounded
to 0 if it falls below DecayToZero. If the deliveries exceed
a topical mesh message deliveries threshold, or if P1(t) does
not exceed the topical mesh message deliveries activation,
then P3(t) is set to 0. Else, P3(t) is the difference squared.
P3(t) is multiplied by a weight w3(t) < 0.

P3b(t): Mesh Message Delivery Failures. Counts a ran-
dom subset of the message delivery failures the scoring
peer p observed from the peer q on the topic t, multiplied
at each time-step by the topical mesh failure penalty decay,
and rounded down to zero if it falls below DecayToZero.
A failure occurs when q declares that it has a message x, the
scoring peer p responds by requesting the message x, and
then q fails to respond with x in a timely fashion. When-
ever p prunes the q, p increments P3b(t) by P3(t). Ideally,
this punishes pruned peers so that they cannot quickly re-
graft. P3b(t) is multiplied with a negative weight w3b(t).

P4(t): Invalid Messages. The number of invalid mes-
sages delivered to the scoring peer p by the peer q on the
topic t, multiplied at each time-step by a topical invalid
message deliveries decay and rounded to 0 if it falls be-
low DecayToZero. Messages that does not type-check or
that are marked invalid by the application are considered
invalid. P4(t) is multiplied with a negative weight w4(t).
Global Indicators. We describe them below.

P5: Application-Specific Score. This is the score com-
ponent assigned to the peer by the application itself. It is
a real value that is multiplied in the score function by a
positive weight w5, so that the application can, e.g., signal
misbehavior with a negative score, or gate peers before an
application-specific handshake is completed.

P6: IP Colocation Factor. Let IP colocation factor refer
to the number of neighbors of p using the same IP address
as the peer q. If the IP colocation factor is not more than the
IP colocation factor threshold, then P6 is set to 0. Else, P6 is
set to the square of the difference. In the score function, P6

is multiplied with a negative weight w6. This indicator can
be used to detect Sybils iff the Sybils are IP co-located.

P7: Behavioral Penalty. Let the behavioral penalty be
initialized at 0, incremented by the scoring peer p when-
ever q tries to re-graft less than PruneBackoff time
after being pruned or has a mesh message delivery failure,
rounded down to 0 if it falls below DecayToZero, and
multiplied by the behavior penalty decay at each heartbeat
maintenance event. Let excess equal the behavior penalty
minus the behavior penalty threshold. Then P7 = excess2

if the penalty exceeds the threshold, else 0. In the score
function, P7 is multiplied with a negative weight w7.
Configuring the Score Function. The GossipSub specifi-
cation states that w1(t) should be a “small positive”; w2(t)
and w5 should be “positive”; w3(t), w3b(t), w4(t), w6, and
w7 should be “negative”; DecayToZero should be “close
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to 0.0”, the decay parameters should all be “in (0.0, 1.0)”,
time in mesh caps should be a “small positive value”, first
message deliveries caps should be at least the corresponding
mesh message deliveries thresholds; IP colocation factor
should be “at least 1”, and mesh message deliveries thresh-
olds should be “positive” and depend on the “expected
message rate for topic.” This dependency is unexplained.
Guidance is likewise not provided for the topic weight tw(t),
nor for topical mesh message deliveries activations [6].

The score function requires additional peer-specific con-
stants configurable by the application. The first is a non-
negative constant TopicCap, used to define the function
TC(x) = min(x,TopicCap) if TopicCap ̸= 0 else
x. This function limits the contribution of topic-specific
behaviors to the score. Second, for each topic t ∈ p.T , the
score function requires a positive constant tw(t) called the
topic weight of t controlling the relative influence of topic-
specific behaviors to the score. The specification does not
advise on how to configure the TopicCap or topic weights.

Note, the GossipSub specification does not require peers
to configure their score functions the same way. In the case
studies we considered (FileCoin and Eth2.0), nodes use
identical configurations. We enumerate the score function
configuration variables in Table 9 in the Appendix.
The Score Function. Recall that p.T denotes the set of all
topics the peer p knows about, including those it does not
subscribe to. The GossipSub specification [6] defines the
score computed by a peer p for a peer q as follows.

score(q) = TC
( ∑
t∈p.T

tw(t)(
∑

wi(t)Pi(t)
i∈{1,2,3,3b,4}

)
)
+

7∑
i=5

wiPi

3.3. Attack Mitigation Using the Score Function

GossipSub leverages heuristic defense mechanisms
based on two caches, mcache and seen. The mcache stores
full messages and their identifiers, enabling lazy pull. To
avoid memory overflow, it is partitioned into lists called
history windows. Periodically, a new history window con-
taining the most recently sent or received new messages
is pushed to the cache, and if the cache size exceeds a
parameter McacheLen, then the oldest history window is
deleted. The seen cache is a timed cache, but only tracks
message identifiers and is used to avoid infinite forwarding
loops. The defense mechanisms and their caches are tuned
by a set of parameters, detailed in the Appendix in Table 9.
• Pruning. This mechanism is controlled mesh (and fanout)

maintenance. Peers whose scores fall below zero are pruned
from the mesh and fanout at every heartbeat maintenance
event (by default, every second).
• Opportunistic Grafting. The goal of this mechanism is

to add peers who behave properly (and thus accumulate
positive score) to the mesh- and fanout-peer sets. If the
median score of fellow mesh peers is below the threshold
OpportunisticGraftThreshold, then above-median
scoring neighbors are opportunistically grafted.
• Backoff on Prune. This mechanism adds a backoff period
PruneBackoff after pruning during which the pruned

peer is forbidden from re-grafting, ensuring that pruned
nodes cannot quickly rejoin.
• Flood Publishing. To limit the impact of attacks when

a message is first sent, GossipSub includes an optional
flood publishing feature, where each peer sends every newly
published message to all topic-subscribed neighbors whose
scores exceed the positive PublishThreshold. This
ensures that a new message is disseminated to properly
behaving peers (who presumably have high scores) even
when the network is saturated with malicious nodes.
• Adaptive Gossip Dissemination. In GossipSub’s lazy

pull mechanism, peers adaptively update the number of
neighbors to whom they emit topical gossip. The feature
is designed to achieve some benefits of flood publishing
without all the bandwidth cost, to combat malicious nodes.

3.4. Previous Attack Analysis of GossipSub

The Protocol Labs ResNetLab and software audit firm
Least Authority tested GossipSub against a list of specific
pre-programmed attack scenarios (e.g., malicious peers sat-
urate a network and simultaneously stop transmitting data)
using a network emulator called TESTGROUND [45]. In
each simulation, the attacker goal was to degrade network
performance, i.e., to increase average dissemination time
and loss. They used simplified configurations with only
one topic, and their configurations did not exactly match
those currently used by FileCoin and Eth2.0, as these values
have since been updated (partially as a consequence of their
findings). They simulated 1,000 honest peers and 4,000 ma-
licious nodes, allowing each malicious node to establish 100
connections, and each honest peer to establish 20. They also
tested the BitCoin and Eth1.0 gossip protocols, as well as
GossipSub without the defense mechanisms. Their success
criteria for the defense mechanisms were that messages were
fully disseminated in < 6s for FileCoin or < 12s for Eth2.0,
and the loss rate was low. (They did not specify what they
considered to be low.) They found that all the attacks failed
against GossipSub, and the defense mechanisms made Gos-
sipSub more resilient than other tested protocols to attacks
by malicious nodes [8]. Separate from simulation testing,
Least Authority also audited the Golang implementation and
provided recommendations for improvement [9].

