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Abstract—Network protocol implementations must comply
with their specifications that include properties describing the
correct operational behavior of the protocol in response to
different temporal orderings of network events. Due to in-
consistent interpretations of the specification, developers can
unknowingly introduce semantic bugs, which cause the imple-
mentations to violate the respective properties. Detecting such
bugs in stateful protocols becomes significantly difficult as their
operations depend on their internal state machines and the
complex interactions between the protocol logic. In this paper,
we present an automated tool to help developers analyze their
protocol implementations and detect semantic bugs violating the
temporal properties of the protocols. Given an implementation,
our tool (1) extracts the implemented finite state machine (FSM)
of the protocol from the source code by symbolically exploring the
code and (2) determines whether the extracted FSM violates given
temporal properties by using an off-the-shelf model checker. We
demonstrated the efficacy of our tool by applying it on 6 protocol
implementations. We detected 11 semantic bugs (2 with security
implications) when we analyzed these implementations against
properties obtained from their publicly available specifications.

I. INTRODUCTION

Network protocol implementations must comply with prop-

erties usually described in informal prose specifications (e.g.,

RFC standards), which often become highly complex for state-

ful protocols. For instance, the specification of the Transport

Layer Security (TLS) protocol [1] dictates the chronological

sequence (the temporal order) in which the client and the

server must exchange messages to complete a handshake be-

fore establishing a secure connection. By not complying with

specifications, implementations can cause incorrect operational

behavior, interoperability issues, or critical security vulnerabil-

ities, and thus result in noncompliance. Such noncompliance

instances are primarily due to semantic bugs [2], which cause

implementations to violate the properties (high-level functional

specification) of the respective protocol and behave incorrectly.

Consider the “CCS Injection” vulnerability (CVE-2014-

0224), an example semantic bug, in the TLS implementation

of OpenSSL [3] where it accepts a ChangeCipherSpec (CCS)

message even if the CCS does not appear in the prescribed

order. By exploiting this vulnerability, a man-in-the-middle

attacker can obtain sensitive information or hijack the con-

nection completely. Semantic bugs are not only limited to

secure protocol implementations for general-purpose operating

systems (e.g., Linux), but prevail also in implementations

of non-secure protocols developed for resource constrained

devices (e.g., Internet-of-Things) [4].

Detecting semantic bugs through manual inspection of a

stateful protocol implementation is a cumbersome and error-

prone task because shared variables and protocol states com-

plicate the interactions between the code fragments that handle

different network events (e.g., arrival of a packet, occurrence

of timeout). As a result, dangerous semantic bugs can remain

undetected for years. For instance, the CCS Injection bug

was present in OpenSSL for more than a decade. Hence, it

is crucial to build automated techniques to assist developers

detect semantic bugs in their protocol implementations.

Some type of semantic bugs in protocol implementations

are difficult to detect automatically by applying well-known

techniques like fuzzing or software model checking in a

straight-forward manner. We outline three primary reasons

as follows: (C1) Silent incorrect behavior: Many semantic

bugs do not display any externally discernible erroneous effect

(e.g., crash) but result in silent incorrect behavior – for

example, accepting a packet unexpected in a particular context.

This demands a precise analysis of the internal interactions

between the protocol logic. (C2) Delayed discernible effects:

In case a semantic bug produces some discernible effects,

they are usually exhibited far away from the actual source

location of the bug. This calls for precise identifications of the

buggy execution paths of the protocol implementation. (C3)

History-dependent: These bugs are triggered during stateful

processing of network events. This emphasizes the need to

check temporal behavior of the protocol that are sensitive to

the history and the chronological ordering of network events.

Prior work on detecting bugs in protocol implementations

used fuzzing [5], [6] to detect the CCS Injection bug. However,

fuzzing tools are limited to detecting only bugs with externally

discernible effects. They cannot detect bugs that have silent

incorrect behavior, nor can they point out the location of the

bug. Tools specifically designed for network protocols like

[7]–[9] applied software model checking directly on protocol

implementations to detect bugs that violate state invariants

(i.e., properties that must hold in all reachable states of the

program, irrespective of any temporal behavior). Thus, these

tools could not detect bugs causing violations of properties

that depend on the chronological ordering of network events.

In this paper, we aim to automatically analyze a given

protocol implementation and detect semantic bugs that violate



properties describing the temporal behavior of the protocol;

hence, we call them temporal properties. We observe that

semantic bugs often lie in the code fragments that handle

how the protocol implementation reacts to network events

(e.g., by changing the protocol’s internal state or by sending a

response). Such reactions of the protocol are described as finite

state machines (FSMs) in informal prose specifications, either

explicitly (e.g., DHCP, TCP) or implicitly (e.g., Telnet, TLS).

While implementations intend to closely follow the specified

FSMs, the informal descriptions of the FSMs often leave room

for inconsistent interpretations giving rise to errors related

to state machines. Hence, in our analysis, we concentrate

on the event handling portions of the implementation, which

encompasses the implemented FSM. Our approach allows us

to detect semantic bugs that have silent incorrect behavior (C1)

or delayed discernible effects (C2) as the implemented FSM

allows us not only to observe the internal (possibly silent)

interactions of the protocol but also to identify buggy execu-

tion paths. Our approach also allows us to detect bugs that

are history dependent (C3) by reasoning about the temporal

properties of the protocol related to the implemented FSM

since semantic bugs often manifest during stateful processing

of events.

Given an event-driven implementation of a stateful network

protocol, we show, in this paper, that it is possible to au-

tomatically extract the implemented FSM from the source

and use it to detect semantic bugs violating given temporal

properties. We design and develop CHIRON,1 an automated

tool that enables a developer to check whether a protocol

implementation violates the (user provided) desired temporal

properties and thus detect the corresponding semantic bugs.

In a nutshell, CHIRON’s approach consists of two steps: (a)

extracting the implemented FSM from the source (which we

call the E-FSM), and (b) model checking the E-FSM against

desired temporal properties.

For detecting semantic bugs, we must analyze the proto-

col FSM implemented in the protocol source by precisely

capturing the relevant implementation details along with the

chronological network events. Clearly, manual extraction is

impractical and error-prone. Therefore, we devise an FSM

extraction technique that takes as input the protocol source

(written in C) along with some meta-information provided

by the developer and outputs an approximated protocol FSM

(i.e., E-FSM) implemented in the source. Our technique is

based on symbolic execution [10], which precisely simulates

a program’s execution with symbolic inputs and explores all

possible execution paths. However, to circumvent the path-

explosion problem often plaguing off-the-shelf symbolic exe-

cution tools, we devise a protocol state aware path exploration

technique that dynamically prunes redundant execution paths.

We observe that the temporal properties of a protocol

typically involves stateful processing of an arbitrarily long

sequence of network events. Writing these properties as code

snippets (perhaps, in C) is invariably ponderous as the snip-

1In Greek mythology, CHIRON was considered to be the wisest centaur

pets need to explicitly maintain the history of the protocol

execution. Instead, we use temporal logic formulas [11] as

they provide the flexibility of expressing temporal properties

in a concise and fine-grained fashion. To check whether the

E-FSM violates the temporal properties, we use an off-the-

shelf model checker. In case of a violation, the model checker

generates a counterexample (CEX) as evidence. A CEX is an

execution of the protocol demonstrating the violation. Due to

the abstractions in our analysis, the generated CEX may not

be realizable in an actual execution of the protocol. Hence,

we devise a validation technique to rule out such false CEXs.

