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Abstract—Virtual coordinate systems provide an accurate and
efficient service that allows hosts on the Internet to determine
latency to arbitrary hosts based on information provided by a
subset of participating nodes. Unfortunately, the accuracy of
the service can be severely impacted by compromised nodes
providing misleading information.

We define and use a game theory framework in order to
identify the best attack and defense strategies assuming that
the attacker is aware of the defense mechanisms. Our approach
leverages concepts derived from the Nash equilibrium to model
more powerful adversaries. We consider attacks that target the
latency estimation (inflation, deflation, oscillation) and defense
mechanisms that combine outlier detection with control theory to
deter adaptive adversaries. We apply the game theory framework
to demonstrate the impact and efficiency of these attack and
defense strategies using a well-known virtual coordinate system
and real-life Internet data sets.
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I. INTRODUCTION

Numerous peer-to-peer (P2P) applications (e.g., BitTorrent,
Skype) can leverage network topology information to optimize
their performance. In order to avoid the costs associated
with actively monitoring all of the nodes in the network,
virtual coordinate systems provide a service that allows hosts
on the Internet to accurately estimate the latency between
arbitrary hosts with minimal network overhead. Nodes rely
on information reported by a subset of participating nodes
and on latency measurements to this subset to provide low-
error latency estimation at any arbitrary node in the network.
The accuracy of the service and in turn the performance of
any application relying on the virtual coordinate service, can
be severely impacted if nodes do not behave correctly. For
example, malicious nodes can lie in the reports about their own
latencies, or they can influence the measurements conducted
by honest nodes. As a result, such honest nodes will compute
higher or lower predictions than the actual latencies, or the
entire system will destabilize. Such attacks are referred to as
inflation, deflation, and oscillation attacks.

Previous work has studied the consequences of attacks
against virtual coordinate systems and proposed several tech-
niques to mitigate their vulnerabilities [1]-[6]. However, these

solutions are validated only through experiments and consider
the effectiveness of the defense strategies under the restric-
tive assumption that an attacker is unaware of or fails to
take into account the associated defense mechanisms. This
assumption is unrealistic as attackers are often aware of the
defense mechanisms employed by the system and good system
design principles state that security should not rely on the
secrecy of the defense algorithm [7]. Given that several attacks
and several defense techniques exist, there is a need for a
systematical evaluation identifying what are the best attack
and defense strategies.

In this paper, we systematically study attack and defense
techniques for virtual coordinate systems. We develop a game
theoretical model that relies on well-known equilibrium con-
cepts in order to assess the strategic interactions between the
attacks and defenses. Game theory provides powerful tools
that allow us to model an advanced adversary who knows
how and what defense strategies are used and can adjust his
attack strategies accordingly. This framework then allows us
to draw out conclusions such as understanding what are the
strengths and weaknesses of both defenses and attacks.

We conduct our work focusing on the representative virtual
coordinate system Vivalidi [8], using two real-life Internet
data sets. We consider a Byzantine adversary that controls
a percentage of the nodes in the system and conducts three
different types of attacks: inflation, deflation, and oscillation.
These three attacks correspond to when a node reports large
coordinates far away from the origin, small coordinates near
the origin, and randomly chosen coordinates, respectively. We
consider defense strategies based on outlier detection since
they have been shown to provide good results under the
assumption the attacker does not know the defense strategy [6].
Specifically, we assume the defender attempts to mitigate
the attacks using three defense techniques based on outlier
detection: spatial, temporal, and spatial-temporal. The defense
techniques also use realistic system design assumptions that
make them easily integrated into current virtual coordinate
systems, i.e., they do not rely on the triangle equality [1], do
not require extra node sets and network communication [4, 5],
and do not require trusted parties [2, 3].



A critical component of an outlier detection mechanism is
the threshold that is used to decide if a data point is accepted
by the system or is suspected of coming from a malicious
node. Many outlier detection schemes use a fixed threshold,
usually determined experimentally. Such an approach is inflex-
ible, prone to errors, and may be exploited by an adversary
to remain undetected. We leverage control theory to design an
adaptive threshold technique to improve the threshold selection
and include outlier detection mechanisms based on adaptive
thresholds in our study. Our contributions include:

e We model rational attackers in virtual coordinate systems
using the Nash equilibrium and irrational attackers using the
quantal response equilibrium. From the defender side, we use
game theory to tune our defensive mechanisms in order to
mitigate the attacks.

e Using our framework, we determined that for large networks
(i.e., the King topology), the inflation attack has the greatest
impact on the system. To defend the system, we find that
spatial-temporal outlier detection is the most effective tech-
nique given lower spatial outlier thresholds (e.g., < 1.5) and
both spatial-temporal and spatial outlier detection provide sim-
ilar defense performance for higher thresholds. Furthermore,
our analysis finds that, independent of the game strategy or
the error metric selected, a spatial outlier threshold of 1.25
results in the best system performance, which is smaller than
the value found in previous work.

e We found that the resulting strategy profiles for smaller
networks (i.e., the AMP topology) are not as homogeneous as
those for the larger King topology, with most of the resulting
strategy profiles consisting of a mixed strategy. For example,
given the spatial outlier threshold of 1.75, the attacker has
the greatest payoff while applying all three attacks with their
given probabilities using only 10% malicious nodes. The
countermeasure profile looks similar, applying each of the
three defense techniques. Both the percentage of malicious
nodes necessary to efficiently create the greatest negative
impact and the attack and defense profiles have not previously
been systematically explored.

e We found that when comparing strategies using a fixed
threshold with strategies using an adaptive threshold selection
for the outlier detection, the adaptive threshold is more effec-
tive in defending against attacks than a fixed threshold. Our
analysis shows that when an attacker has as goal disturbing
the network as much as possible, using inflation with 30%
attackers is the best attack strategy. If the attacker wants to
remain also undetected then oscillation and deflation attacks
with 10% attackers are the best rational choice. We found that
the best parameters for the adaptive threshold is to use the
75! percentile of the prediction error and with a value for the
constant ¢ of 0.08 to update the threshold, where c is a system
parameter that captures the importance given to the prediction
error when updating the threshold.