GossipSub vs. Flooding. Flooding is the only proto-
col that guarantees message delivery between two parties,
as long as there is an adversary-free path between them.
However, flooding achieves this by sending data over all
possible paths. Another approach is to send only on k paths,
for some k, but it requires disjoint paths and assumes the
attacker does not control more than k−1 paths, which is not
always realistic for real networks. GossipSub was proposed
to provide similar security without requiring sending data on
all paths, or requiring disjoint paths, and its authors showed
experimentally that under certain scenarios it does prevent
some attacks. The goal of our work is to understand formally
what security is actually provided by the score function.

One of the main limitations of flooding is that it incurs
high communication overhead because it redundantly sends
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messages over the network, and this overhead is incurred
regardless of the presence of misbehaving peers. GossipSub
was designed to address this limitation. It incurs less net-
work load than flooding because it sends messages only to
peers that need them. Specifically, it sends meta-data to a
limited number of peers (as opposed to flooding, in which
full messages are sent to all peers). Then peers who recieve
this meta-data can request the specific messages they need.
The score function has no additional communication cost
because it is computed based on messages that are normally
generated by the system and the scores are never exchanged.
Thus, in the case when there are no misbehaving nodes,
GossipSub has small communication overhead. In the case
when there are misbehaving nodes, the defense mechanisms
built into GossipSub based on the score function can flag
certain kinds of malicious peers, e.g., they can detect when
a large number of peers share a single IP. The cost of
defending against these attacks is adjusting the mesh by
removing the misbehaving peers.

4. ACL2s GossipSub Model

We used ACL2s to model and reason about GossipSub.
We briefly discuss our code in the Appendix. Our model
captures every aspect of GossipSub given in the prose spec-
ification [5], [6]: control messages, lazy pull, the internal
peer state, meshes and fanouts, the score function, the de-
fense mechanisms, etc., including every detail in Section 3,
and other prose specification details that we omitted for
readability and space. Despite the fact that our model is
fully faithful to the written specification of GossipSub, and
is itself an executable program, it is not a network library;
it cannot be used in place of the Golang implementation;
and it is not intended to be used as such. It is simply an
in-memory model of GossipSub, which also happens to be a
mathematical object that we can reason about using ACL2s.

Recall that a core feature of GossipSub is its use
of heuristic defense mechanisms to promote well-behaved
peers and demote poorly-behaved ones, e.g., by grafting or
flood-publishing to high-scoring peers while pruning peers
with negative scores. We state this feature as the fundamen-
tal property of the defense mechanisms. We formalize four
novel correctness properties for the score function that are
necessary for this fundamental property to hold, focusing
on the most general properties of the score function. Note,
these properties do not comprehensively cover all gossip
protocols. The properties for a gossip protocol depend on the
application, e.g., one might prioritize dissemination speed,
another reliability. We solicited security properties from
the GossipSub developers and the Ethereum Foundation;
both endorsed our properties but did not provide more. We
test our four properties using the counterexample generation
facility provided by ACL2s, and find counterexamples to
two of them, while ACL2s semi-automatically proved the
third and fourth. Finally, we synthesize traces that lead
to such counterexamples, and show that they also violate
the fundamental property of the defense mechanisms. The
sequences of actions taken by adversary peers in these

traces constitute attacks against GossipSub. In these attacks,
adversaries (attackers) misbehave by not forwarding data,
thereby slowing down the entire network while avoiding
getting pruned.

Modeling Assumptions We make the following as-
sumptions: (1) the message payload can be abstracted by
a record consisting of a message-id and a message, both
represented by natural numbers (since our properties and
attacks do not depend on message content); (2) the transport
protocols by which GossipSub sends and receives messages
can be represented using a partial ordering on message send
and receive events; (3) message transmissions are not lost,
duplicated, or corrupted, but can be reordered; (4) peer-
discovery took place prior to model instantiation; (5) con-
nection establishment is abstracted with CONNECT events;
and (6) we assume the existence of an oracle for making
non-deterministic choices and we use this to formally reason
about different plausible choices a peer might make.

4.1. Validating Our Model

Our model allows us to execute and reason about any
component of the peer logic in isolation, the entire program
for a peer, or even an entire network of peers. We developed
our model in consultation with the GossipSub authors, who
asked us to study the score function in their protocol. We
validated our model in multiple ways. We implemented all
the tests from their Golang code as tests or theorems in our
model; instrumented the Golang code to print traces, which
we type-checked with our model; and generated counterex-
amples in our model, which we translated into (passing)
Golang unit-tests. These conformance checks awarded us
high confidence that our model closely matches the Gos-
sipSub protocol described in the specification document,
as well as its Golang implementation. Note however that
our approach did not involve instrumenting the model and
implementation to directly communicate with one another,
e.g., as was done in [46]. Through these exercises, we found
ambiguities in the prose and places where the code and prose
disagreed. We reported errors to the developers and followed
their advice to resolve ambiguities.

Discrepancies. In the specification, but not the imple-
mentation, the activation window is used when calculating
P3 and P3b. In the implementation, P3 is updated periodi-
cally, but in the specification it is updated only when the peer
is pruned. Components of the score function can be disabled
in the implementation but not the specification. We allowed
disabling in our model because FileCoin uses this feature,
but otherwise we followed the English specification.

Our ACL2s model is fully verified and contains 6,768
lines of code, 203 definitions, and 177 explicit theorems and
properties. Every function definition involves proofs that are
not included in the explicit theorem total, e.g., of termina-
tion, that the input contracts imply the output contracts, etc.
Most model development effort was devoted to translating
the prose specification into a mathematical form, comparing
it to the Golang implementation, and translating tests from
Golang into ACL2s. Once we had the model, it was fairly
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straightforward to write properties to test for counterexam-
ples. Developing and admitting all our functions, with full
termination and contract proofs required effort comparable
to developing and unit-testing the corresponding functions
in a traditional implementation.

4.2. Model State and Transitions

We define the state of a peer using the peer-state
type and of multiple peers using the Group type.

1 (defdata peer-state
2 (record (nts . nbr-topic-state)
3 (mst . msgs-state)
4 (nbr-tctrs . pt-tctrs-map)
5 (nbr-gctrs . p-gctrs-map)
6 (nbr-scores . peer-rational-map)))
7

8 (defdata group (map peer-id peer-state))

Each peer-state for a peer p is a record consisting of
five components: (1) nts of type nbr-topic-state: a
state containing p’s neighbors’ subscriptions, p.M , p.F , and
a map storing p’s last publication time in each topic (used
for fanout maintenance); (2) mst of type msgs-state:
a state containing a cache of full messages received, a
map from recently seen message ids to their age (updated
at every heartbeat maintenance event), history windows
and the completion status and count of both sent and
received requests for messages; (3) nbr-tctrs of type
pt-tctrs-map: a total map from each pair of neighbor
q and t ∈ p.T to topic-counters; (4) nbr-gctrs
of type p-gctrs-map: a total map from each neighbor
q to a list of global counters ⟨Pi | i ∈ {5, 6, 7}⟩; and
(5) nbr-scores of type peer-rational-map: a total
map from neighbors of p to their cached scores, which gets
updated at every local heartbeat maintenance. All scores
and counters default to 0. Peers are identified using unique
peer-ids, and a Group is simply a finite map (an asso-
ciation list) from peer-id to peer-state.