We implemented CHIRON and demonstrated its efficacy by

applying it to a total of 6 implementations of 3 protocols: one

secure protocol (TLS [1]) and two non-secure protocols (Telnet

[12] and DHCP [13]). For TLS, we used the implementation

from the OpenSSL library developed for general purpose

operating systems (e.g., Linux). CHIRON’s general approach

allows us to apply it to protocols implemented for Internet-

of-Things (IoT) devices. Therefore, for Telnet and DHCP,

we used several implementations from two separate TCP/IP

protocol stacks designed for IoT devices: uIP [14] and FNET

[15]; they are widely used but have not been extensively

studied. To evaluate, we used 6 properties for TLS, 11 for

Telnet, and 7 for DHCP; all are derived from their respective

RFCs and documentation. We discovered 11 semantic bugs in

total, 2 of which have security implications.

Contributions. Our work shares a common vision with sim-

ilar efforts advocating the application of formal methods to

improve the security of systems [16] and makes the following

technical contributions:

• We present an automated tool, CHIRON, to help developers

detect semantic bugs in their protocol implementations when

analyzed against the given temporal properties.

• We devise a technique that automatically extracts the E-FSM

from the source of a stateful, event-driven protocol with

minimal user guidance.

• We show the efficacy of CHIRON by testing 6 imple-

mentations of 3 protocols against 24 properties and by

uncovering 11 semantic bugs, 2 of which have critical

security implications.

II. PROBLEM AND BACKGROUND

Detecting semantic bugs in a protocol implementation by

checking for compliance with its full specifications is a long-

standing challenging problem due to two reasons. First, pro-

tocol specifications (e.g., RFCs), are not usually formalized in

any form, leading to inherent ambiguities and leaving room

for multiple interpretations [7], [17]. Secondly, a protocol

implementation running on one host, interacts with other

(possibly, remote) peer(s) to achieve its goals. Performing a

joint analysis of all the peers has an amplified complexity

due to diverse and independent implementations of the same

protocol available in the wild.

We focus on checking the temporal properties that prescribe

the correct operational behavior of the protocol in response to

network events (e.g., arrival of a packet, timeout). Semantic



bugs violating such properties are due to logical flaws in

the execution flow of the protocol implementation, which

are different from low-level errors (e.g., null dereferencing,

memory leak). We analyze the implementation of only one

peer (e.g., client) of the protocol while considering the other

peer (e.g., server) as symbolic. Instead of proving satisfaction,

we intend to find violations of the given properties in the pro-

tocol implementation—a common practice in software model

checking [7], [18].

Protocol implementations. Interactions between protocol im-

plementations rely on either client-server or peer-to-peer com-

munication. Regardless of how they communicate, a protocol

implementation typically follows the event-driven program-

ming paradigm in which the implementation is centered on

executing appropriate protocol logic (known as event handlers)

in response to the occurred network events, causing the flow

of the protocol execution to be determined by these events.

Such an implementation usually contains a main loop

(called the event loop) that listens for a list of network

events (e.g., arrival of a packet, connection). These events are

predefined by the underlying protocol stack (e.g., TCP/IP) and

often abstracted away from the developer via a socket API

library. Some of these events notify about the incoming data

(e.g., a protocol message). The event handler that is invoked to

process an event may send a message as a response by utilizing

the underlying socket function (e.g., send for TCP/IP). The

handler may also update the protocol state, which consists of

the values assigned to the variables encoding the semantic state

of the protocol. We call these variables state variables.

In this paper, we focus on analyzing the source code of

an event-driven implementation of a stateful protocol. For a

client-server protocol (e.g., TLS), we require the source code

of the client (or server) implementation if the developer wants

to analyze the client (or server) since we analyze only one

end of the protocol in isolation. We also make no assumption

about how the other peer would behave since we consider

it as symbolic. In addition, we expect the provided source

to have the event loop inside a function, which we call the

event dispatcher function. As will be seen later, this function

serves as the entry point for our analysis. Should there exist

no explicit event dispatcher function (common for embedded

systems), a test harness can easily be added to create one.

An example of a semantic bug. To illustrate the conceptual

ideas behind our approach with a simple semantic bug, we use

a fictitious but plausible example of a protocol (see Fig.1). The

FSM specification (Fig.1(a)) describes that the protocol must

start at the READY state, move to WAITING after receiving

a REQ, and stay there until it receives an ACK. However, the

implementation of the protocol (Fig.1(b)) violates the property

when it fails to move back to READY after receiving an ACK

due to a semantic bug (i.e., the incorrect assignment to state

at line 7). CHIRON extracts the underlying FSM implemented

in the actual source and reasons about the temporal behavior

of the protocol with respect to the extracted FSM.

Problem definition. Given an event-driven protocol imple-

mentation I and a temporal property ϕ, CHIRON aims to

READY WAITING

recv REQ/send RES

recv ACK/-

timeout/reXmit
start

(a) The protocol FSM described in the specification

1 void handle_recv_message(Packet_Ty *p) {
2 if (p->type == REQ && state == READY){
3 send_res (); /* send RES */
4 state = WAITING;
5 }
6 else if (p->type == ACK && state ==

WAITING){
7 state = WAITING; /* Semantic bug */
8 }
9 else { /* ignore the packet */}

10 }

(b) Simplified code snippet from the implementation

Fig. 1: The implementation of our example protocol manifests a
semantic bug (at line 7) violating with the specification

check whether I violates ϕ and detect the underlying semantic

bug. CHIRON achieves this objective by extracting the imple-

mented FSM (E-FSM) from I and model checking it against

ϕ. CHIRON also ensures that each reported semantic bug is

indeed reproducible in an actual execution of I .

Extracted protocol FSM (E-FSM). We define an E-FSM M

as a tuple 〈Q,Ev,A,V, qI , R〉. Q is a finite set of states

{q0, . . . , qn}, and qI ∈ Q is the initial state of the E-FSM M .

We use Ev to denote a finite set of network events (e.g., recv,

which means the arrival of a network packet) and A to denote

a finite set of high-level actions the protocol can perform

utilizing the underlying socket functions of the protocol stack

(e.g., send ack, which means sending an acknowledgment).

Let V be a finite set of program variables. We assume that

Ev, A, and V are pairwise disjoint.

Let R be the transition relation such that R ⊆ Q× Ev ×
C × 2A × Q, where C is a set of transition conditions such

that each element c ∈ C is a quantifier-free first order logic

formula [19] – with the theories of equality, bit vector, and

array – over V . If V = {x, y}, then c can be, for instance,

x ≥ 0 ∧ x+ y 6= 10. Since transitions are conditioned on the

variables in V , we call them conditional variables. In addition,

each atomic formula of the transition condition (e.g., x ≥ 0)

is called an atom. Given a transition 〈qa, recv, buf len 6=
0 ∧ buf[0] = 255, {send ack}, qb〉, it signifies that if the

protocol implementation is currently at state qa, the event recv

is triggered, the receive buffer is not empty (i.e., buf len 6= 0),

and buf’s first byte is 255, then the implementation performs

the action send ack and moves to state qb.