The rest of the paper is organized as follows. We pro-
vide background information on virtual coordinate systems
in Section II. We then describe the attacks and defenses we
consider in our theoretical model in Section III and describe

our game theory-based model in Section V. We describe
our experimental results and our findings in Section VI. We
overview related work in Section VII and conclude our paper
in Section VIIL

II. SYSTEM MODEL

We consider a decentralized virtual coordinate system.
Decentralized virtual coordinate systems are designed to ef-
ficiently create and maintain a stable set of coordinates that
accurately predict the latency between nodes without using
fixed infrastructure nodes. Although each specific virtual co-
ordinate system differs in some details, they follow a common
design and operation. We selected the representative virtual
coordinate system, Vivaldi, since it is a mature system, con-
ceptually easy to understand and visualize, and has been shown
to produce low error embeddings [8].

Vivaldi is a fully decentralized system which assigns each
host synthetic coordinates in a multi-dimensional Euclidean
coordinate space, offering a good tradeoff between perfor-
mance and overhead [8, 9]. The Vivaldi algorithm is based
on a spring relaxation problem in which each pair of neighbor
nodes is attached by a spring and the current length of the
spring is the estimated round-trip times (RTT) between the
nodes. Tension on the logical springs causes the nodes to
move through the coordinate space as each node attempts
to minimize the difference between current spring lengths
(estimated RTT) and the spring lengths at rest (actual RTT).
By minimizing the tension across all of the springs in the
network, the protocol minimizes the error for the system.

Initially, each node is assigned a random coordinate and
establishes a reference set of peer nodes with which to
exchange periodic updates. As nodes communicate with their
reference set peers, they receive latency information that is
used to update their coordinates. Algorithm 1 shows how a
node ¢ updates its coordinate x; and error e; as a result of
minimizing the tension of the spring with remote node j.
Node ¢ updates its own coordinate and error based on the
tuple consisting of the remote node’s coordinate x ;, the remote
node’s relative error with respect to its coordinate, e; (both
directly reported by node j), and the latency from node i
to node j, RTT;; (measured by node 7). First, the algorithm
calculates the observation confidence w (line 1) and relative
error e, (line 2). The relative error e, expresses the accuracy
of the coordinate in comparison to the measured network
latency. Next, node ¢ updates its local error (line 4) using
an exponentially-weighted moving average with the weight o
(line 3). Finally, the node calculates the movement dampening
factor (line 5) and updates its coordinate (line 6). Both ¢, and
c. are constants acting as system parameters.

As the nodes update their coordinates and the system stabi-
lizes, the average system error is on the order of a few percent.
Once the coordinate system has stabilized, the latency (i.e.,
RTT) between two nodes is trivially estimated by computing
the Euclidean distance between their coordinates. For further
details of the protocol, we refer the reader to the work by
Dabek et al. [8].



Algorithm 1: Vivaldi Coordinate Update

Input: Remote node observation tuple ((z;, e;, RTT;;))
Result: Updated local node coordinate and error (z;, €;)
w = e/ (ei +eg)

es = |||z; — ;]| — RTT;;|/RTT;4

Q= Ce XW

ei =(axXes)+ ((1—a)xe)

d=cec X W
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The accuracy of the overall virtual coordinate system is
measured by the system prediction error defined as:

Errorpred = |RTTact — RTTrst]

where RT'T 4.; is the measured RTT between two nodes and
RTTEg: is the RTT computed using the coordinates derived by
the virtual coordinate system. Intuitively, the lower the system
prediction error, the more accurate are the predicted RTTs.

III. ATTACK STRATEGIES

In this section, we describe the attacker model and the attack
strategies we consider in this work.

A. Attacker Model

We consider a Byzantine adversary model, where a bounded
percentage of nodes are malicious and lie during the infor-
mation exchange with other honest nodes or influence the
measurement conducted by honest nodes (i.e., RTT). The set
of malicious nodes may collude.

We assume a malicious adversary has access to all of the
data at a node that any legitimate user would have (insider
access), including the cryptographic keys stored at a node.
This access can be the result of the adversary bypassing the
authentication mechanisms or compromising a node through
other means. As malicious nodes have insider access, nodes
cannot be completely trusted although they are authenticated.

In order to quantitatively compare the effect of the adver-
saries on the accuracy of virtual coordinate systems, we utilize
the relative error defined as:

Errorastack
Erroryeg = ——mmm
E'rrorno_attack:
where Errorgitqack 1S the system prediction error measured
when the system is under attack and Er70rnq attack 1S the
system prediction error when all nodes are benign and no
attack takes place. A relative error greater than one indicates
a degradation in accuracy and a value less than one indicates
a better estimation accuracy than the baseline.

We also assume that the adversary knows how and what
defense strategies are used and can adjust his attack strategies
accordingly. In the context of virtual coordinate systems we
assume that a malicious node may lie about its coordinate and
its error in the reports sent to honest nodes, and influence the
RTT measurements conducted by honest nodes by delaying the
response. Below we show how an attacker can define specific
attack strategies based on these malicious actions.

B. Attacks Against Accuracy of Virtual Coordinates

The correct operation of virtual coordinate systems is depen-
dent on the assumption that the peer nodes are altruistic and
respond with correct metrics to queries from any node com-
puting its corresponding coordinates. An attacker controlling
reference set nodes has the ability to influence the coordinate
maintenance process by manipulating the information, such as
the remote node error and coordinates, returned in response
to a query. By blindly accepting this malicious information, a
correct node computes incorrect coordinates.

In manipulating the information it reports as a peer node, a
malicious node is able to influence a victim node to move
away from its correct position by either pushing the node
away from or pulling it closer to the malicious node’s reported
coordinates. For example, a malicious node can attract a
victim node towards a random position and away from the
victim’s correct position by reporting a false position and
having a low estimated error. In addition to manipulating
reported information, a malicious node may manipulate the
measurements conducted by delaying its query responses,
causing victim nodes to erroneously update their coordinates
to accommodate for the additional delay. Each of the attacks
can be classified into one of three categories: coordinate
inflation attacks that result in coordinate mappings farther
from the correct location, coordinate deflation attacks that
result in victim nodes having incorrect coordinates due to
not performing necessary coordinate updates, and coordinate
oscillation attacks which report varying coordinates and errors
that cause disorder in the system. In the end, each of these
techniques distorts the coordinate space and have a long-
lasting impact on the overall system.