Notice that all peer-states in a Group are simulta-
neous: a Group captures an instantaneous snapshot of the
GossipSub network. However, the peers themselves do not
have access to a global clock. They are only aware of the
partial ordering of events they can locally infer. A peer does
not have access to any other peer-state besides its own,
nor to any data that is not locally observable.

We define GossipSub network events using a type called
evnt. An evnt occurs when a peer sends or receives
a control message, joins or leaves a topic, goes through
a local heartbeat maintenance event, forwards a message
from the application layer, or establishes a connection with
another peer. Events where messages are sent or received
carry the identity of two peers: sender and receiver. Every
event carries the identity of the peer who triggered it, as its
first element. The evnt type is described using BNF below,
where pid is a peer identifier, vrb is SND or RCV, top is
any of the topics in the application running on GossipSub,
and msg is any payload including control- or full-messages.

event ::= pid vrb pid msg | pid JOIN top

| pid CONNECT top | pid HBM top
| pid APP top msg | pid LEAVE pid

Every application that runs on top of GossipSub tunes
weights and parameters in order to define the score function
such as tw(s), w3(s), the mesh message deliveries decay
on s, etc., as detailed in Section 3.2. We store topic-specific
weights and parameters in a map from topics to correspond-
ing weights and parameters, which we call twp. Note that
twp is a constant specific to the application instance we
are simulating. The peer-state transition function is
called ps-trx (illustrated in Figure 3). It takes as input a
peer-state called ps, a twp, and an event called evnt.
We assume an oracle for making non-deterministic decisions
in the model. In simulation runs the oracle can be replaced
by a pseudo-random number generator, for convenience.
ps-trx outputs the peer’s new peer-state, as well as
the evnts it emits during the transition.

The Group transition function is called gs-trx and
takes as input a Group called gp, a twp, and a work-list
of evnts initialized with init-evnts. gs-trx assumes
the same oracle as ps-trx. The peer who triggered the first
evnt in a work-list of evnts transitions on that evnt
using the peer-state transition function. A new Group
is then generated where the peer’s old peer-state is
replaced with its new one. Along the way, it also computes
any emitted evnts which are appended at the end of the
evnts work list. The function is illustrated in Figure 2.

4.3. GossipSub Score Function Properties

The most important features of GossipSub are lower
bandwidth consumption via lazy pull, and security against
malicious peers via heuristic defense mechanisms. The fun-
damental idea of the heuristic defense mechanisms is that
honest peers can be distinguished from malicious ones based
on their observable behaviors, and thus, the overall network
can be made more secure and performant if every honest
peer promotes their well-behaving neighbors and demotes
poorly-behaved ones. We formalize this requirement as fol-
lows, where poor and good behavior are defined by the bad
and good behavior counters given in Section 3.
Fundamental Property of the Defense Mechanisms.

Peers who behave poorly will be demoted by their
neighbors. Peers who behave better-than-average will
be promoted by their neighbors. Promotion/demotion
is entirely based on peer behavior.

Studying this fundamental property directly is difficult due
to the massive search-space of possible attack vectors.
Hence, we decompose the problem by proposing four novel
security properties for the score function without which the
fundamental property cannot possibly hold. We choose these
properties such that a reasonable software developer might
infer that they are true about GossipSub, based on textual
descriptions of the protocol by the GossipSub developers.
We encode these properties in ACL2s as predicates over data
types defined above. The properties are defined in an app-
specific manner, i.e., each property is parameterized by a
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fixed app-specific twp. The fundamental property is written
for human consumption, and is informal. In contrast, our
four formal properties unambiguously define the fundamen-
tal one in a way that is amenable to formal verification.

Importantly, all four properties are independent of the
number of peers, percentage of malicious peers, or net-
work topology. They depend only on the topic, app-specific
parameters, and performance counters of the peer being
scored.

The GossipSub developers write [8]: The score function
is used as a performance monitoring mechanism to identify
and remove poorly performing or misbehaving nodes from
the mesh. Since meshes are topic specific, we naturally ask,
does the score function identify poorly performing nodes in
each topic? Peers can subscribe to, and forward messages
over several topics, hence a peer can be a member of
several meshes. As peers that accumulate a non-positive
score get pruned, we claim that continuously achieving a
non-positive score in a topic should eventually result in a
non-positive overall score, leading the peer to be pruned.
If this is not true, then neither is the fundamental property,
as one of the defense mechanisms is that poorly-behaved
peers get opportunistically pruned. For example, in Fig. 1,
if B throttles deliveries in topic blue to A, then we ask if A
will assign a negative score to B and thus prune it during
maintenance. We formalize this liveness property below.

Property 1. If a peer’s score relating to its performance in
any topic is continuously non-positive, then the peer’s
overall score should eventually be non-positive:

∀q, t ::⟨G(score(q) for topic t ≤ 0) ⇒
F(score(q) ≤ 0)⟩

where score(q) for topic t is tw(t)(
∑

wi(t)Pi(t)
i∈{1,2,3,3b,4}

).

The GossipSub developers write that peers “that misbe-
have are penalized with negative score.” [8] This feature
is important, because the opportunistic grafting and mesh
and fanout maintenance defense mechanisms of GossipSub
assure that over time a peer disconnects from neighbors who
have negative or below-average scores and connects to those
who have positive scores. So, if a peer could misbehave in
a specific topic, without getting penalized with a negative
score, then these defense mechanisms would be ineffective
and the fundamental property would be violated.

The next three are safety properties. We identify the
following as bad-performance metrics indicating misbehav-
ior: deficit in mesh message deliveries (DMMD), invalid
message deliveries, and bad behaviors; where: DMMD is
the maximum of 0 or the mesh message deliveries threshold
minus the mesh message deliveries. Note, these metrics are
used in the score function. When discussing peers q, q′ in
the properties below, we use Pj , Pi(t) to denote indicators
of q and P ′

j , P
′
i (t) to denote indicators of q′.

Property 2. Increasing bad-performance counters should
decrease overall score. Formally, if P ′

i (t) differs from

Pi(t) only due to an increase in DMMD, invalid message
deliveries, or bad behaviors for peer q in topic t, then:

∀q, t :: ⟨(score(q) for topic t) > (score(q ′) for topic t)⟩

A simplified ACL2s definition of the contraposition to this
property in context of Eth2.0 is shown in Figure 4, where
*eth-twp* is a twp specific to Eth2.0.