III. DESIGN OF CHIRON

In this section, we first give an overview of CHIRON’s

design followed by the details of its major components.

A. Overview

CHIRON’s workflow consists of three major steps as shown

in Fig.2. Given the protocol source and some meta-information

(configuration files), the FSM extractor (❶) extracts the E-FSM
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Fig. 2: CHIRON’s workflow

(say M ) of the protocol by leveraging symbolic execution. The

details will be described in §III-B. Appendix A presents a brief

introduction to symbolic execution.

Next, CHIRON utilizes a model checker (❷) that takes

M and a temporal property (ϕ) of the protocol expressed

as a propositional linear temporal logic (pLTL) formula [20].

Thus CHIRON tries to find an execution of M that violates

ϕ. If a violation is detected, the model checker generates a

counterexample (CEX) as evidence, which is essentially an

execution of the protocol demonstrating the violation.

To employ any pLTL model checker with CHIRON, the

FSM translator takes M as input and translates it to a high-

level modeling language (e.g., SMV [21]). Note that the

conditions associated with the transitions of M are QF-FOL

formulas over conditional variables, e.g., (x > 0)∧(x+y = 5).
As pLTL model checkers expect the transition conditions to be

boolean formulas, the translator maps each unique atom (e.g.,

x > 0) in the conditions to a unique propositional variable

(say, P ) and stores the mappings in an atom-proposition map

file, which is used later to automatically translate a temporal

property ϕ in pLTL (see §III-C).

Due to the incompleteness of symbolic execution (e.g., for

unrolling loops for a small number of iterations to achieve

termination [22], [23]) and due to the level of abstraction used

in our analysis, the CEX generated by the model checker may

not always be realizable in an actual execution of the given

implementation. To rule out such unrealizable CEXs (i.e.,

false alarms), CHIRON uses a 2-step CEX validation technique

(❸). If a CEX passes both validation steps, CHIRON reports

the CEX to the user as a realizable CEX which points out the

underlying semantic bug causing the violation of ϕ (§III-D).

One additional module is employed by CHIRON: the CEX

parser which interfaces the model checker with the CEX

validator. It parses a CEX generated by the model checker and

uses the atom-proposition map file to replace each proposition

in the CEX with its corresponding atom. For instance, if the

map file contains the mapping P 7→ {x > 0} and the CEX has

P 7→ false, then the parsed CEX becomes (x > 0) 7→ false.

The CEX validator inspects this parsed CEX (§III-D).

B. FSM Extraction

We now describe our E-FSM extraction algorithm.

Required meta-information. CHIRON needs the protocol

source and two configuration files (meta-information) from

the developer for extracting the E-FSM: one is specific to the

protocol stack and the other is specific to the implementation.

The configuration file specific to the protocol stack contains

information about all possible network events (e.g., arrival of a

packet, new connection, disconnection) that the protocol reacts

to. For instance, if the protocol under analysis runs on top of

TCP, CHIRON requires the list of network events that TCP

can trigger. Obtaining such a list of network events for the

underlying protocol stack is a one-time effort because the same

list can be reused for other protocols developed for the same

protocol stack. Such a list of events is often standardized for

the protocol stacks of popular operating systems (e.g., Linux,

Windows) and well-documented for newer stacks such as uIP

and FNET for IoT devices.

The configuration file specific to the protocol implementa-

tion consists of: (i) the names of the state variables that encode

the protocol’s state (e.g., state in struct SSL); (ii) the name of

the event dispatcher function (i.e., the entry point to the event

handling code); (iii) the names of the conditional variables

(e.g., the packet buffer buf), which should be considered in our

analysis as variables that will use symbolic values; and (iv) a

list of 〈action name, identifier〉 pairs for each high-level action

performed by the protocol (e.g., sent client hello). Requiring

users to provide such meta-information is a common practice

to conduct symbolic execution of network protocols [22],

[24]. Note that CHIRON’s FSM extraction is agnostic to how

the meta-information is obtained. Automatically extracting the

meta-information with higher accuracy is left as future work.

The provided action list is not necessarily an exhaustive

list of all protocol actions. In fact, the developer is free

to specify the necessary actions relevant to the analysis.

Hence, we provide a simple API (void set_action (int

identifier);) that the developer can leverage to annotate

the source code to indicate each desired protocol action. One

of the benefits of this list is that it makes the E-FSM easy to

comprehend. In addition, selecting conditional variables may

seem difficult. Therefore, we apply a rule of thumb and that

is to select any input or environment variables (e.g., packet

buffer) that can influence the state transition of the protocol.

Algorithm. Our algorithm (Algorithm 1) constructs the E-FSM

M by searching for new FSM states and transitions in a

breadth-first search (BFS) manner. While BFS is memory

inefficient, it can find new states in a shorter time and can



Algorithm 1: FSM Extraction Algorithm

Input: The protocol source S, implementation specific
configuration C, protocol stack configuration N

Output: The implemented FSM M of the protocol
1 Queue We ← ∅; FSM M ← ∅;
2 Create initial program state e0;
3 q0 ← ExtractFsmState(e0); //q0 : initial protocol state
4 We.enqueue(e0);
5 M.Q← {q0}; //M.Q : set of states
6 M.qI ← q0; //M.qI : initial state
7 M.R← ∅; //M.R : set of transitions
8 Mark state q0 as old;
9 while We 6= ∅ do

10 ei ←We.dequeue();
11 qi ← ExtractFsmState(ei);
12 foreach Event τ ∈ EventList do
13 Sq ← SymbolicExecution(S,C,N, ei, τ);
14 foreach 〈ej , c, a〉 ∈ Sq do
15 qj ← ExtractFsmState(ej);
16 if qj is not old then
17 We.enqueue(ej);
18 M.Q←M.Q ∪ {qj};
19 Mark state qj as old ;

20 if Transition 〈qi, τ, c, a, qj〉 is not old then
21 M.R←M.R ∪ {〈qi, τ, c, a, qj〉};
22 Mark transition 〈qi, τ, c, a, qj〉 as old ;

23 return M

also be parallelized. Our algorithm begins by constructing the

initial program state e0, which contains initialized values for

both protocol state variables and other global variables. It then

extracts the initial protocol state q0 from e0 using the function

ExtractFsmState, which returns the underlying protocol state

consisting of the values assigned to the state variables in the

given program state. It marks q0 as seen (i.e., old) and adds

it to M . It then adds e0 to a working queue We.