Inflation, deflation, and oscillation attacks can be caused by
a combination of lying about error and coordinates, and de-
laying messages during the RTT measurement. In our analysis
we consider the following specific attack strategies:

« Inflation: malicious nodes report a large coordinate and
a small error

o Deflation: malicious nodes report a small coordinate and
a small error

o Oscillation: malicious nodes report a random coordinate,
a small error, and influence the honest nodes to measure
a large RTT by delaying the response.

IV. DEFENSE STRATEGIES

The defense strategies we consider are based on outlier
detection. We selected outlier detection because previous
work showed experimentally that outlier detection can be
an effective mechanism in improving the accuracy of virtual
coordinate systems in the presence of attacks under the restric-
tive assumption that an attacker is unaware of the associated
defense mechanisms.

An important configuration parameter for outlier detection is
the threshold that is used to decide if a data point is accepted
by the system or is suspected of coming from a malicious
node. We first overview spatial and temporal outlier detection



defenses that use a fixed threshold, then show how control
theory techniques can be leveraged to make the threshold
adaptive and exemplify such a strategy for spatial outlier
detection.

A. Outlier Detection

Outlier detection can be used to identify malicious behavior
and take action to mitigate its effects. Instead of allowing
malicious coordinate mappings to occur and then trying to
detect them, statistical outlier detection reduces the likelihood
of a node computing incorrect coordinates by filtering out
malicious updates. Each node independently performs outlier
detection before updating its coordinates in order to identify
and filter out outliers in the received metrics. As the evidence
of malicious activity is distributed across space and time we
consider both spatial and temporal outlier detection techniques.

Spatial outlier detection identifies observations which are
inconsistent with their surrounding neighbors, forcing nodes to
report metrics consistent with what other peers are reporting.
When a node queries a peer, it receives an observation tuple
(as seen in Algorithm 1). Upon receiving the tuple, the node
records the response and tracks the most recent u updates
in a queue. The size of the history queue, u, is equal to
the size of the reference set which allows the queue, on
average, to contain one entry from each reference set nodes.
Once the tuple has been received, the node first computes the
centroid of the data set consisting of observation tuples from
the stored u updates. The node then computes the Mahalanobis
distance [10] between the received observation tuple and the
centroid and accepts the update if it is less than a designated
spatial outlier threshold. We note that this technique is an
instance of spatial outlier detection since it examines metrics
across various system nodes and not time.

Temporal outlier detection identifies inconsistencies in the
metrics over time, forcing a node to report metrics consistent
with what it has reported in the past. A node tracks the
temporal centroid of the observation tuple from each node
in its peer set and the change in the reported coordinates
using incremental learning. We assume each of the reported
metrics is statistically independent, necessitating the storage of
just the mean, standard deviation, and sample count computed
from the received query responses over time. We note that
the assumption of statistical independence is reasonable, even
though nodes may collude, as the temporal outlier detection is
computed individually for each node. Once a query response
is received from a remote node, the node performing the
detection compares the received observation tuple with the
corresponding temporal centroid using the “simplified Maha-
lanobis distance” presented by Wang and Stolfo [10] and based
on a temporal threshold. The tuple is accepted if the distance
to the temporal centroid is below the threshold.

Finally, spatial-temporal outlier detection takes advantage
of both techniques by combing them using a codebook tech-
nique similar to that by Jiang and Cybenko [11]. As a node
receives observation tuples, it checks each one to ensure that
the tuple is not a spatial or temporal outlier. If the tuple is
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Fig. 1. Block diagram describing how we integrate control theory. For
example, if updates that increase the system prediction error bypass the outlier
detection then the spatial threshold is lowered.

found to be an outlier, the update is discarded. Otherwise, it
is used to update the receiver node’s coordinates. For further
details on the detection techniques, we refer the reader to [6].

B. Adaptive Threshold Selection

Many outlier detection schemes, including the ones pro-
posed in [6] use a fixed threshold usually determined ex-
perimentally. Such an approach is inflexible, prone to errors,
and may be exploited by an adversary to remain undetected.
Below, we show how by leveraging control theory [12, 13]
we design an adaptive threshold technique to improve the
threshold selection.

Figure 1 shows how the adaptive threshold selection is
integrated with the outlier detection mechanism. A feedback
control loop is regularly updating the spatial threshold with
the objective to tighten the threshold and adapt to attacks. The
update of the threshold is based on the observation that more
severe attacks (as per the nature of the attack and percentage of
malicious nodes) will result in higher differences between the
estimated RTT (predicted by the coordinates resulted from the
virtual coordinate system) and the actual RTT. Specifically, at
time n, the new threshold 7}, is updated based on the threshold
at time n — 1, 7,,_1, and the difference between the current
prediction error ETrorgiqck(n) and an ideal value for the
prediction error Errorye_attack(n) as follows:

(Errorattack (n) - Errorno_attack (TL))
RTTgst(n)

where c is a constant to define the importance of the
prediction error Errorgitqck(n) and RTTgs:(n) is the current
estimated RTT. The prediction error Erroraiqck(n) is based
on all the prediction errors calculated during each update
of each single node, one can either take an averaged value
or percentile values. The average value is more likely to be
affected by potential malicious values that bypassed the outlier
detection. Thus, different defense strategies in the case of the
adaptive threshold selection involve using different percentile
values in the prediction error.

We take into account that the prediction error varies over
time, as before the system stabilizes nodes have high predic-
tion error and must update their coordinates by large amounts.
However, after some iterations the nodes converge to their
correct coordinates which results in low prediction errors. To
define an independent evaluation of the ideal value, we ran

Ty = )

n—1 —



several experimental runs without the presence of attacks and
without outlier detection.

In summary, the effectiveness of an outlier detection tech-
nique that uses the adaptive threshold selection depends on
the value of ¢, which defines the importance of the prediction
error, and the percentile values on which the prediction error
used in updating the threshold is computed.