The GossipSub developers write that the role of P1(t) in
the score function is to “boost peers already in the mesh”,
and the role of P2(t) is to “reward peers who act fast on
relaying messages.” The app-specific component P5 “has
an arbitrary real value, so that the application can signal
misbehavior with a negative score” or good behavior with
a positive score [8]. We define good-performance counters
(that measure good behavior) as mesh time, first message
deliveries, and mesh message deliveries, and claim that
increasing one of these counters should boost the overall
score, implying the following analogue to Property 2:
Property 3. Increasing good-performance counters will not

decrease score for a mesh peer that has been in the
mesh for a sufficiently long time. Formally, if P ′

i (t)
differs from Pi(t) only due to increase in mesh time,
first message deliveries, or mesh message deliveries for
peer q in topic t, and the mesh time is more than the
activationWindow parameter, then:

∀q, t :: ⟨(score(q) for topic t) ≤ (score(q ′) for topic t)⟩

In GossipSub, “all nodes start equal and build their
profile based on their behavior” [8]. Concretely, the score
function is referentially transparent: a peer’s score is a
function of its behavior alone. Hence the score function is
intrinsically unbiased, i.e., if two peers behave identically,
then they will achieve identical scores. If this property were
not true, then the controlled mesh (and fanout) maintenance
and opportunistic grafting defense mechanisms would be-
have unfairly with respect to peer behavior/misbehavior,
potentially violating the fundamental property by making
promotion and demotion decisions not based on the good
and bad behavior counters. We formalize this in Property 4.
Property 4. If two peers subscribe to the same topics ∈ S,

and achieve identical per-topic params P1(t), P2(t),
P3(t), P3b(t), P4(t), ∀ t ∈ T , and identical global
params P5, P6, P7; then they achieve identical scores.

4.4. Finding Counterexamples

Our model can be used not only to reason about and
simulate a GossipSub network, but also, to automatically
disprove invalid properties by computing concrete coun-
terexamples. We generate counterexamples with our model
using the cgen library built into ACL2s, which uses type
enumerators, synergistically combined with theorem prov-
ing techniques, to generate values for variables within a
property such that the hypotheses of the property hold but
the implication does not. However, the sample space for
counterexamples is huge. Hence, we need to define our own
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custom enumerators for the types of each of these variables,
using our intuition about these variables and their types such
that hypotheses in our properties are almost always satisfied
thereby increasing the chances of discovering values that
actually violate the property. A custom enumerator for a type
τ is a function from naturals to type τ . When necessary,
we craft custom enumerators to quickly find interesting
counterexamples. These counterexamples are snapshots of
a GossipSub network where the property being tested is
violated. Importantly, the snapshot might not be a reachable
state of the network. We interpret these counterexamples
as attacker specifications: an attacker can attempt to violate
the tested property by guiding the network into satisfying
one of these counterexample specifications. Put differently, a
counterexample is just a bad network state an attacker would
like to achieve, whereas an attack is a sequence of actions
performed by one or more attackers that guides an initial
network state to a counterexample one. In such attacks, each
attacker violates the fundamental property of the defense
mechanisms, misbehaving (e.g., by not forwarding data,
or by sending invalid messages) while being promoted or
without being demoted by its neighbors.

4.5. Generating Attacks

We generate attacks by generating counterexamples to
security properties under reasonable security assumptions.
First, we make all of the assumptions listed in Section 3.1.
Second, we assume only a minority of peers in the network
are the attackers, and their goal is to throttle or block
the dissemination of messages from honest peers, without
being detected by the honest peers. The attack generation
process goes as follows. We begin with a specific Group
representing the initial state of the network, satisfying our
assumptions. Given a counterexample Group violating a
twp-parametrized property, we ask if the attacker(s) could,
under our assumptions, guide the initial Group to the
counterexample Group (or a similar one). The state-space
of traces is too large to be explored by the counterexample
generation facility alone. Instead we generate a list of events
(each of type evnt) to lead the initial Group to a similar
counterexample Group, based on the assumption that all
peers in the group behave honestly, except the attacker peer.

Note that our four properties are defined entirely with
respect to the score function. They do not take into account
the network topology, the number of malicious versus honest
peers in the network or their placement, the network dynam-
ics (throughput, churn, etc.), or other variables whatsoever,
except for those used by the score function. Thus, when we
prove that a property holds for a given twp, our proof shows
that the property holds for all possible GossipSub networks
configured by that twp, regardless of their topology, place-
ment and number of malicious peers, etc. Conversely, if we
prove that the property does not hold for a given twp, then
we know we can attack every single GossipSub network
configured with that twp, although the attacks themselves
need to be generated using the network state (e.g. topology,
number and placement of malicious peers).

4.6. Evaluating New Application Configurations

One advantage of our model is that it allows develop-
ers of new applications using GossipSub to check if their
configuration satisfies our security properties. The developer
needs to formalize the configuration as a twp, instantiate the
properties using that twp, and then pass the resulting model
file into ACL2s. ACL2s may prove the properties automati-
cally, outputting qed; it may output counterexamples, as it
does for Eth2.0 (in which case the configuration should be
debugged using the counterexamples); or it may fail to do
either. In the last scenario, the developer may either tweak
the enumerators with which ACL2s generates its counterex-
amples, or guide the prover using supplemental lemmas,
until the properties are disproven or proven. We exemplify
how to tweak the enumerators in scoring-eth2.lisp, and how
to guide the prover using lemmas in scoring.lisp. Both are
part of our publicly available materials.

5. Experiments

In their emulation testing, the GossipSub developers
checked if the defense mechanisms improved the resiliency
of GossipSub to specific attacks from misbehaving peers
against network performance. We ask a more fundamental
question: does the score function upon which the defense
mechanisms rely actually measure what it is intended to
measure? If the answer is no, then there might exist covert
attack strategies that are undetectable using the score func-
tion with certain GossipSub configurations. This question is
articulated via our four formal properties and evaluated on
two concrete case studies: Eth2.0, and FileCoin.

5.1. Methodology

As described in Section 4, the ACL2s model is infinite
state and faithful to the specification. Any properties we
prove hold for all of the infinite instances of the model,
with any peers, topology, set of topics, history of events, etc.
If a property fails, then there exists a counterexample, but
typically infinitely many. When generating counterexamples,
we prefer to use minimal networks to ease readability and
improve generation efficiency.

Our properties do not depend on the percentage of
malicious peers or network topology or size. Hence, to
find vulnerabilities and eventually exploit them, we can
instantiate a small GossipSub Group in our model, using
the corresponding app-specific twp. The simple Group
consists of two honest peers and one attacker, all fully mesh
connected on every topic in the twp, and allows us to
explore the event-space very quickly. Our app-specific twps
are shown in Tables 6 and 7 and are adapted from Github
open-source implementations of Eth2.0, and FileCoin. We
use ACL2s to try and generate counterexamples with each
case study Group, for each property.

If we find counterexamples, we attempt to generate
corresponding attacks. These attacks are not like those con-
sidered in the emulations done by the GossipSub developers.
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Topic MT FMD MMD IMD MFP
Blocks 147 194 200 0 0
Agg 42 0 1 0 0
Sub1 141 188 194 0 0
Sub2 42 0 1 0 0
Sub3 135 182 188 0 0

TABLE 1. ETH2.0 PEER TOPIC-COUNTERS VIOLATING PROP. 1
Topic P1 P2 P3 P3b P4 P5 P6 P7 score
Blocks 147 23 0 0 0 0 0 0 22.21
Agg 42 0 81 81 0 0 0 0 -4.5
Sub1 14.1 24 0 0 0 0 0 0 7.80
Sub2 4.2 0 1 1 0 0 0 0 -25
Sub3 13.5 24 0 0 0 0 0 0 7.78

TABLE 2. ETH2.0 PEER SCORE COMPONENTS VIOLATING PROP. 1.
TOTAL SCORE = 8.29.

Rather, they describe how a peer can violate one of the
properties, e.g., by misbehaving without decreasing its score.
Such attacks in a small GossipSub Group can be viewed as
the building blocks for crafting stealthier or more complex
attacks, e.g. eclipsing a peer in a targeted topic.