The algorithm then processes each program state ei ∈ We,

one at a time in FIFO manner, until We is empty. It first ex-

tracts the associated protocol state qi from ei and then applies

all events to ei. For each event τ , it symbolically executes

the implementation starting from the event dispatcher function

by simulating the occurrence of τ . The symbolic execution

returns all possible paths where each path is summarized by

its associated program state ej , path constraints on conditional

variables c, and actions a performed by the protocol. For each

possible path and its associated 〈ej , c, a〉, the algorithm first

extracts the protocol state qj from ej . If qj is new, it inserts

qj into M , marks qj as seen, and adds ej to We. Finally, it

checks whether it has seen the transition qi
τ,c,a
−→ qj . If not,

the algorithm adds it to M and marks it as seen. Once We

becomes empty, the algorithm returns M as the E-FSM.

Protocol state driven path exploration. Traditional symbolic

execution of a protocol implementation using an off-the-

shelf symbolic execution tool can lead to path explosion as

the tool aims to explore as many (possibly new) program

states as possible to achieve a high code-coverage of the

given implementation, often within a limited resource budget.

Consequently, such exploration techniques are not suitable for

our FSM extraction as they are not tailored to give precedence

to the program states that encode new protocol states. We cus-

tomize the path exploration technique of symbolic execution

by restricting the exploration to only those program states that

contain new protocol states (line 10 and 17 of Algorithm 1).

Thus, we avoid the exploration of redundant execution paths.

C. Protocol Properties

Due to its proficiency in capturing the relative temporal

order of events succinctly, we use pLTL to express the de-

sired protocol behavior. Requiring developers to formulate the

desired temporal properties in pLTL is very inconvenient. In-

stead, we envision developers to write the temporal properties

in SALT (Structured Assertion Language for Temporal Logic)

[25]. SALT is close to a high-level programming language,

containing constructs for frequently occurring property pat-

terns. In addition to being user-friendly and permitting users to

express properties using regular expressions, SALT properties

can be automatically translated to optimized pLTL formulas

using its compiler. All the protocol properties we examined

were written in SALT and then converted to pLTL.

We demonstrate the expressiveness of SALT by con-

sidering the following property from [25]: “In a nor-

mal case, connection open event must be followed by

zero or more receive data events and a connection close

event unless a reset event occurs, which makes the re-

quirement trivially satisfied”. This can be expressed in

SALT as: assert / connection_open; receive_data*;

connection_close/ accepton reset. Its pLTL counter-

part is expressed as:

(connection_open ∨ reset) ∧ (( ((receive_data ∨
reset) U (connection_close ∨ reset))) ∨ reset).

For model checking, we need the properties in pLTL format

using propositions (see § III-A) while the pLTL generated

by the SALT compiler contains a semantic name for each

atom (e.g., connection_open). We automatically translate the

pLTL generated by SALT compiler to the pLTL format re-

quired by the model checker by utilizing the atom-proposition

map (say, MAP) generated by our FSM translator and an

additional map (MAE) between atoms and their semantic

names. We require the developer to provide the map MAE.

D. Validating CEXs

The CEX generated by the model checker can be unrealiz-

able (i.e., false alarms) due to the following reasons: (i) the

abstraction caused by the replacement of atoms with propo-

sitions during FSM translation and (ii) the incompleteness of

symbolic execution and the limited granularity of user input

to FSM extraction. We use a 2-step CEX validation technique

where Step 1 and 2 rule out the unrealizable CEXs generated

due to reason (i) and (ii) respectively.

Step 1 (Spurious CEX checking). The propositions used in

the translated E-FSM can have, possibly nontrivial, dependen-

cies among each other with respect to their corresponding



1 void telnetd_appcall(void *ts) {
2 if(uip_connected ())/*A new connection ?*/
3 {
4 if(! connected){
5 s.state = STATE_NORMAL;
6 connected = 1;
7 ... /* other initialization code */
8 }
9 else{/* reject the new connection */}

10 }
11 ...
12 }

Fig. 3: Code snippet to explain an unrealizable CEX

atoms. The pLTL model checker is unaware of any such

dependency. A CEX is a state sequence s1, . . . , sn, where

every state si maps each proposition to either true or false.

The spurious CEX checker (see Fig. 2) inspects whether the

truth assignments in each CEX state (si) agree with their atom-

semantics (not the semantic names) using an SMT solver. If the

assignments agree, the CEX is considered to be a consistent

CEX. If they do not agree, we guide the model checker with

an invariant that instructs it not to explore si in the future.

Consider the following proposition-atom mappings: p 7→
{x > 0}, q 7→ {x + y = 5}, r 7→ {y < 5}. Let p ∧ q ∧ r

be a transition condition and si be a CEX state that assigns

the values false, true, and true to the propositions p, q, and

r, respectively. It is evident that if (y < 5) and (x + y = 5)
are both true, x > 0 cannot be false. So the truth assignment

¬(x > 0)∧(x+y = 5)∧(y < 5) makes the CEX unsatisfiable.

The following invariant will be automatically generated to

guide the model checker: q ∧ r → p (i.e., p must be assigned

true when both q and r are assigned true).

Step 2 (Replaying CEX). Due to the incompleteness of

symbolic execution (e.g., loop unrolling) and the limited gran-

ularity of user input (e.g., incomplete input to Algorithm 1)

to our analysis, the generated CEX may not be reproducible

in an actual execution. Consider the Telnet server (Telnetd)

implementation in Contiki-2.4 [26] as an example. One of the

properties that the implementation is expected to comply with

is: “when the server has an ongoing connected session with a

client, the server must reject any further connection requests.”

Due to a semantic bug in the implemented FSM, the server

mistakenly accepts a new connection while there is an ongoing

session, and thus, the implementation violates the property. We

will explain this violation later in detail (see § VI-B).

Now consider the code snippet of the patched Telnetd

implementation shown in Fig. 3. It fixes the bug by adding

a guard variable connected so that the server accepts a new

connection only if it is not already connected. Now, suppose

the developer mistakenly assumes the protocol FSM state to be

composed of only one variable (i.e., s.state) and excludes

connected. Since connected is neither a state variable nor

marked as a conditional variable, the extracted E-FSM M lacks

information about connected and has transition(s) that would

allow M to accept multiple connections at a time. As a result,

the property of allowing only one connection at a time would

appear to be violated since the model checker would be able

to generate a consistent CEX that would not be ruled out in

Step 1. However, it is evident from Fig. 3 that such a CEX

is not realizable in any actual execution of the protocol as

connected guards the violation of the property.

To rule out such unrealizable CEXs, we concretely replay

each consistent CEX and monitor the execution of the protocol

implementation. The replay execution is guided by the CEX

through concrete values obtained from an SMT solver. We

monitor the performed actions and the changes of states during

the execution and check whether it matches the CEX. If the

protocol execution agrees with the CEX, we report this as a

realizable CEX which reproduces the underlying semantic bug.

IV. IMPLEMENTATION

We now describe the implementation of CHIRON’s compo-

nents and present an optimization technique to preemptively

rule out spurious transitions.

E-FSM extractor. We implemented the FSM extractor of

CHIRON on top of the KLEE symbolic execution engine [27],

which we use to symbolically execute the protocol source.

We also implemented our path exploration technique. Our

implementation is about 3.5 KLoC of C++ code in addition

to the original KLEE code base.

FSM translator and model checker. We choose the NuSMV-

2.5.4 symbolic model checker [28] because symbolic model

checkers tend to support models with a large state space [21].