V. GAME THEORETICAL FRAMEWORK

We use techniques from game theory [14] to analyze the
behavior of the different types of defense mechanisms in
virtual coordinate systems by investigating strategic choices
made by the players. This allows us to identify the best attack
strategies and corresponding defense techniques. The game
model considers two players, the defender ¢ and the attacker
—1, and is a silent game, assuming that the players do not have
any knowledge about the other player’s history of actions.
We consider that an attacker can perform three different
types of attacks {deflation; inflation; oscillation} described in
Section III-B and vary the percentage of malicious nodes to
consist of 10%, 20%, or 30% of the nodes in the network
so that the set of actions A for the attacker consists of nine
attack strategies in total. In order to counteract the attacker,
we define the set of actions D for the defender as follows: the
defender has the possibility to use one of the following defense
mechanisms: spatial, temporal, and spatial-temporal outlier
detection using a fixed threshold. The defender can also use
the adaptive threshold variant of outlier detection adapting the
closed-loop for the threshold by varying the constant ¢ {0.04;
0.06; 0.08; 0.1} and the percentile {25"; 50t"; 75"} of the
system prediction error. We exemplify the adaptive threshold
selection strategy only for the spatial outlier detection.

For every chosen action, each of the players receives a
payoff, the attacker receives a payoff that measures the ef-
fectiveness of the attack, while the defender receives a payoff
that measures the effectiveness of the defense. We first adopt
a solution concept from game theory and define our payoff
functions for both players, the defender and the attacker. We
then evaluate the payoffs and identify the best strategies for
each player.

A. Solution Concept

Many different game theoretical solution concepts exist,
with the Nash Equilibrium [15] being one of the best known. It
introduces and defines methods for the mathematical analysis
of non-cooperative games in which the players, the defender
and the attacker, do not communicate or cooperate. The Nash
equilibrium defines the optimal strategic choices for all the
players, given that no player will diverge from the equilibrium
point as they cannot gain greater payoffs with any other
strategy; this behavior is known as rational acting. In a game
consisting of a set of n players, there exists for each player @
an associated finite set of pure strategies as well as a payoff
function P;.

Calculating the Nash equilibrium results in either a pure
strategy, where it is defined that a player, attacker or defender,

plays constantly the same action out of the corresponding
action set (A or D), or a mixed strategy S;. A mixed strategy
is a probabilistic distribution over the corresponding pure
strategies, S; : D — [0,1] and S_; : A — [0,1]. The
player will randomly play each strategy while each strategy
is selected with the associated probability. The mixed strategy
profile \S; is a Nash equilibrium if for each player ¢ there is no
other strategy profile S; that will lead to a higher gain with
respect to the strategy profile S_; applied by the opponent
—1, meaning that for player ¢ there is no average payoff
QQ; greater than the one for the strategy profiles S;, S_; :
Ql(Sl, 571) Z QZ(S;7 sz) where

n k
Qi(Si, S_) ZS ) > S_ilap) * Mi(dg, ap)
- =

In this equation M; represents the payoff matrix of player ¢
and M;(dy, ap) is the payoff for player ¢ while choosing d,
as action while the opponent plays a,,.

The regular quantal response equilibrium (QRE) [16] is
a solution concept that generalizes the Nash equilibrium by
introducing an error parameter to the payoff function. This is
motivated by the fact that payoff functions may be erroneous
and one can not have total certainty about the payoff value.
In this manner, the regular QRE provides an equilibrium with
bounded rationality in contrast to the Nash equilibrium which
defines all the players to be completely rational.

The error parameter ), also called the rationality parameter,
is varied until the regular QRE converges to the Nash equi-
librium. Rationality in this sense means that no player has a
motivation to diverge from the Nash Equilibrium as there is no
other strategy where one can gain more than the ones specified
in the resulting strategy profile of the Nash Equilibrium. On the
opposite, irrationality means that even though the attacker can
not gain greater payoff, he will chose another strategy than the
one defined by the Nash Equilibrium. When A = 0, the player
is completely irrational, in this case he could, for instance,
chose the strategy randomly and when A — oo, the player
becomes perfectly rational and follows the Nash equilibrium.
We calculate the QRE by using the following equation which
defines the probability of player ¢ to choose strategy d, out of
action set D:

exp)\ X Uz(dq)(S,Z)
3 eXpAXUi(a,p)(Sfi)
ap

Sid, =

where Ui(dq)(S_i) describes the expected utility for player
i using strategy d, while considering other players to play
with a probability distribution S_;: Uj(a,) = ZI;=1 S_i(ap) *
M(dq, ap)

We use the QRE to quantify how irrational a player can be
while still maintaining the same equilibrium profiles.

B. Payoff Functions

The payoff functions have to reflect the gain a player
receives when playing one strategy. The definition of the
payoff depends on the goal a player wants to achieve during



the game. As the attacker and the defender are opponents, their
respective payoffs will reflect different goals. The attacker
wants to disturb the network by distorting the coordinate
space. The larger the impact on the coordinate space, the
larger the gain for the attacker. Conversely, the defender wants
the coordinate space to behave correctly and provide correct
latency estimates. Thus, the smaller the impact of the attacks
on the coordinate space, the larger the gain for the defender.
A different goal for the attacker is to remain undetected as
otherwise the attack is ignored due to the outlier detection.
Another goal for the defender is that the coordinate space
converges to a stable state and thus wants the error values to
be low.

We consider two scenarios in our analysis. The first scenario
considers the different outlier detection defenses when using a
fixed threshold. The second scenario focuses on spatial outlier
detection and analyses the different parameters that can be
chosen by the defender in the adaptive threshold mechanism.

Analysis of outlier detection mechanisms with fixed
thresholds. We use the system prediction error (E717107preq)
and the relative error (Error,.;) as the basis for the following
payoff functions:

Prediction error based payoffs:

Errorpred

Puttacker = Pdefender = _ETrorpred

% attackers’

Intuitively, P,ttqcker describes the gain of the attacker in direct
relation to the prediction error. If the prediction error increases,
the payoff increases as well. We include the percentage of
malicious nodes in the payoff function to integrate the notion
of cost for the attackers since they need to invest time and
effort in becoming part of the system to conduct the attacks.
Pe fender describes the gain of the defender in inverse relation
to the prediction error. If the prediction error increases, the
gain of the defender will decrease. We do not integrate into
the defender payoff function the notion of cost in terms of
number of defender nodes, since the nodes are already part of
the system.
Relative error based payoffs:

Error,q 1

Pattacker = Pdefender =

% attackers’ Errorye

For the attacker, Pyttqcker describes the gain in direct relation
to the relative error. Just as in the payoff definition for the
prediction error, we include the notion of cost for the attackers
by dividing the error by the percentage of malicious nodes in
the system. For the defender, Py fender describes the gain in
inverse relation to the relative error.