5.2. FileCoin Score Function Properties Evaluation

We prove that the FileCoin twp (Table 6) satisfies all
four properties. Unfortunately, the FileCoin twp satisfies the
properties by violating the GossipSub specification, in that
it uses illegal 0-valued weights and thresholds, sacrificing
its ability to penalize peers who under-deliver. Since the
FileCoin twp disables the app-specific score component,
the application also cannot signal level misbehavior. Hence
the GossipSub layer of FileCoin is (in isolation) less resilient
to attacks. (The FileCoin developers inform us that for this
reason, FileCoin relies on app-level defenses.)

5.3. Eth2.0 Score Function Properties Evaluation

We auto-generate counterexamples to Props. 1 and 2.
Prop. 1. Eth2.0 violates Prop. 1 because it has multiple
topics and a peer can offset a negative score in one of the
(dozens) of subnet aggregator topics by a positive score in all
other topics combined, resulting in a positive overall score.
A counterexample is shown in Tables 1 and 2. In Table 1,
an Eth2.0 peer under-performs in topics AGG and SUB2,
i.e., its topic specific counters FMD and MMD are less than
the threshold required for message delivery. However, its
performance is nominal in the rest of the topics. Table 2
shows indicators computed from topic-counters in Table 1.
Note non-zero P3 and P3b in AGG and SUB2, leading these
topics to negatively impact the score.
Prop. 2. The Eth2.0 twp TopicCap= 37.72. However,
the sum of contributions to score from each topic can be
well above this limit, violating Prop. 2. A counterexample
is shown in Table 3, where, even after perturbations to FMD
and MMD give rise to lower values in FMD’ and MMD’,
the overall score remains 32.72. In contrast, FileCoin does
not use a TopicCap, and thus satisfies this property.
Prop. 3. We prove that this property holds for all valid
configurations because the positive contributors to the score
within a topic are monotonic.
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Blocks 147 194 3 200 10 0 0 22.21 6.21
Agg 150 194 194 230 230 0 0 13.83 13.83
Sub1 141 188 188 194 194 0 0 7.80 7.80
Sub2 110 180 180 232 232 0 0 7.80 7.80
Sub3 135 182 182 188 188 0 0 7.78 7.78

TABLE 3. PERTURBATIONS IN TOPIC-COUNTERS VALUES FOR AN
ETH2.0 PEER WHICH VIOLATE PROPERTY 2. BOTH TOTALS = 32.72.

Network Nodes Degree Diametermin max avg
Ropsten 588 1 418 25.49 5
Goerli 1355 1 712 28.26 5
Rinkeby 446 1 191 68.96 6

TABLE 4. ETH2.0 NETWORK CHARACTERISTICS

Prop. 4. This property is proved simply by getting the score
function admitted in ACL2. Since ACL2s is a functional
language, admitted functions will always have the same
output for same inputs, thus validating this property for any
possible application running on GossipSub.

Based on the insights gleaned from studying counterex-
amples generated by ACL2s for Props. 1-3, we manually
crafted a pathological twp (Table 8) with reduced penalties
for low meshMessageDeliveries.

5.4. Synthesizing Attacks for Eth2.0

Eth2.0 Topologies. We synthesize attacks using the real
network topologies of the Eth2.0 testnets Ropsten, Goerli,
and Rinkeby, as measured by Li et. al. [47]. Table 4 shows
basic characteristics of these Eth2.0 network topologies.
Attacks. We consider the following attacks:
• Block/Throttle – a single attacker who shares a number of
topics with a single victim throttles/blocks the target topics
without his score being decreased. (A throttling attack limits
communication within a topic, whereas a blocking blocks
said communication entirely.)
• Eclipse – multiple attackers surround the victim and block
target topics for it. Note that traditional eclipse attacks where
attackers will block all topics will be prevented by the
score function. The property violation that we found will
allow instead for an attacker to block specific topics without
having his score decreased.
• Partition – multiple attackers target multiple victims by
blocking the target topics for each.
We abstract the essence of the vulnerability we discovered
in a gadget. Our attack gadgets can be applied to any
network topology and allow an attacker to block or throttle
certain message transmissions, without being discovered and
without incurring any penalties. We show that for all of these
attacks the scores assigned to the attackers by the victims
stabilize; hence, by induction, they remain positive forever.
Attack Gadget. An attack gadget is a tuple ⟨A, V, S⟩, where
the attacker A and victim V are peers, S is a set of subnet
topics under attack, and A and V are mesh neighbors over
a set of topics that is a superset of S. For each i ∈ N, we
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define AGi to be the set of attack gadgets where |S| = i.
The attack gadget allows A to maintain an overall positive
score while misbehaving with respect to S, by behaving
honestly with respect to the other topics. Therefore, if T
is the set of subnet topics in the given Eth2.0 network, an
attack gadget ⟨A, V, S⟩ in AGi is only possible if |T \S| is
large enough. Using the Eth2.0 GossipSub parameters, we
can calculate the number of other topics A and V have to
subscribe to as follows.

min{t ∈ N | (7.2 + 3.2
t

T
> 24.7

i

T
) ∧ (t+ i ≤ T )} (1)

Eqn. 1 only has a solution for some values of T . To
derive a corresponding formula for a different GossipSub
application, one has to use that application’s parameters.
Experimental Setup. Given a topology and the number T
of subnet topics, we construct the corresponding model (of
type Group), with topics BLOCKS and AGG, in addition to
T -many subnet topics, for a total of n = T+2 topics. Every
peer is a mesh member of every topic. We then generate
attacks and check that the attacks are successful, i.e., to
check that the attackers continuously limit messages on the
targeted topics without ever being penalized by the victims.
Throttle/Blocking Attacks. We create the attack by instan-
tiating a single attack gadget. For each network topology
and number of attacked topics i ∈ {1, 2, 3}, we generate
a corresponding ACL2s model. In the model, we determine
the number of subnet topics T using Eqn. 1. We then gener-
ate a sequence of events consisting of message transmissions
from A to V as well as heartbeats at V (when V updates
the scores of its peers). The shape of the events we generate
is described by the regex Events := (Msgs H )+ where
Msgs := M b

1 . . .M
b
i Mf

i+1 . . .Mf
n ; M l

k denotes sending
and receiving l payload messages from A to V for topic
k; b ∈ {0, 1}; i is the number of attacked topics; f is
the number of messages sent for the topics which are not
attacked; n = T +2 is the total number of topics; and H is
a heartbeat event at V .

The event order is unimportant because any permutation
of Msgs between V ’s heartbeats will have the same effect on
the network. We set f=10 for each topic as according to the
Eth2.0 GossipSub parameters, under normal operation, this
is at least 10% of the expected mesh message deliveries per
topic, and sending more than f messages can never decrease
the score assigned to an attacker by the victim.

For the throttling attack, the attack reduces the mesh
message transmission rate in the attacked topics to below the
threshold set by the Eth2.0 parameters by setting b=1. For
the blocking attacks, mesh message transmission is blocked
for all of the attacked topics by setting b=0. We validate
the attacks by checking that Prop. 1 is eventually always
violated by the output traces of our experiments.

To test our model’s performance we ran our experiments
on 100,000 events. Processing one event generates a cascade
of others because when V receives a message, it forwards
it to its neighbors, who then forward it to theirs and so on.
Tab. 5 shows the time needed to simulate our attacks.