We implemented the FSM translator in C++ (400 LoC), which

performs the following three steps: (i) parses the intermediate

representation (i.e., XML) of the E-FSM, (ii) generates the

atom-proposition mapping file, and (iii) translates the E-FSM

into the SMV modeling language.

Spurious CEX checker and CEX replayer. We implemented

the spurious CEX checker in C++ (600 LoC) utilizing the li-

braries of KLEE. To replay each consistent CEX in the second

step of validating CEXs, we implemented a CEX replayer that

runs the source code with concrete values obtained from an

SMT solver and keeps track of whether the protocol execution

and the CEX agree at each step.

Optimization. For a given protocol stack (e.g., TCP/IP), an

application layer protocol depends on the underlying transport

layer protocol (e.g., TCP, UDP) to exchange messages between

the peers. These protocols are typically developed with the

assumption that the transport protocol is operating correctly.

Some transport layer protocols can impose restrictions on the

feasible ordering of the occurrence of possible network events.

For example, a server running on TCP cannot receive any data

prior to a connection establishment. Instead of checking the

feasibility of an occurred network event, application protocols

rely on the transport layer protocols to trigger each network

event appropriately.

Recall that our FSM extraction algorithm applies all events

to every state (line 12 of Algorithm 1). This can consequently

result in many spurious transitions. To reduce spurious tran-

sitions, we allow the developer to provide an event model

that merely dictates the feasible ordering of network events,

which can be found in the protocol stack documentation. This



optional optimization enables CHIRON to reduce the size

of the extracted E-FSMs by leveraging developers’ domain-

knowledge. Applying this optimization can lead to a significant

improvement (see §VI-C) for protocols developed for IoT

devices as their TCP/IP stacks are often rudimentary compared

to traditional TCP/IP stacks (e.g., Linux). Instead of supporting

conventional socket-level abstractions, these IoT stacks use

several network events2 to notify the applications. For instance,

to analyze a client running on TCP of Contiki, CHIRON

needs to explicitly consider 8 types of network events whereas

considering only recv event (i.e., arrival of a network packet)

will be sufficient for the analysis of a client on TCP of Linux.

Note that this optimization is applied to the occurrence of the

network events (e.g., recv event), and hence, this does not alter

the data the events may carry (e.g., a CCS message).

V. DISCUSSION

We now briefly discuss some aspects of CHIRON.

What if protocol states are not encoded in program

variables? CHIRON’s FSM extraction requires the protocol

states to be encoded in some program variables of the imple-

mentation. While a developer is free to implement a protocol’s

FSM by not encoding protocol states in any program variables,

we observe that typically implementations of stateful protocols

in the wild encode the states in program variables whereas the

opposite is rare.

How about timers? Network protocols invariably use timers

to conduct appropriate actions upon timeouts. There can be

two types of timeouts: one triggered as an event by the

underlying protocol stack and the other caused by firing off

a timer maintained by the implementation. CHIRON handles

both cases: the former as a network event and the latter as

a library function (a stub of the timer library) that returns a

symbolic boolean variable signifying the status of the timer.

How about assuring absence of semantic bugs? CHIRON is

geared towards detecting semantic bugs by finding noncompli-

ance instead of assuring compliance with a temporal property.

CHIRON uses a model checker to determine whether the

extracted E-FSM violates the property. Recall that the E-FSM

is essentially an approximation of the protocol’s implemented

FSM. This is potentially a cause of false positive CEXs, which

we rule out using the validation steps. Hence, any realizable

CEX reported by CHIRON represents an actual semantic bug.

Conversely, in case of no violation, CHIRON does not assure

the absence of semantic bugs with respect to the property.

What kind of properties does CHIRON check? To be

precise, CHIRON’s discovery holds only for temporal safety

properties. Checking liveness properties is challenging [29]

and outside the scope of this paper. In the context of network

protocols, temporal safety properties can be broadly catego-

rized into two groups. (i) G1: Properties whose violations

2For instance, to provide TCP reliability Contiki requires the application to
store unacknowledged outgoing packets since Contiki’s TCP does not store
them due to memory limitations. To retransmit a packet, Contiki notifies the
application by using an additional network event (i.e., reXmit). Application
layer protocols are expected to handle all such events.

TABLE I: Protocol implementations tested

Protocol Mode Implementation
Protocol
Notation

TLS 1.0 Client OpenSSL 1.0.1g TLS OP

Contiki 2.4 Telnet C24

Telnet Server Contiki 2.7 Telnet C27

FNET 2.7.2 Telnet F

Contiki 2.7 DHCP C
DHCP Client

FNET 2.7.2 DHCP F

produce discernible external effects. An example from G1 is

“An HttpResponse from the server must be preceded by an

HttpRequest”. (ii) G2: Properties whose violations produce

only silent internal effects (e.g., change in a state variable).

An example from G2 is “Upon receiving a DHCPOFFER in

the REQUESTING state, the host must silently discard it and

change no state”. While prior work [5], [30]–[32] can be

tailored to check properties from G1 (but not G2), CHIRON

can check properties from both groups.

What about false negatives? In our context, measuring false

negatives is non-trivial due to the absence of ground truth

about the number of semantic bugs present in an arbitrary

protocol implementation.

VI. EVALUATION

In this section, we demonstrate the effectiveness and the

practicality of CHIRON by applying it to various protocol

implementations. We seek to answer the following research

questions: (a) Is CHIRON effective in detecting semantic

bugs? (b) How much improvement can we gain by applying

the optimization on the event model? (c) How much time does

CHIRON require to analyze an implementation?

A. Setup

We applied CHIRON to several implementations of three

application layer protocols: one secure protocol (TLS) and two

non-secure protocols (Telnet and DHCP). TLS is widely used

to secure network connections in various scenarios, including

HTTPS. Telnet is a byte-oriented bidirectional communication

protocol and often used as means to provide a command line

interface for interacting with a (possibly remote) device. Telnet

is still being used in the wild by Android and embedded

systems’ developers and also by Cisco network administrators.

DHCP is a binary protocol that assigns IP addresses to devices

on a network.

We obtained a total of 6 implementations of these protocols

shown in Table I. We focus on the client implementation

of TLSv1.0 and used one of the mainstream implementa-

tions: OpenSSL. We chose to use OpenSSL 1.0.1g as it was

identified to contain the “CCS Injection” vulnerability (CVE-

2014-0224) [5], [6]. To establish a secure channel, each TLS

connection starts with either a full handshake or an abbreviated

handshake. For our demonstration, we only consider a full

handshake to be performed between the client and the server.

Thus, we analyzed the portion of TLS OP (see Table I)

that implemented the finite state machine of TLS, which



spanned across multiple source files (e.g., ssl/s3_clnt.c,

ssl/s3_pkt.c, ssl/s3_both.c, ssl/s3_lib.c).

To demonstrate the general applicability of CHIRON, we

used various Telnet and DHCP implementations from different

TCP/IP protocol stacks developed for IoT devices such as uIP

(part of the Contiki OS) and FNET. In particular, we focus

on the Telnet server and the DHCP client implementations

developed for Contiki 2.4, Contiki 2.7, and FNET 2.7.2. We

used Contiki 2.7 and FNET 2.7.2 because these were the

latest releases at the time of evaluation. Contiki 2.4 came to

our attention because of a bug reported in its Telnet server

implementation [4]. In the remainder of the section we will use

the notation defined in Table I to refer to an implementation.