Furthermore, we take into account different percentiles of
error when calculating the payoff functions. We do not only
collect median values for the error metrics, but also the 5t
and 95! percentile errors. We define the following games:

o Game 1: we use the 5" percentile for calculating the
attacker’s payoff, as the aim of the attacker is to have
as large of an impact on the system as possible. At the
same time, the defender wants to protect as many nodes

as possible, with the goal of minimizing the impact on
the system and maintaining a low 95 percentile error.

o Game 2: we use the median error nodes for both players
as this provides an average overview of the strategic
situation of the system.

The payoff functions for Game 1 and Game 2 are summa-
rized in Table I. The usage of the different payoff functions
and the corresponding evaluation of the attack and defense
strategies are shown in Section VI

Analysis of spatial outlier detection with adaptive thresh-
old selection. We use the system prediction error (E7707preq)
and the evaluation of the threshold due to the closed-loop feed-
back control as the basis for the following payoff functions:

Prediction error based payoffs:

Puattacker = ETT0Tpred, Pdefender = —Errorpred

Pttacker describes the gain of the attacker in direct relation
to the median prediction error. If the prediction error increases,
the payoff increases as well. Pycrender describes the gain of
the defender in negative relation to the median prediction error.
If the prediction error increases, the gain of the defender will
decrease.

Threshold evaluation based payoffs:

Pattacker = Tavg7 Pdefender = _Er’rorpred

For the attacker, Pyqcker describes the gain in direct relation
to the averaged dynamic threshold. Due to the closed-loop
control the threshold changes over all updates in a simulation
run, we then take the average value of the evaluation of
the threshold value. From the attacker’s perspective, his goal
is that the threshold remains high, so the probability that
his attacks remain undetected is higher than with a smaller
threshold. For the defender, Pgjcfenger describes the gain in
negative relation to the median prediction error as in the
previous payoff function. We do not take into consideration
the threshold for defender’s gain as the defender wants the
prediction error to be low and that the system converges
independent of what value the threshold has. We define the
following games:

o Game 3: we use the Error,..q as attacker payoff, as
we assume that the attacker wants to have as much
impact on the network as possible. For the defender we
use —Errory,.q as the defender wants to have a good
functioning system with a low error. In both cases, we
use the median prediction error.

o Game 4: we use the T,,, as payoff for the attacker, in
this case, we assume the attacker to not only want to
disturb the network but also to remain undetected of the
dynamic threshold, so that the attacks still have impact
on the network. The defender uses again the —Errory,cq
as payoff, as for the defender it is not of great importance
what value the threshold has, but mainly that the system
is working fine, assuming a low median prediction error.

The payoff functions for Game 3 and Game 4 are summa-
rized in Table I. The usage of the different payoff functions



TABLE I
THE DIFFERENT GAMES AND PAYOFF FUNCTIONS OVERVIEW

Defender payoff Attacker payoff Scenario
th
] _orth 5 Error,, e
Game 1 | Py ier g5thpreq = —95° ETT0Tpred P itacker_sthpred = % attackers
th
_ 1 __ 5" Errorype -
Pietender_osthrer = g5tk Brrore] P ttacker_sthrel = ~05 attackere fixed threshold
TR
50" Error
_ _rnth ) _ pred
Game 2 | Py, tenger sothprea = —907 ETT0Tpred | Pyiypcper_s0thprea = % attackers
p _ 1 p _ 50" Error,.
de fender_50threl 50th Error,.; attacker_50threl % attackers
Game 3 Picfender = —ETT0Tpred Pattacker = ETT0Tpred adapti .
— — adaptive threshold
Game 4 Picfender = —ETT0Tp004 Pattacker = Tavg

and the corresponding evaluation of the attack and defense
strategies are shown in Section VI

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate through simulations using
actual Internet topologies and quantitative analysis using game
theory techniques the efficacy of different attacks at impacting
the accuracy of the Vivaldi virtual coordinate system and of
our defense mechanisms at preserving its ability to maintain
accurate latency estimates.

A. Evaluation Methodology

In order to simulate the attack and defense strategies, we
use the King [17] and AMP [18] data sets in conjunction with
the p2psim simulator [19]. The King data set contains the pair-
wise RTT of 1740 nodes with an average RTT of 180ms and
was selected since it is representative of larger scale peer-to-
peer systems and has been used in validating several virtual
coordinate systems. The AMP data set consists of the pair-
wise RTT of 90 nodes with an average RTT of 70ms and
it is used to represent smaller, high speed systems (e.g., a
corporate network). Synthetic topologies are not considered
as they do not capture important network properties inherent
in real networks such as violations of the triangle inequality.

We ran simulations for each combination of attack type and
defense strategy described in Section III. We ran each simula-
tion for 200 time units, where each time unit is 500 seconds in
length. Every simulation was run ten times with the reported
metrics averaged over all of the runs. The nodes join in a flash-
crowd scenario in which all nodes join simultaneously and are
initially placed at the origin of the logical coordinate space. All
nodes that join the network are physically stationary and are
present for the duration of the experiment. Each node proceeds
independently of other nodes and chooses a reference set of
64 nodes using the Vivaldi method where half of the nodes are
selected as the closest nodes based on network latency and the
rest are selected at random. All other Vivaldi parameters were
initialized to the optimal values discussed by Dabek et al. [8].

B. King Data Set Analysis

Analysis for the different outlier detection defense mech-
anisms with fixed threshold. We first analyze the effect
of using different spatial outlier thresholds on the Vivaldi
virtual coordinate system running over the King topology. In
Table IV, we can see the Nash equilibrium using Game 1 as
defined in Table I in Section V-B. From the results, we see that
the inflation attack has a large impact on the system. Under

this attack, we find that the most efficient defense strategy
is spatial-temporal outlier detection when using lower spatial
outlier thresholds (e.g., < 1.5). For higher thresholds, both
spatial-temporal outlier detection and spatial outlier detection
provide similar defense performance. We note that temporal
outlier detection is ineffective as it never appears as part of
one of the equilibria.