Network Throttling Blocking
AG1 AG1 AG2 AG3

Ropsten 1.3 1.3 1.3 1.3
Goerli 1.3 1.4 1.8 1.1
Rinkeby 1.6 1.9 2.0 2.1

TABLE 5. MINUTES TAKEN TO SIMULATE EACH ATTACK SCENARIO ON
EACH NETWORK TOPOLOGY, ON A 16GB M1 MACBOOK AIR.

We observed that for all experiments, the first violation
of Prop. 1 occurs right after the activation period (an Eth2.0
parameter) has passed. Hence, an attacker peer can start
its attack quickly after it joins a mesh. Experimentally, we
observed that this attack is not transient as attack scores
(assigned by victims) eventually converge to a positive
number that stays the same in successive heartbeats at V .
By induction, this establishes that our attacks are perpetual.
Simulation times for the remaining attacks are similar and
for brevity, we only simulate these attacks until stability
is achieved, which never takes more than 5 seconds. Note
that the results of these experiments apply equally to real
networks, but we did not spin up a real network. The time
taken to execute each attack on a real network will likely
differ from the simulation times listed in Tab. 5.
• Eclipse Attacks. We use attack gadgets to construct
eclipse attacks by just instantiating an attack gadget per
neighbor of a victim such that if they collude, they can target
and completely isolate the victim i.e., the victim will never
receive any messages in the i attacked topics. We tested this
attack in the Ropsten topology by identifying a victim node
with four neighboring peers (about 12% nodes have degree
less than 5), and instantiating its neighbors as attackers using
AG3 gadgets. We verified that the victim’s message cache
contained no message received in any of the attacked topics
while containing messages received in non-attacked topics,
that the attackers were continuously assigned positive scores
by the victim, and that this behavior was perpetual.
• Partition Attacks. Given a network graph G = ⟨V,E⟩ and
set of victims S, we want to identify a set X , preferably of
minimal cardinality, such that X is a vertex cut of G that
partitions G into disconnected components {S, V \{S∪X}}.
The elements of X are the misbehaving peers, i.e., each peer
in X attacks all of its non-X neighbors, using our attack
gadgets to block the attacked topics. Hence, no message in
an attacked topic can be sent to a peer in S from a peer
outside of the partition and vice versa. Finding minimal
vertex cuts is NP-hard [48], and can be reduced to either
a Pseudo-Boolean or 0-1 Integer Linear Programming prob-
lem. We synthesized and evaluated partition attacks using
the Ropsten topology by selecting a set of victims S, where
|S| = 6, finding a minimal vertex cut X , where |X| = 2,
and creating the appropriate attack gadgets. We verified that
each of the victims did not receive messages in any of the
attacked topics that originated outside of S, but did in non-
attacked topics received from outside of S; that victim nodes
continuously assigned positive scores to their attackers; and
that this behavior was maintained forever.
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6. Related Work

Attack Discovery. PROVERIF is an automatic cryp-
tographic protocol verifier based on PROLOG that can au-
tomatically generate attacks against confidentiality and pri-
vacy [49]. TAMARIN is similar to PROVERIF, and was used
to find attacks against NAXOS [50], 5G AKA [51], the
IEEE 802.11 4-way handshake [52]. Von Hippel et. al.
reduced the attacker synthesis problem for protocols to
an LTL model checking problem, and implemented their
approach in an open-source tool called KORG [53], which
they applied to TCP and DCCP [54].

Distributed Systems. Multiple works modeled and
proved theorems about CHORD [55], [56]. Woo et. al. veri-
fied 90 properties of the RAFT protocol using VERDI, a tool
they built in the COQ proof assistant [57]. Although they did
not build an executable model, their framework can generate
an implementation [58]. Certain distributed systems might
require formally-verified code at every level of the stack.
Such systems could, e.g., be implemented on top of SEL4:
a high-performance microkernel that was verified against an
abstract specification using higher-order logic [59].

Lamport’s modeling language TLA+ [60] and the
corresponding TLC model checker [61] have been used
to analyze properties of distributed systems including
DISK PAXOS [62], MONGORAFTRECONFIG [63], Byzan-
tine PAXOS [64], SPIRE [65], etc. TLA-style state-machine
refinement and Hoare-logic verification are combined in
IRONFLEET, which was used to verify a PAXOS-based
library and a sharded key-value store [66]. The UNITY [67]
computational model, specification language, and proof sys-
tem was successfully applied to numerous distributed sys-
tems including a synchronization scheme for multi-process
handshakes [68], Segall’s PIF algorithm [69], distributed
sorting algorithms [70], and the Omega Failure Detec-
tor [71]. FM was applied to blockchain protocols in multiple
works [72], [73], [74]. In industry, Amazon uses a light-
weight FM approach to validate new features in their key-
value storage node, SHARDSTORE [75].

Network Protocols. McMillan and Zuck applied
specification-based testing to the QUIC protocol, and found
multiple implementation errors, some of which caused vul-
nerabilities [76]. Wu et. al. formally modeled the Bluetooth
stack using PROVERIF, and found five known vulnera-
bilities and two new ones [77]. Chothia et. al. showed
how PROVERIF can be used to verify distance-bounding
protocols, e.g. those used by MasterCard and NXP [78].
Chothia modeled the MUTE anonymous file-sharing system
using the π-calculus, and proved the system insecure [79].
Cremers et. al. modeled all handshake modes of TLS 1.3 us-
ing TAMARIN, and discovered an unexpected behavior [80].
Although most of these use model checking or theorem
proving, Manolios et. al. link the two to verify ABP [81].

7. Discussion

Our work highlights three concrete steps that developers
can take to harden GossipSub and other similar systems.

First, they can formalize the properties the protocol is
designed to satisfy (the protocol goals) and the protocol
requirements (e.g., that weights should be non-zero). Sim-
ply formalizing properties and requirements enables light-
weight FM, and assures developers know when they can
rely on the protocol and for what. Second, they can design
a score that does not use caps, to avoid the vulnerability we
reported in which above a certain score, misbehavior goes
unreported. Third, they can leverage model-based counterex-
ample generation to test new protocol configurations before
deploying to apps like Eth2.0 or FileCoin. This can be done
for GossipSub using our code, or for other protocols by
adapting the techniques laid out in this work. For FileCoin
or Eth2.0, one simply needs to update the twp values to
model the new configuration, and our system will assess it.

Our work illustrates how heuristic “defenses” enable at-
tacks that exploit their edge-cases, implying protocol design-
ers should design defense mechanisms from first principles,
or leverage FM to rule out such edge cases. Unfortunately,
there are too few FM tools for analyzing the security of
protocols and distributed systems at scale, and existing ones
are too difficult to use. Multiple reviews found that security
practitioners prioritize ease-of-use when choosing an FM
tool, e.g., choosing a model-checker (which cannot scale but
are easy to use) over a theorem prover (which can scale but
is difficult to use) [82], [83]. An important research direction
is thus the translation of cutting-edge FM tools (e.g. [84])
to software that can be easily used by non-expert developers
of protocols and distributed systems.