B. Detected Semantic Bugs

To demonstrate the effectiveness of CHIRON in detecting

semantic bugs, we used 6 properties for TLS, 11 for Telnet,

and 7 for DHCP. Table II – IV show the properties along with

the reports on violation. Given the lack of formalized and

complete specification for these protocol implementations, we

selected these sets of properties to cover diverse, but essential

protocol functionalities.

The properties (OP1 – OP6) we selected for the TLS client

(see Table II) are based on the correct chronological sequence

of the protocol messages exchanged during a full handshake as

dictated by the RFC [1]. A full handshake involves four flights

of messages exchanged between the client and the server. The

client first sends a ClientHello. The server responds with

a series of messages starting with ServerHello and ending

with ServerHelloDone. Between these messages, the server

can send some optional messages (ServerCertificate,

ServerKeyExchange, and CertificateRequest) depend-

ing on the parameters being negotiated. Next the client sends

a series of messages ending with ClientFinished, and

the server replies with ServerFinished to complete the

handshake. However, both the client and the server must send

a change cipher spec (CCS) message before their respective

Finished message. Failing to comply with these properties

can have critical security implications such as broken TLS

guarantees and impersonation attacks.

The properties (DP1 – DP7) of a DHCP client (see Table IV)

are all extracted from the RFC [13]. They govern how a DHCP

client implementation must react to various received messages.

In contrast, for the Telnet server, we selected the properties

from various sources (see Table III). The TP1 property is

specific to implementations that support only one active client

session at a time. TP2 – TP4 are obtained from the Telnet

RFC [12] and describe how an implementation must interpret

and react to incoming data. Properties like TP5 – TP7, though

not extracted from RFCs, are used to demonstrate how a

developer can use CHIRON to reason about whether their

implementation moves correctly between states as desired.

Moreover, any telnet implementation must be able to operate

as a Network Virtual Terminal (NVT), which is a bare bone

implementation of the Telnet protocol where all options are

disabled. Therefore, we derived four additional properties (TP8

– TP11) from the Telnet RFC specifically targeting NVTs.

We discovered a total of 11 semantic bugs: 1 in TLS OP,

5 in Telnet C24, 4 in Telnet C27, and 1 in DHCP C. Each

bug signifies that CHIRON found a realizable CEX against the

property in question. We now describe the discovered semantic

bugs in detail. For brevity, we group the similar bugs together.

Bug 1 (Accepting early CCS during TLS handshake).

According the RFC [1], during a handshake, the CCS message

from the server (i.e., ServerCCS) is expected to arrive at the

client right before the ServerFinished message. Therefore,

the client must not accept any ServerCCS received in out of

order (denoted as property OP1). In our tests, CHIRON detects

that TLS OP violates OP1. The realizable CEX reported by

CHIRON demonstrates that there exists an execution path

where the client accepts and processes ServerCCS received (in

out of order) right after receiving ServerHello. Along this

execution path, the client accepts another ServerCCS received

(in the correct order) right before receiving ServerFinished

and eventually completes the handshake successfully.

A close inspection of the source of TLS OP reveals that the

client must receive ServerCCS right before ServerFinished

to complete the handshake. However, TLS OP does not re-

strict the client from accepting and processing ServerCCS

received in out of order anytime after ServerHello. The

implication of this semantic bug exacerbates because TLS OP

calculates the new keys upon receiving the first ServerCCS

and does not recalculate the keys for any ServerCCS received

later. A man-in-middle attacker can easily exploit this vulner-

ability to trigger the client calculate the new keys based on an

empty master secret. As a result, the attacker can successfully

break the guarantees of TLS (e.g., confidentiality). This was

first reported by Masashi Kikuchi as CVE-2014-0224 and later

fixed in the following release of OpenSSL.

Bug 2 (Accepting multiple Telnet client connections si-

multaneously). According to the Telnet server documentation

in Contiki, the server must not accept any new connection

from a (possibly new) Telnet client during an ongoing session,

which we denote as property TP1. In our tests, CHIRON

generates a realizable CEX for Telnet C24 demonstrating that

the Telnet server accepts a new connection from a client even

if there is an ongoing session. In fact, this semantic bug

can manifest upon receiving any additional connection. This

bug was, however, already reported [4] and later fixed in the

following release of Contiki.

After a close inspection, we discovered that this semantic

bug can have critical implications: (a) incorrect protocol

behavior as the server re-initializes variables and (b) security

issues as the server leaks data to the unauthorized client(s).

Bug 3 (No reply with appropriate Telnet command). Both

Telnetd implementations from Contiki (Telnet C24 and Tel-

net C27) violate properties TP2 and TP3, which require that

the Telnet server must reply the appropriate Telnet command if

it receives WILL (for TP2) or DO (for TP3) from the connected

Telnet client. The realizable CEX generated by CHIRON

demonstrates that there exists an execution path in the corre-



TABLE II: Properties for TLS client and the report on violations (✗-mark signifies violation)

Property Property Description TLS OP

OP1
The client must not accept any change cipher spec message from the server (ServerCCS) received in out
of order during a handshake

✗

OP2 The client must not complete a handshake without receiving a ServerCCS from the server

OP3 The client must not complete a handshake if the server skips the ServerHelloDone message

OP4
The client must not complete a handshake when the ServerFinished message is received early (even
before ServerHelloDone)

OP5
The client must not accept a ServerCertificate message after accepting a ServerKeyExchange
message

OP6
The client must not accept a ServerKeyExchange message after accepting a CertificateRequest
message

Total: 1

TABLE III: Properties for Telnet server and the report on violations (✗-mark signifies violation)

Property Property Description Telnet C24 Telnet C27 Telnet F

TP1 The server must not accept any new connections during an on-going session ✗

TP2 If receive WILL after IAC, must send DO or DONT ✗ ✗

TP3 If receive DO after IAC, must send back WILL or WONT ✗ ✗

TP4 If receive IAC IAC, must consume the 2nd IAC as regular data

TP5
If receive IAC in NORMAL state, must go to IAC state and eventually go
back to NORMAL state

TP6 If receive DO after IAC, must go to DO state

TP7 If receive WILL after IAC, must go to WILL state

TP8 For NVT, if receive DONT after IAC, must NOT send WONT ✗ ✗

TP9 For NVT, if receive WONT after IAC, must NOT send DONT ✗ ✗

TP10 For NVT, never send DONT request

TP11 For NVT, never send WONT request

Total: 5 4 0

TABLE IV: Properties for DHCP client and the report on violations (✗-mark signifies violation)

Property Property Description DHCP C DHCP F

DP1 If receive DHCPNAK in REQUESTING state, must immediately start over DHCP negotiation ✗

DP2
If receive DHCPOFFER in SELECTING state, must immediately send out DHCPREQ and move
to REQUESTING state

DP3
If receive no DHCPOFFER in SELECTING state and response timer expired, must resend
DHCPDISCOVER

DP4 If receive DHCPOFFER in REQUESTING state, must discard, change no state, take no actions

DP5 If receive DHCPACK in REQUESTING state, must immediately move to BOUND state

DP6
If receive no DHCPACK in REQUESTING state and response timer expired, resend
DHCPREQUEST

DP7
If receive no DHCPACK in REQUESTING state and state timer expired, start over DHCP
negotiation

Total: 1 0

sponding implementation where the Telnet server fails to send

back its response while the buffer (named telnetd_buf in the

source) is full. In both implementations, the Telnet server uses

this buffer to temporarily store all outgoing data including the

Telnet command responses and sends the data over the network

from time to time.