In Table V, we present the Nash equilibrium using Game 2.
Depending on the threshold selected, either the spatial outlier
detection or the spatial-temporal outlier detection defense tech-
niques provide the best performance and are thus employed
in the resulting Nash equilibrium. Based on the evaluations
of both Game 1 and Game 2, we conclude that the inflation
attack has the greatest potential to impact the virtual coordinate
system. It is interesting to note that for lower outlier thresholds
(L 1.5), the attack is most effective for smaller percentages of
malicious nodes as the effort to create larger attacks leads to
diminishing returns. Only the higher threshold of 1.75 allows
the inflation attack with 30% malicious nodes to be effective
and appear as an equilibrium, allowing us to conclude this
threshold is less effective at mitigating the effects of the
attacker. Finally, similar to Game I, we notice that temporal
outlier detection does not appear in an equilibrium and we thus
conclude that this type of outlier detection is not an effective
countermeasure when used by itself.

We also analyze the best defenses against the different
attacks when using a spatial outlier threshold of 1.5, as this
value was suggested by previous research [6]. For the deflation
attack, the optimal defense strategy is to use spatial outlier
detection as it results in a pure equilibrium for both the
prediction error and the relative error. The spatial-temporal
outlier detection is the best defensive mechanism against the
oscillation attack regarding both error metrics. Evaluations
based on Game I show that spatial outlier detection performs
similarly. For the inflation attack, we have a different defense
strategy resulting in a pure equilibrium for each of the games.
For Game 1, spatial-temporal outlier detection represents the
pure equilibrium, while in Game 2, spatial outlier detection
represents the equilibrium. Furthermore, we assess the thresh-
old selection for this data set, and find independent of the game
or the error metric, that a threshold value of 1.25 always results
in a pure equilibrium, making this the best threshold.

The previous results, which are based on the Nash equi-
librium, assume that the players are completely rational. As
this cannot be guaranteed, we use a secondary evaluation
to determine how irrational the players can act while still



TABLE I

OVERVIEW OF THE GAME FOR THE DIFFERENT OUTLIER DETECTION DEFENSES WITH FIXED THRESHOLD

Player Strate Payoff function
¥ gy border value median value
- th th
Spatial Pdcf_gz;thpred = —95""Errorpred Pdcf_.'i()thp'rcd = —50""Errorpred
Defender Temporal P — 1 P — 1
Spatial-Temporal def_95threl 95th Error,.g; def_50threl 50th Error,.o;
Inflation
10% Deflation P st Error,, . P 50t Error, g
Oscillation att_5thpred = "% mal. nodes att_50t"hpred = T 9% mal. nodes
Inflation
Attacker 20% Deflation
Oscillation p _ 5" Brror, P _ 50" Error,.
Inflation att_5threl = 9 mal. nodes att_50threl = "9 mal. nodes
30% Deflation
Oscillation

TABLE III

OVERVIEW OF THE GAME ANALYSIS FOR SPATIAL OUTLIER DETECTION WITH ADAPTIVE THRESHOLD

Player

Strategy

Payoff function

Error evaluation

Threshold evaluation |

Defender

c=0

25" Percentile

¢ = (0.04,0.06,0.08,0.1)

507" Percentile

¢ = (0.04,0.06,0.08,0.1)

Piey = —ErT0Tpred

75" Percentile

¢ = (0.04,0.06,0.08,0.1)

Attacker

10%

(Inflation, Deflation, Oscillation)

20%

(Inflation, Deflation, Oscillation)

Patt = ETTOTprEd Paty =
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maintaining the same optimal equilibrium profiles. In Figure 2,
we present the regular QRE (as described in Section V-A) for
the data set. The y-axis represents the probability for a strategy
for a given A\. We notice that when considering the prediction
error (Figure 2(a)), the QRE converges to the Nash equilibrium
for A — 0, implying that even if the attacker is irrational, he
will follow the Nash equilibrium with respect to the prediction
error. Regarding the relative error, the QRE converges to the
Nash equilibrium for A ~ 300(Figure 2(b)) which means that
the strategies in relation to the relative errors also converge
fast to the Nash Equilibrium as 0 < A < oo. Using this metric
as the basis of the payoff function, an irrational attacker will
diverge from the Nash Equilibrium, but as it becomes more
rational, it quickly follows the optimal identified strategy.

Analysis for the spatial-temporal outlier detection with
adaptive spatial threshold. In the previous analysis, we
observed that the best defense mechanism is to apply spatial-
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The Quantal Response Equilibrium evaluation for the King data set based on Game 1
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TABLE IV
KING - EQUILIBRIUM POINTS BASED ON Game I
Error Nash equilibrium strategy profile
Threshold metric profile attacker defender
1.25 pred. error pure Infl/10% att. Spatial-temporal
) rel. error pure Infl/10% att. | Spatial-temporal
15 pred. error pure Infl/10% att. | Spatial-temporal
i rel. error pure Infl/10% att. Spatial-temporal
pred. error pure Infl/30% att. Spatial
1.75 rel. error 2 pure Infl/30% att. Spatial-temporal
: profiles | Infl/30% att. Spatial
TABLE V

KING - EQUILIBRIUM POINTS BASED ON Game 2

! Error Resulting Nash equilibrium strategy profile
Threshold metric profile attacker defender
125 pred. error pure Infl/10% att. Spatial

: rel. error pure Infl/10% att. Spatial

15 pre. error pure Infl/10% att. Spatial

: rel. error pure Infl/10% att. Spatial

175 pred. error pure Infl/30% att. Spatial-temporal

' rel. error pure Infl/30% att. Spatial-temporal
Infl/30% att. Spatial
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Fig. 4. The Quantal Response Equilibrium evaluation for the King data set

temporal outlier detection. We now again consider spatial-
temporal outlier detection, however we consider that the spatial
outlier detection uses an adaptive threshold. We initialize the
spatial threshold with 2. In Table VI, we can see the Nash
equilibrium using Game 3 and Game 4 as defined in Table I
in Section V-B. The different strategies are shown in Table III.
We note that we also compare the strategy ¢ = 0, which means
that control theory is not used at all. Considering Game 3,
where we assume the attacker wants to disturb as much as
possible the correct functioning of the system with the effect
that the prediction error increases significantly, the resulting
best attack method is to apply inflation attack with 30%
attackers with a probability of 0.54 and the oscillation attack
with 30% attackers with a probability of 0.46. For the defender
the best way to handle this attack method is to make use of
the constant ¢ = 0.06 with a probability of 0.93, ¢ = 0.08
with 0.07 probability, and the 75" percentile of the prediction
error for updating the closed-loop feedback control described
in Section IV-B.

In Game 4, we assume the attacker does not only intend
to harm the network as much as possible but that he wants
to remain undetected. With the resulting Nash Equilibrium we

can see that for the attacker the best choice overall is to have
only 10% attackers in the network, as otherwise the attacks
become too obvious and are detected by the outlier detection.
The overall defense mechanism is to use the 75" percentile
with ¢ = 0.06 and ¢ = 0.08 or to use the 50" percentile
with ¢ = 0.08. It can be seen that there are 3 different Nash
Equilibria for this game model, this means that all of these
points lead to the best possible gain for the defender with
respect to the attack method applied.

We again use the secondary evaluation to determine how
irrational the players can act while still maintaining the same
optimal equilibrium profiles, as rationality can not be guar-
anteed. In Figure 4, we present the regular QRE. The y-axis
represents the probability for a strategy for a given A. We
notice that in Game 3 (Figure 4(a)), the QRE converges to the
Nash equilibrium for A — 0, implying that even if the attacker
is irrational, he will follow the Nash equilibrium with respect
to the prediction error. Regarding Game 4, the QRE converges
to the Nash equilibrium for A ~ 100 (Figure 4(b)), which is a
fast convergence although A can become co. Using this metric
as the basis of the payoff function, an irrational attacker will
diverge from the Nash Equilibrium, but as it becomes more
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TABLE VI
KING - EQUILIBRIUM POINTS
Nash equilibrium strategy profile
Payoffs rofile attacker defender
P strategy probability strategy probability
Game 3 Piey = —ETT0oTpred mixed lnﬂaFion{30% att. 0.54 ¢c=0.06 & 75::percent7%le 0.93
Putt = Errorpred Oscillation/30% 0.46 ¢=0.08 & 75" percentile 0.07
_ pure Oscillation/10% att. 1 ¢ = 0.08 & 75" percentile 1
Piey = —ETrorpred - — 70 -
Game 4 pure Deflation/10% att. 1 c = 0.06 & 75"" percentile 1
. Deflation/10% att. 0.5 _ th .
Patt = Tavg mixed | Ogcillation/10% att, 05 ¢ = 0.08 & 50 percentile !
pure Oscillation /10% att. 1 ¢ = 0.08 & 50" percentile 1

rational, it quickly follows the optimal identified strategy.

C. AMP Data Set Analysis

Analysis for the outlier detection defense mechanism
with fixed threshold. We evaluate the AMP data set looking
at both error metrics for different spatial outlier threshold
selections. Table VII describes the resulting strategy profiles
from following Game 1. We notice that for this data set, the
resulting strategy profiles are not nearly as homogeneous as
those for the King data set. Most of the resulting strategy
profiles consist of a mixed strategy, meaning that the different
strategies should be utilized with the given probability in order
to be as effective as possible. For example, given the spatial
outlier threshold of 1.25, the attacker has the most impact
while applying the deflation attack with only 10% malicious
nodes in the system with a probability of 0.55 and applying
the oscillation attack with 10% malicious nodes in the system
with a probability of 0.45. The countermeasures look similar,
applying spatial-temporal outlier detection and temporal out-
lier detection with probabilities of 0.93 and 0.07 respectively.
Overall, we can see that the spatial-temporal outlier detection
has highest probability of being applied. Interestingly, unlike
the King data set, the temporal outlier detection is often part of
the equilibrium, but only with low probability. The outcomes
for Game 2 are reflected in Table VIII. For this evaluation, only
the spatial-temporal outlier detection and the spatial outlier
detection are considered in the equilibriums.

Next, we investigate the optimal countermeasure with re-
spect to the different attacks. The spatial outlier detection
performs best against the three attacks. Assessing the different

thresholds, results show that a threshold value of 1.25 is the
best choice, a threshold value of 1.5 is second best, 1.75 third,
while 2 is last. Furthermore, we also evaluated the regular QRE
as we did for the King data set. Similar to the previous data set,
we note that with respect to the prediction error (Figure 3(a)),
players could be almost completely irrational while their best
strategies will still follow the Nash equilibrium, as it converges
for A — 0. The relative error (Figure 3(b)) converges fast to
the Nash equilibrium for A ~ 500.

Analysis for spatial-temporal outlier detection with
adaptive spatial threshold. We evaluate the AMP data set
with spatial-temporal outlier detection and an adaptive thresh-
old selection for the spatial threshold. We initialize the spatial
threshold with 2. Table IX describes the resulting strategy pro-
files for the different payoffs and configuration strategies for
Game 3 and Game 4 as defined in Table I in Section V-B. We
again note that the different strategies are shown in Table III,
including the strategy ¢ = 0, where control theory is not used.
We notice that the resulting Nash Equilibria are similar to the
Nash Equilibria for the KING data set. Based on this, we can
assume that independent of the data set we should apply in the
closed-loop feedback control a percentile of 75" percentile for
the prediction error. An attacker can disturb the network the
most while applying the inflation attack, but if he wants the
attacks to be undetected then deflation and oscillation are the
best attack choices. Furthermore, we again evaluate the regular
QRE and notice that with respect to Game 3 (Figure 5(a)) the
QRE converges to the Nash equilibrium for A — 0, implying
that even if the attacker is irrational he follows the strategy



TABLE VII
AMP - EQUILIBRIUM POINTS BASED ON Game 1

Error Nash equilibrium profile
Threshold | metric profile attacker defender
strategy probability strategy probability
pred mixed Defl/10% att. 0.55 Spatial-temporal 0.93
125 i Osci/10% att. 0.45 Temporal 0.07
: el mixed Defl/10% att. 0.54 Spatial-temporal 0.92
: Osci/10% att. 0.46 Temporal 0.08
15 pred. pure Infl/10% att. Spatial
i rel. pure Infl/10% att. Spatial
Defl/10% att. 0.74 Spatial 0.08
pre. mixed Infl/10% att. 0.18 Spatial-temporal 091
175 Osci/10% att. 0.08 Temporal 0.009
: mixed Infl/10% att. 0.29 Spatial-temporal 0.92
rel. Osci/10% att. 0.71 Spatial 0.08
pure Infl/20%att. Spatial-temporal
Infl/10% att. 0.69 Spatial-temporal 0.32
pred. mixed Infl/20% att. 0.24 Spatial 0.41
2 Infl/30% att. 0.07 Temporal 0.27
Infl/10% att. 0.57 Spatial-temporal 0.33
rel. mixed Infl/20% att. 0.4 Spatial 0.40
Infl/30% att. 0.03 Temporal 0.27
TABLE VIII
AMP - EQUILIBRIUM POINTS BASED ON Game 2
Error Nash equilibrium profile
Threshold | metric rofile attacker defender
p strategy probability strategy probability
pred mixed Defl/10% att. 0.53 Spatial-temporal 0.64
1.25 ’ Osci/10% att. 0.47 Spatial 0.36
: rel mixed Defl/10% att. 0.5 Spatial-temporal 0.67
) Osci/10% att. 0.5 Spatial 0.33
15 pred. pure Infl/10% att. Spatial
) rel. pure Infl/10% att. Spatial
175 pred. pure Infl/10% att. Spat?al—temporal
rel. pure Infl/10% att. Spatial-temporal
pred. pure Infl/10% att. Spatial
2 rel. pure Infl/10% att. Spatial
TABLE IX

AMP - EQUILIBRIUM POINTS BASED ON THE ANALYSIS FOR THE ADAPTIVE THRESHOLD SELECTION

Nash equilibrium strategy profile
Payoffs rofile attacker defender
p strategy probability strategy probability
— Th -
Pac; = —Errorppeq | mixed | Oscillation/30% att. 1 ¢ =0.08 & 75 "percentile | 0.25
Game 3 Payy = Errory.eq c=0.1& 75""percentile 0.75
@ pre pure Oscillation/30% att. 1 ¢ = 0.08 & 75" percentile 1
pure Inflation/30% att. 1 c=0.1 & 75" percentile 1
Pyey = —Errorpred pure Oscillation/10% att. 1 c=0.06 & 75”Lpe7"centile 1
Game 4 I pure Deflation/10% att. 1 c = 0.08 & 75" percentile 1
att T favg pure Oscillation/10% att. 1 c = 0.08 & 75" percentile 1

profile defined by the Nash Equilibrium. In Game 4, the QRE
converges to the Nash equilibrium for A ~ 20(Figure 5(b)).
This converges fast as well, as 0 < A < oo.

VII. RELATED WORK

Defense Mechanisms in Virtual Coordinate Systems. Re-
search has previously demonstrated the susceptibility of Vi-
valdi to attacks [20, 21]. To address these vulnerabilities,
there have been several proposed methods to maintain virtual
coordinate system accuracy [1]-[5]. The PIC virtual coordinate
system [1] uses a security test based on the triangle inequality
in which any node that violates the triangle inequality above
some margin of error is ignored and designated as malicious.
However, it has been shown that RTT measurements often
violate this inequality [22]-[24] and thus solutions based
solely on such inequalities may degrade system performance
when no attack is occurring.

Recent work by Kaafar et al. [2] utilizes a solution
which employs a set of trusted nodes as a reference set by
which to analyze all node behavior for malicious patterns
and behavior. In a similar vein, the reputation-based work
by Saucez et al. [3] uses a priori trusted nodes to detect
malicious nodes. The key difference between these techniques
and methods used in this work is that they do not necessitate
the need for trusted components in the network. Such trusted
components could lead to high deployment costs, for example
[2] requires 10% of nodes to be trusted, thus potentially
needing hundreds or thousands of trusted nodes. The work by
Sherr et al. [4, 5] uses a verification set of nodes for a node n,
where n’s update is considered malicious if a percentage of the
verification set perceives the error of the update to be greater
than a predetermined threshold. The main differences between
this technique and the methods we present is that we do not
require extra node sets nor network communication which may



lead to high network overhead, and we utilize outlier detection
over multiple metrics.

Game Theoretic Security Approaches. Game theory has
been a mainstream research topic in the economic community
since the landmark Ph.D. thesis of J. Nash [15] and the
interested reader is referred to the work by Binmore [25] for
a comprehensive introduction to the area. One of the first
approaches for applying game theory to network security is
described by MclInerney et al. [26]. In this work, an underlying
Markovian decision process and a simple one-player game
are used to reason, detect, and respond to automated attack
behavior in information assurance systems. Similar work on
network security by Lye and Wing [27] models the interaction
between an attacker and a defender as a two-player stochastic
game. The explicit enumeration of states as described in the
previous papers two is impossible in our context due to the
large number of attacking nodes that we consider.

Applied economics concepts have also been applied to com-
puter security to address the analysis of strategic choices that
enterprises will take regarding maintenance and management
under an assumed cost model [28]. For example, some of
our previous work has used game theory to understand and
better defend against blocking and flooding attacks against
distributed hash tables used in P2P Session Initiation Protocol
infrastructures [29]. However, the previous model cannot cap-
ture the varying degrees of irrationality inherent in the current
environment and we incorporate the regular quantal response
equilibrium [16] to accurately model the malicious behavior.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have defined and used an analytical frame-
work in order to analyze strategic choices and identify the best
attack strategies and corresponding defense strategies used in
virtual coordinate systems. We have performed experiments
using two Internet topology data sets that have correspondingly
different sizes and characteristics. Our results demonstrate that
spatial-temporal and spatial outlier detection perform the best
while temporal outlier detection is ineffective in isolation.
However, temporal outlier detection is often part of the defense
profile in combination with the other two techniques. From
an attackers perspective, the best attack strategy to use is the
inflation attack with varying percentages of malicious nodes,
depending on the deployed defense technique. We have also
assessed several threshold settings for the outlier detection and
the spatial outlier threshold of 1.25 provides the best results
for a fix threshold. We also introduced an adaptive threshold
selection that was more effective than a fixed threshold, and
found the best parameters to use are the 75'" percentile
prediction error and a constant ¢ of 0.08. Future work consists
of extending these methods towards more complex games in
which learning and signaling occur during system operation.
For instance, benign nodes might learn defense strategies
online while attackers perform sequences of simple strategies.
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