8. Conclusion

In this paper we rigorously studied GossipSub and its
security using the ACL2s theorem prover. We created a
complete model of the protocol and formalized security
properties based on the prose GossipSub specification. We
showed that the properties depend on how the score function
is configured. Of two well-known applications, FileCoin and
Eth2.0, only FileCoin satisfied all of our properties. We
showed that on any Eth2.0 network, of any topology and
size, we can synthesize attacks where certain peers con-
tinuously misbehave by never forwarding topic messages,
but are never identified as misbehaving and thus are never
pruned from the network. We ethically disclosed our results
to Protocol Labs and the Ethereum Foundation, who agreed
with our findings. In addition, the GossipSub developers
at Protocol Labs publicly endorsed our model as a formal
specification for GossipSub.

Writing this model required effort comparable to im-
plementing the protocol in a programming language, while
providing a formal model that we can reason about with
mathematical precision. We did not have to use extensive
manual testing because using ACL2s to analyze properties
helped us find attacks. Our work required less manual effort
than that expended by the GossipSub developers, and found
attacks that they missed. Developers interested in applying
our approach to their gossip protocols can build on our
formalization, rather than starting from scratch.
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Appendix A.
Implementation Details in ACL2s

Consider the following excerpts from our model.
1 (defdata pos-rat (range rational (0 <= _)))
2 (defdata topic-counters
3 (record (invalidMessageDeliveries . pos-rat)
4 (meshMessageDeliveries . pos-rat)
5 (meshTime . pos-rat)
6 (firstMessageDeliveries . pos-rat)
7 (meshFailurePenalty . pos-rat)))

We define topic-counters, a named record to store
topic based performance counters. Since these counters
can never be negative, and may be rational (due to
decay), we specify their types as appropriately defined
pos-rats. We then define a map pt-tctrs-map to store
topic-counters per peer per topic as follows:

1 (defdata pt (cons peer topic))
2 (defdata pt-topic-counters-map (alistof pt

topic-counters))

Now we need a lookup function to find
topic-counters, given a peer and a topic.

1 (definec lookup-topic-counters (p :peer top :topic
map :pt-topic-counters-map) :topic-counters

2 (match map
3 (() (new-topic-counters))
4 ((((!p . !top) . tct) . &) tct)
5 ((& . rst) (lookup-topic-counters p top rst)))

)

We use match to pattern-match map against possible
syntactic structures. If map is empty, we return a new
topic-counters, with all counters initialized to zero.
Else, if the pair of peer and topic exactly matches the key in
the first key-value pair of map, we return the corresponding
value, otherwise we recurse on the rest of map.

Constant or Weight MESSAGES BLOCKS
TopicWeight 1 1
TopicCap 0 0
w1(t) 2.78 0.027
w2(t) 0.5 5
w3(t) 0 0
w3b(t) 0 0
w4(t) -1000 -1000
w5 (global) 1 1
w6 (global) -100 -100
w7 (global) -10 -10
D 8 8

TABLE 6. FILECOIN’S TWP . ADAPTED FROM
GITHUB.COM/FILECOIN-PROJECT/LOTUS.

Constant or Weight BLOCKS AGG SUB1 SUB2 SUB3
TopicWeight 0.8 0.5 0.33 0.33 0.33
TopicCap 32.72 32.72 32.72 32.72 32.72
w1(t) 0.0324 0.0324 0.0324 0.0324 0.0324
w2(t) 1 0.128 0.95 0.95 0.95
w3(t) -0.717 -0.064 -37.55 -37.55 -37.55
w3b(t) -0.717 -0.064 -37.55 -37.55 -37.55
w4(t) -140.45 -140.45 -4544 -4544 -4544
w5 (global) 1 1 1 1 1
w6 (global) -35.11 -35.11 -35.11 -35.11 -35.11
w7 (global) -15.92 -15.92 -15.92 -15.92 -15.92
D 8 8 8 8 8

TABLE 7. ETH2.0’S TWP . ADAPTED FROM
GITHUB.COM/SILESIACOIN/PRYSM-SPIKE.

Upon admitting lookup-topic-counters,
ACL2s extends its logic with (1) a definitional axiom:
given input arguments satisfy their types, calling
lookup-topic-counters equals its function body,
and (2) a function contract theorem: given input arguments
satisfy their types calling lookup-topic-counters
returns a topic-counters, as specified by the
function output type. Such axioms could introduce
unsoundness if lookup-topic-counters did
not terminate. So before admitting the function,
ACL2s uses termination analysis to prove that
lookup-topic-counters is indeed terminating.
Hence, admitting lookup-topic-counters produces
theorems about its definition, termination and I/O contracts.

Constant or Weight Pathological 1-5 Good 1 Good 2
TopicWeight 40 0.5 0.5
TopicCap 5 100 10
w1(t) 10 0.027 0.027
w2(t) 10 5 5
w3(t) -1 -1000 -1000
w3b(t) -1 -1000 -1000
w4(t) -1 -1000 -1000
w5 (global) 10 1 1
w6 (global) -1 -100 -100
w7 (global) -1 10 10
D 5 8 8

TABLE 8. OUR PATHOLOGICAL TWP CONSISTS OF FIVE TOPICS ALL
CONFIGURED PER COLUMN 2. OUR GOOD CONFIGURATION TWP

CONSISTS OF TWO TOPICS, GIVEN IN COLUMNS 3 AND 4, AND
SATISFIES ALL OUR PROPERTIES.
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Parameter Type Description Guidance
PruneBackoff Duration Duration before pruned peer may re-graft Default to 1 minute
UnsubscribeBackoff Duration Duration before unsubscribed peer may re-subscribe Default to 10 seconds
FloodPublish Boolean Enable/disable optional flood publishing Default to true
GossipFactor Float Fraction of positive-scoring peers to emit gossip to Default to 0.25, must be in [0, 1]
D Integer Desired outbound degree of each mesh Default to 6
Dlow Integer Lower bound for outbound degree of each mesh Default to 4
Dhi Integer Upper bound for outbound degree of each mesh Default to 12
Dlazy Integer Desired outbound degree for gossip emission Default to D
HeartbeatInterval Duration Duration between heartbeat maintenances Default to 1 second
FanoutTTL Duration Time-to-live for fanouts Default to 1 minute
SeenTTL Duration Time-to-live for cache of seen message identifiers Default to 2 minutes
McacheLen Integer Number of history windows in message cache Default to 5
McacheGossip Integer Number of history windows to use when emitting

gossip
Default to 3

Dscore Integer Number of highest-scoring peers to retain when prun-
ing due to over-subscription

4 or 5 for a D of 6

Dout Integer Number of outbound connections to keep in a mesh Default to 2 for D=6, must be in [Dlo, D/2]
GossipThreshold Float Only emit gossip to peers who score above this thresh-

old
Must be < 0

PublishThreshold Float Only send new messages to peers who score above
this threshold

Must be ≤ GossipThreshold

GraylistThreshold Float Ignore control messages from peers scoring below this
threshold

Must be < PublishThreshold

OpportunisticGraftThreshold Float Opportunistic grafting is triggered when the median
score of neighbors in a mesh falls below this threshold

Must be ≥ 0

DecayInterval Duration Interval at which counters decay
DecayToZero Float When indicators fall below this value they round down

to zero
Should be close to 0.0

RetainScore Duration Duration to retain peer scores after they disconnect

TABLE 9. PARAMETERS USED BY GOSSIPSUB’S DEFENSE MECHANISMS. DESCRIPTIONS ADAPTED FROM THE PROSE SPECIFICATION [5], [6].

gp

ps1

. . .

psK

. . .

psN

init-
evnts

events-
weaver

ps-trx

gp’

ps1

. . .

psK’
. . .

psN

evnt

car

Figure 2. Data-flow diagram of the Group transition function, gs-trx
which takes as input a Group called gp, a list of evnts called
init-evnts, a twp, and an oracle. The first evnt coming out of
evnts weaver determines which peer-state psK in the Group gp
will get updated this round. The twp and oracle are both passed into
the peer-state transition function calls, and are omitted for simplicity.
The events-weaver function splices the init-evnts with the events
emitted by the most recent previous application of the ps-trx function.
The car function selects the first evnt from the list of evnt s generated
by events-weaver, which serves as input to ps-trx in this round, as
well as an output of the overall Group transition function.