A careful inspection of the source reveals that the sendopt

function of the Telnetd implementation does not check if it

has failed to append the response command to the buffer; as a

result, the server never sends back the response to the client.

This semantic bug can cause an interoperability issue since

the client would keep waiting for the reply from the server.

Bug 4 (Potential endless acknowledgment loops). Both

Telnetd implementations from Contiki (Telnet C24 and Tel-

net C27) violate properties TP8 and TP9. According to the

Telnet RFC [12], the protocol must acknowledge a DONT

(resp., WONT) command by sending out a WONT (resp., DONT)

only if the received DONT (resp., WONT) command causes a

change in the current enabled options; otherwise, it must not

acknowledge. This is needed to prevent potential endless ac-

knowledgment loops where each party considers the incoming

commands as new commands rather than acknowledgments.

Since both Telnet C24 and Telnet C27 implement the Telnet

server as NVT, they must not acknowledge any DONT/WONT

command requests. For both implementations, CHIRON gen-

erates a realizable CEX, which demonstrates that the Telnet

server actually replies back WONT (resp., DONT) when it re-

ceives a DONT (resp., WONT) command request from the client.

There are two possible scenarios where such endless ac-

knowledgment loops can occur: (a) when the client allows

multiple new requests about an option that is currently under

negotiation and (b) if the server connects with a (possibly



TABLE V: Extracted E-FSMs by CHIRON. (EM1 corresponds to the re-
stricted event model described in § IV, and EM2 considers all possible events
with an arbitrary order.)

Protocol
Notation

Event Model 1 (EM1) Event Model 2 (EM2)

States Transitions Propositions States Transitions Propositions

Telnet C24 6 84 19 6 114 19

Telnet C27 12 162 21 12 306 21

Telnet F 7 18 11 7 34 11

DHCP C 4 46 17 4 47 17

DHCP F 8 80 45 8 140 45

TLS OP 35 669 58 35 669 58

TABLE VI: Execution time (in Seconds) required by
each component of CHIRON. (‘–’ means CHIRON
found no CEX to replay.)

Protocol
Notation

FSM Ex-
traction

Property
Checking

CEX
Replay

Experi-
ment
Time

Telnet C24 0.98 0.26 0.21 4.85

Telnet C27 6.29 0.57 0.28 13.65

Telnet F 0.16 0.15 – 1.91

DHCP C 7.01 0.17 0.24 8.41

DHCP F 15.09 0.55 – 18.96

TLS OP 103.15 2.05 6.81 122.26

faulty) client that initiates a DONT/WONT request and also

acknowledges the received DONT and WONT commands. Such

loops can impair the performance of the IoT devices running

either of these implementations.

Bug 5 (No immediate start over of DHCP configuration).

According to the RFC [13], a DHCP client receiving a

DHCPNAK message from the DHCP server as a response to

its previously sent DHCPREQUEST message must immediately

restart the DHCP configuration process by sending a new

DHCPDISCOVER message (property DP1). In our analysis of

the DHCP client implementation for Contiki (DHCP C),

CHIRON generates a realizable CEX demonstrating an exe-

cution path of the implementation that violates this property.

A close inspection of the source reveals that DHCP C

does not handle the reception of DHCPNAK messages. Instead,

it keeps on retransmitting its DHCPREQUEST upon timeout

for multiple times before giving up and then starts over

the configuration process. Though this does not lead to any

inconsistencies, it hinders the performance by continuing inef-

fective retransmissions, which can drain power constrained IoT

devices as switching the radio on is a power-hungry operation.

C. Performance

Our experiments were run on a commodity machine

equipped with an Intel Core i7-2620M CPU and 8GB of RAM,

running Ubuntu 14.04 with Linux kernel 3.13.

Size of E-FSM. In Table V, we demonstrate the advantage of

the optimization about enforcing the feasible order of network

events (see §IV) by comparing the E-FSMs extracted for two

event models: (a) Event Model 1 (EM1) corresponds to the

user-provided restricted event model that considers only the

feasible order of the occurrence of the network events in an

actual execution of the protocol, and (b) Event Model 2 (EM2)

represents the less restrictive event model where an event from

the set of all possible network events can occur in any arbitrary

order. For both models, the E-FSMs contain the same number

of FSM states and propositions. However, the E-FSMs for EM2

have more transitions as expected. Most of them are spurious

since they can never actually occur. In case of TLS OP, the

E-FSMs for both the event models have the same number of

transitions since there is only one relevant network event (i.e.,

recv meaning arrival of a packet) for TLS OP.

Detection time. We evaluated the feasibility of CHIRON as a

practical tool for detecting semantic bug through measuring

the execution time incurred by its major components (see

Table VI). In this experiment, we considered only the restricted

event model (EM1). Each reported execution time is an

average of 10 independent runs. Once the E-FSM is extracted,

we can use it for detecting semantic bugs against an arbitrary

number of properties. For property checking, we measured

the total required time to model check all the properties (6 for

TLS, 11 for Telnet and 7 for DHCP) until either a consistent

CEX or no CEX is found. However, for comparison, we report

only the average required time to model check per property

(see Table VI). CEX replay time is measured only if CHIRON

found a consistent CEX to replay. We report the time to replay

per consistent CEX. Experiment time signifies the total time

required to finish the entire analysis of each implementation.

Among the three Telnet server implementations, CHIRON

requires the longest time (6 sec) to extract the E-FSM from

Telnet C27, which has a relatively larger E-FSM size (see

Table V). The same trend is observed for the two DHCP

client implementations. Note that CHIRON requires longer

time for both the DHCP implementations compared to the

Telnet implementations. The reason is that to analyze a DHCP

client CHIRON processes a symbolic packet of size at most

552 bytes for each receive event as opposed to a Telnet

server where it processes 1 byte at a time. Similarly, CHIRON

requires about 100 sec to extract the E-FSM from TLS OP,

which is expected due to its large E-FSM size (see Table V).

The amount of time spent to model check each property is

influenced by the E-FSM size, the length of the property, and

the number of propositions. This trend can be noticed among

the implementations we tested (see Table VI), with TLS OP

taking the longest time (2 sec) to model check a single property

compared to the other implementations. Replaying a CEX

takes a small fraction of time compared to the extraction of

the respective E-FSM because CHIRON’s CEX replayer drives

the actual execution of the protocol along only one execution

path. Finally, CHIRON finishes the complete analysis for each

implementation within a few seconds (with a maximum of 2

minutes for TLS OP).

VII. RELATED WORK

We outline the prior work closely related to CHIRON.

Software model checking. CHIRON tries to automatically

check whether a protocol implementation violates a given

temporal property and thus detect the underlying semantic bug.



Software model checking [33]–[39] generalizes this for any

program and safety properties. A software model checking

approach can either be geared towards finding violations or

proving properties. Based on the used underlying technique,

software model checking approaches can be broadly catego-

rized into two classes: execution-based approaches [33]–[35]

and abstraction-based approaches [36], [37]. CHIRON fol-

lows the abstraction-based approach by abstracting the proto-

col implementation with an E-FSM. Typically, execution-based

approaches cannot explore the entire state-space completely

due to the state-space explosion problem whereas abstraction-

based approaches suffer from spurious CEXs.

There is another class of software model checking ap-

proaches, namely counterexample-guided abstraction refine-

ment (CEGAR) [38]–[40] which enjoys the advantages of both

the above approaches by automatically generating abstractions

of the program under analysis and refining the program (or,

the model) when a spurious CEX is encountered. Although

CHIRON, in principal, does not exactly follow the CEGAR

approach, adding invariants based on spurious CEXs during

model checking can be viewed as model refinement.

Protocol analysis. Prior work checks correctness of protocols

by analyzing either manually formalized specifications [41],

[42] or implementations in domain-specific languages [43]–

[45]. However, these approaches cannot find bugs in the actual

implementations. Holzmann et al. [46] requires a heavily

annotated source and user provided rules (map the property

in question to relevant statements in the source) to extract

the abstract event-driven program model from the source. The

model is then verified by utilizing a given non-deterministic

test driver to simulate the necessary behavior of the external

system. Contrarily, CHIRON uses symbolic execution to au-

tomatically extract the E-FSM of the protocol with little input

from the user and does not require any test driver.

Several explicit-state model checkers (CMC [7], [8], NICE

[9]) are used to verify protocol implementations against user

provided state invariants, not temporal properties. While di-

rectly model checking the code can help them detect low-level

programming errors, this can quickly lead to the state-space

explosion problem. Contrarily, CHIRON focuses on temporal

properties expressed in pLTL and check them against the

extracted E-FSM using a symbolic model checker.

Several tools [31], [32], [47] have been developed by ex-

tending dynamic symbolic execution [27], [48] to analyze net-

work protocol implementations; however, they cannot detect

semantic bugs due to violations of temporal properties. While

SymbexNet [31] can be tailored to test temporal behavior

limited to only discernible effects (e.g., exchanged messages),

CHIRON can check properties even with silent internal ef-

fects. PIC [32] identifies non-interoperable implementations

by finding any discrepancy between what the sender can

send and what the receiver can receive. In contrast, CHIRON

detects semantic bugs in implementations with respect to user

provided temporal properties, often derived from RFCs.

Fuzzing has been another predominant approach to hunt for

bugs in protocol implementations [30], [49], [50], including

secure protocols like TLS [5], [6]. In essence, they rely on

black-box testing and thus find bugs causing discernible exter-

nal effects only (e.g., crash, exchange of incorrect messages).

In contrast to CHIRON, their capabilities are fundamentally

different and complementary. While some fuzzing tools can

be tailored to check temporal behavior with discernible ef-

fects, they cannot find semantic bugs causing silent incorrect

behavior, nor can they identify the buggy execution paths.

In addition to the CCS injection bug, SmackTLS [5] finds

some additional bugs in OpenSSL, which CHIRON cannot

detect as they are not directly realizable through the TLS

client’s E-FSM. To detect those bugs, SmackTLS relies on two

manually derived components: a state machine of TLS for

generating test cases and a verified reference implementation

of TLS to decide if the outcome of a test case is correct.

Contrarily, CHIRON requires neither a state machine nor a

reference implementation; instead, it relies on the desired

temporal properties derived from RFCs and the developer

provided meta-information of the protocol implementation.

Inferring protocol specification. Prior work aims to infer the

protocol specification (FSM)—using network traces [51]–[54],

using active queries [6], [55], using program analysis [24],

[56], [57], or through model checking [36], [58]. These ex-

tracted FSMs represent either discernible external interactions

of the protocol (e.g., the sequences of exchanged messages) or

the low-level program state machines (not E-FSMs). Contrarily,

CHIRON extracts the E-FSM from the implementation by pri-

marily capturing precise internal interactions of the protocol.

VIII. CONCLUSION

We presented an automated tool, CHIRON, to help a

developer detect semantic bugs in an event-driven network

protocol implementation by checking if the implementation

violates given temporal properties. CHIRON first automati-

cally extracts the E-FSM from the implementation by utilizing

our FSM extraction technique based on symbolic execution

and then uses a symbolic model checker to detect whether the

E-FSM violates the properties. We demonstrated CHIRON’s

efficacy by applying it on 6 mature implementations of 3

protocols. CHIRON detected 11 semantic bugs violating the

properties derived from the documentation and RFCs of the

protocols. Our results demonstrate that CHIRON can be useful

for developers to discover semantic bugs.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their helpful comments. This work was supported in part by

the grant CNS-1600266 and CNS-1314688 from the SaTC

program of the National Science Foundation. Its contents are

solely the responsibility of the authors and do not represent

the official view of the National Science Foundation.

REFERENCES

[1] T. Dierks and C. Allen, “The tls protocol version 1.0,” Internet Requests
for Comments, RFC 2246, 1999.



[2] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug character-
istics in open source software,” Empirical Softw. Engg., vol. 19, no. 6,
2014.

[3] “OpenSSL toolkit,” http://www.openssl.org/.

[4] “Contiki bug report,” http://github.com/contiki-os/contiki/commit/d862e.

[5] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss et al., “A messy state of the union: Taming the composite
state machines of TLS,” in S&P. IEEE, 2015.

[6] J. de Ruiter and E. Poll, “Protocol state fuzzing of tls implementations,”
in USENIX Security, 2015.

[7] M. Musuvathi and D. Engler, “Model checking large network protocol
implementations,” in NSDI, 2004.

[8] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill, “CMC:
Pragmatic approach to model checking real code,” in OSDI, 2002.

[9] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A nice
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APPENDIX A. SYMBOLIC EXECUTION

Symbolic execution is a program analysis technique that executes
the code using symbolic values instead of concrete values (say, α
instead of 2) for program inputs. After executing each program
statement, the executor updates the symbolic store maintaining in-
formation about program variables (e.g., x = 5α). Special attention
is given to handling branches (i.e., if-else, loops). At each branch, the
executor consults with a constraint solver (e.g., an SMT solver) to
determine the feasibility of the branch condition given the information
in the symbolic store so that the executor can continue exploring
only feasible branches. When both branches are feasible, the executor
explores both of them, creating two different execution paths. Upon
termination of the execution, the executor constructs a tree of all
possible execution paths of the program. Each execution path is
represented by a unique path constraint, which is the conjunction of
branch choices that need to be made to follow the path. If necessary,
each path constraint can be solved using a constraint solver to obtain
concrete inputs for that path.