Appendix B.
Use of GossipSub in Applications

GossipSub is used most notably in FileCoin and Eth2.0.
FileCoin is a decentralized storage solution based on Proof-

of-Space-Time. It is a P2P alternative to the client-server
model, where content (e.g., websites) are addressed by their
hashes and nodes can earn cryptocurrency by acting as hosts.
Peers wishing to publish content find hosts using ask orders
in a distributed auction house (the hosts respond with bid
orders). Both types of orders are disseminated using Gos-
sipSub. FileCoin uses two topics: BLOCKS and MSGS [1].
In 2021, FileCoin had >14 EiB in network storage capacity,
>3,600 network storage providers, and tens of millions of
uploads by tens of thousands of users [85]. Many real-world
applications are built on top of FileCoin including the Inter-
Planetary File System (IPFS), various Non-Fungible Token
(NFT) marketplaces, etc.

Eth2.0 is the second most valuable cryptocurrency, af-
ter Bitcoin.Eth2.0 supports Turing-complete smart contracts
with fine-grained control over the amount of value being ex-
changed, an internal program state, and access to blockchain
data such as nonces [2]. Over 2900 applications are built on
Eth2.0, some with millions of active daily users, including
NFTs, Decentralized Autonomous Organizations (DAOs),
Decentralized Finance apps (DeFi), etc. [86], [87] Gos-
sipSub is the primary messaging layer protocol in Eth2.0.
It is used to disseminate all kinds of data throughout the
chain, including newly signed blocks, attestations, payload
encodings, over dozens of topics [88].

Appendix C.
Properties.

They are defined in Alg. 4, 5, 6.
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Figure 3. Data-flow diagram of the peer-state transition function, ps-trx. The function takes as input a peer-state called ps, a list of evnts
called evnt, a twp, and an oracle. The oracle is used to model nondeterministic decisions, e.g., the specific subset of peers to send gossip to. Both the
twp and the oracle are omitted from the diagram. The function outputs a new peer-state called ps’, and a list of evnts called evnts’. The box
labeled nts-trx denotes a transition function for the nbr-topic-state, which outputs an updated nbr-topic-state called nts’ as well as a list
of emitted evnts. It also generates new topic-counters and global-counters, and calculates peer scores. Next, the msgs-state component
ms’ of the peer-state ps’ is fed into the ms-trx function, along with the updated topic-counters and global-counters, and the initial
evnt. The final peer-state ps” consists of nts’, ms’, tctrs”, gctrs”, and scores’. A list of events called evnts is also emitted by splicing
the lists emitted by the nts-trx and ms-trx functions.

1 (property (ptc :pt-tctrs-map pcm :p-gctrs-map p :
peer top :topic)

2 :hyps (ˆ (member-equal (cons p top) (
acl2::alist-keys ptc))

3 (> (lookup-score p (
calc-nbr-scores-map ptc
pcm *eth-twp*)) 0))

4 (> (calcScoreTopic (lookup-tctrs p top
ptc) (mget top *eth-twp*))

5 0))

Figure 4. Property 1 definition in ACL2s for Eth2.0.

1 (property (ptc :pt-tctrs-map pglb :p-gctrs-map p :
peer top :topic delta-p3 :non-neg-rational

2 delta-p3b :non-neg-rational delta-p4 :
non-neg-rational delta-p6 :
non-neg-rational

3 delta-p7 :non-neg-rational)
4 :hyps (ˆ (member-equal top (strip-cars *eth-twp*))
5 (member-equal (cons p top) (strip-cars ptc))
6 (member-equal p (strip-cars pglb))
7 (> (+ delta-p3 delta-p3b delta-p4 delta-p6

delta-p7) 0))
8 (b* ((tc (lookup-tctrs p top ptc))
9 (glb (lookup-gctrs p pglb))

10 (new-tc (update-meshMessageDeliveries
11 tc
12 (- (tctrs-meshMessageDeliveries tc) delta-p3))

)
13 (new-ptc (put-assoc-equal ‘(,p . ,top) new-tc

ptc)))
14 (> (lookup-score p (calc-nbr-scores-map ptc pglb

*eth-twp*))
15 (lookup-score p (calc-nbr-scores-map new-ptc

pglb *eth-twp*)))))

Figure 5. Property 2 definition in ACL2s, for Eth2.0.

1 (property
2 (imd mmd mt fmd mfp p :non-neg-rational wtpm :wp)
3 (=> (ˆ (== wtpm (cdr (assoc-equal ’BLOCKS *

ETH-TWP*)))
4 (>= (params-meshMessageDeliveriesCap (cdr

wtpm))
5 (params-meshMessageDeliveriesThreshold

(cdr wtpm)))
6 (> mt (params-activationWindow (cdr wtpm))

))
7 (>= (calcScoreTopic (tctrs imd mmd (+ p mt)

fmd mfp) wtpm)
8 (calcScoreTopic (tctrs imd mmd mt fmd

mfp) wtpm))))

Figure 6. Property 3 definition in ACL2s for Eth2.0, for the BLOCKS topic.
Analogous properties are written for each other topic. Property 4 is checked
automatically by ACL2s thus does not need to be explicitly written down.
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Appendix D.
Meta-Review

D.1. Summary

This paper describes and shows the correctness of Gos-
sipSub, a protocol for detecting and countering attacks in
peer-to-peer communications that form the basis of certain
applications of, for example, cryptocurrencies. The approach
uses score functions of peers to detect when a member is
misbehaving. The authors use the ACL2 theorem prover to
show the protocol provides some important security guar-
antees (e.g., misbehavior is detected).

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) A key result of this paper is that the security of Gossip-
Sub depends on a good choice of its parameters and the
authors point out that the configuration of the network
Eth2.0 uses insecure parameters.

2) The formalization of a protocol is a very complex
task and a significant contribution that advances the
knowledge in this field.

19


	Introduction
	Background
	Gossip Protocols and Misbehaving Nodes
	Formal Methods for Gossip Protocols
	Our Approach

	GossipSub
	Overview
	The Score Function
	Attack Mitigation Using the Score Function
	Previous Attack Analysis of GossipSub

	ACL2s GossipSub Model
	Validating Our Model
	Model State and Transitions
	GossipSub Score Function Properties
	Finding Counterexamples
	Generating Attacks
	Evaluating New Application Configurations

	Experiments
	Methodology
	FileCoin Score Function Properties Evaluation
	Eth2.0 Score Function Properties Evaluation
	Synthesizing Attacks for Eth2.0

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Implementation Details in ACL2s
	Appendix B: Use of GossipSub in Applications
	Appendix C: Properties.
	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance


