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ABSTRACT

We study collaborative adaptive cruise control as a representative
application for safety services provided by autonomous cars. We
provide a detailed analysis of attacks that can be conducted by a
motivated attacker targeting the collaborative adaptive cruise con-
trol algorithm, by influencing the acceleration reported by another
car, or the local LIDAR and RADAR sensors. The attacks have a
strong impact on passenger comfort, efficiency, and safety, with
two of such attacks being able to cause crashes. We also present
two detection methods rooted in physical-based constraints and
machine learning algorithms. We show the effectiveness of these
solutions through simulations and discuss their limitations.
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1 INTRODUCTION

Rapid developments in the last years have made autonomous and
connected cars a reality. Such cars are equipped with sensors that
allow them to send and receive signals, sense the physical envi-
ronment around them, and interact with other vehicles or entities,
including remote cloud services.

One of the major questions that must be answered for full adop-
tion of the connected car paradigm is “How will connected cars and
applications for connected cars be protected against cyber-attacks?”
This is a difficult task given that connected cars are complex enti-
ties consisting of numerous hardware and software components
having several unprotected or vulnerable access points such as
on-board diagnostics (OBD) and multiple types of communication,
with different levels of security.

Previous work has focused on in-car vulnerabilities, exploiting
the lack of secure communication between sensors and their man-
aging electronic control units (ECUs), or the lack of authentication
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for ECUs and secure communication on the controller area network
(CAN). Some solutions have been proposed to individual attacks.
For example, several works proposed authentication and integrity
solutions for CAN communication [31] or for car-to-car commu-
nication [30]. Other works have considered intrusion detection
systems (IDS) for CAN communication based on fingerprinting
ECUs [9], or secure access to the CAN via a network controller [27].
Multiple corporations and industry consortiums have proposed
in-car architectures that take security into consideration at design
time. Examples include: AUTOSAR [25] and Evita [23].

One particularly important class of applications for connected
cars are those providing increased safety, such as traffic and con-
gestion control, collision avoidance, intersection management, and
assisted-turn. Such applications rely on information received from
sensors and other cars on the road to automatically make decisions.
Several types of control algorithms have been proposed, based on
information reported by preceding cars and local sensors or cam-
eras. For example, in collaborative adaptive cruise control (CACC),
cars are organized into platoons and each car adjusts its acceler-
ation based on the acceleration of the preceding car, received via
car-to-car communication, and information from its own RADAR
and LIDAR sensors. Given the critical role of such applications, it
is very important that they are resilient to attacks.

Previous work in CACC has mainly focused on attacks against
different controllers [1, 10, 11, 13, 14, 28] by showing the impact
of attacks against the network communication protocol on the
efficiency of the platoon. Lying acceleration attacks have been iden-
tified in [1]. Attacks using malfunctioning RADAR and LIDAR were
shown in [28], but with extreme values (i.e. 30m/s? acceleration or
11m distance) which would be readily identified by simple defenses.
Neither of [1] and [28] proposed defenses.

In this paper we study CACC and consider attacks caused by
attackers who compromise a car and use it to attack another victim,
or compromise a subset of the victim’s car (RADAR or LIDAR
sensors) and use it to control the acceleration of the victim. Unlike
previous work we propose attacks that are harder to detect (maxima
of 5m/s? for acceleration or 3m for distance), and we also discuss
defenses. Specifically:

o We identify four attacks ACL, VEL, POS, and VEL-POS that
can be conducted by an attacker that has compromised either the
acceleration dissemination subsystem, the RADAR or the LIDAR
sensors. These attacks impact the safety, passenger comfort, and
efficiency of CACC. We show the impact of these attacks through
simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most effective against efficiency, and
the POS and VEL-POS attacks both result in a crash.
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Figure 1: CACC overview.

e We propose two solutions: PHY - rooted in cyber-physical
properties — enforces constraints derived from kinematics equa-
tions and HMM - drawn from anomaly detection — uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors.

2 CACC

Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Different methods have been proposed
for providing this application, using different algorithms, different
sensors, and different sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

Each vehicle in the platoon tries to maintain a safe space-gap
with its preceding vehicle. Safe space-gap, denoted by gsq4fe., is de-
termined by speed and maximum deceleration ability of the vehicle
(v and D™?*) and those of the preceding vehicle (vp and D,™%¥) ,

and is given by )
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where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap g < ggqfe. the vehicle switches to collision avoidance
mode and uses maximum deceleration D™%* to avoid collision.
Acceleration is computed as:

ar+1 = Kaar + Ko (vp — v) + Kg(g — Gmin — vTy)

where a;41 is next timestep’s acceleration, a; is current acceler-
ation, K, is an acceleration constant, K;, is a velocity constant,
Ky is a position constant, v, is preceding car’s velocity, v is car’s
velocity, g is current gap, G is minimum gap, and Ty is safe gap.
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(Ka =0.66,Ky, = 0.99571, Ky = 4.08572, Gin = 2m, Ty = 0.55s as
specified in [2].)

The CACC algorithm has three main goals: safety, efficiency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap gﬁ afe (computed as the

safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap gl.t between each pair of
consecutive cars i, i + 1 is at least gﬁ afe The whole run will be safe

if it is safe at every time-step, T;. The severity of a safety violation
is captured by the proportion of gia fe by which the gap is violated:
t t
Isa fe 9i
¢
Ysa fe

crash = max 4 0, max
T; i
The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.
Efficiency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be efficient a run needs to minimize the value for car i of

tend ; ;
ﬁ:o (gi - gs“fe) dt.

This integral is computed until the end of the run t,, 4, and total
waste is the maximum waste on a car.

Passenger comfort. When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

waste; =

jerk = —.
Jer d[

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC

The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

Influence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the
victim’s car and sends incorrect acceleration packets to influence the
computation (by the CACC subsystem) of the victim’s acceleration.
This is a weaker threat model since the attacker may compromise
any car and then just place it near the victim. This attack will
propagate through the platoon of cars allowing the attacker to
be not only immediately preceding the victim but also many cars
forward. We consider the impact of only one attacker.

Influence RADAR and/or LIDAR sensors of the victim. Information
from RADAR and LIDAR sensors are obtained from local sensors
and they provide velocity and position information about the pre-
ceding car. Attackers can manipulate data from the victim car’s



sensors, either directly, by compromising a subset of the victim
car, or indirectly, by remotely manipulating the sensor’s physical
layer signals [7, 21]. We assume that the attacker did not totally
compromise the victim’s car, but has control over just the LIDAR,
just the RADAR, and over both LIDAR and RADAR. We distinguish
RADAR-only attacks and LIDAR-only attacks since these require
different capabilities, especially to conduct remotely [7, 21]. This is
a stronger attack as it requires direct control over sensors in the
victim car or the ability to manipulate physical layer sensor signals.
We identify four specific attacks defined by the way we model
lying about information and the system goals impacted the most.
ACL attack. This attack occurs when the attacker can modify
acceleration packets. We consider attacks that are not easily de-
tectable, i.e. using values with acceptable ranges for the CACC
subsystem, for the subsystem we consider these values lie within
—5m/s? to 5m/s? [2]. While all kind of lying patterns are possible,
we focus on patterns that can generate oscillations because due to
the small range of changes, we do not expect the impact on safety to
be significant. We consider attacks modeled by a sinusoid function
where the lying acceleration af 4. is defined by the following:
Afake = Atrue t Ca sin(ft)

where f is the frequency of lying, ¢ is time, and ¢, is the magnitude.
The system goal impacted is passenger comfort.

VEL attack. This attack takes place when the attacker can mod-
ify RADAR (velocity) sensor values. Velocity manipulation has
bigger impact than ACL, as the CACC algorithm puts more weight
on velocity values and velocity is more difficult to bound. We con-
sider attacks not easily detectable that cause inefficiency by slowly
decreasing the velocity measurement of the preceding car causing
the victim to slow down to match. While many functions are possi-
ble, we consider attacks modeled as a linear function represented
by the following equation:

Ufake = Vtrue — Cul
where c,, is the magnitude of the lying, ¢ is time, and vf 4t and
Utrue are the induced speed and the true speed measured by the
victim. There is a tradeoff in choosing c,, — a large value will create
a powerful attack, but make the attack easy to detect. A small value
will be harder to detect, but have less impact. The system goal
impacted is efficiency.

POS attack. This attack occurs when the attacker has the ability
to modify LIDAR (position) sensor values. This attacker is able to
decrease the safety of the algorithm, increasing the likelihood of
a crash. It operates by slowly increasing the distance measured to
the direct leader so that the follower will overestimate the gap and
follow too closely. While many functions are possible, we model
the attack as a linear function given by the following equation:

dfake =dirye tcgt

where ¢ is the magnitude of the lying, set by the attacker to balance
probability of detection with the power of the attack, ¢ is time, and
dfake and dirye are the distance from origin as induced by the
attack and in truth, respectively, as measured by the victim. System
goal impacted is safety.

VEL-POS attack. The fourth and final attack we consider is
when the attacker can modify both LIDAR (position) and RADAR
(velocity) sensor values. This adversary is strictly more powerful
than the POS adversary, so it can also decrease safety. While other
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functions are possible, we consider functions where the attacker
slowly increasing both sensor values, as represented by the follow-
ing equations:

vfake = Utrue T Cu t, dfake = dtrug +cgt

where the ¢, and c; are the magnitude of lying for speed and
distance, t is time, and dfa ke and drye are the distance from origin
as induced by the attack and in truth, while vf 4k, and vsrye are
the induced speed and the true speed, all measured by the victim.
System goal impacted is safety.

4 ATTACKS MITIGATION

The essence of the attacks we consider is the ability of an attacker
to lie about information used to compute the victim’s acceleration.
While detecting such attacks is a very difficult problem, there are
unique properties of CACC that make the problem more tractable.
First, the information reported by attackers in CACC captures cyber-
physical properties and must obey the kinematic equations. Second,
the information is reported periodically, thus one can build mod-
els and observe their behavior over time. Below we describe two
mitigation techniques that leverage these properties.
Physics-Based (PHY). Each car uses sensors to measure the
position and velocity of preceding car, and receives packets contain-
ing the acceleration value of preceding car. Since cars are physical
objects, their behavior in terms of position, velocity, and accelera-
tion must follow certain well defined laws of kinematics. By using
these laws, we can detect inconsistencies between these values as
a result of an attack. Let t; be the length of time between measure-
ments, po1d, Pnew be the old and new position values of the direct
leader, v, 4, Unew be the old and new velocities, and a4, dnew
be the accelerations received via DSRC from the direct leader.
Write vmin = min(veiq, Vnew)> Vmax = Max(Vo1d> Vnew)> max =
max(anews dold)> Amin = MiN(anew, dy1q)- We introduce parame-
ters, €5 and €, to account for measurement noise and any time
difference between the. The values of €, and €, can be tuned before
deploying the defense. On a small enough time step, the following
equations must be true, at the car performing the measurements:
Umin tqg + 0.5 amin tczi — €p < Prnew — Pold

Prew — Pold < Vmax ta + 0.5 Amax t5 + €p
Amin td — €v < Unew — Vpld < @max tq + €v

A violation of any of these inequalities is flagged as an attack.

This method has the advantage that is has very small computa-
tional overhead and requires very little storage — only the old and
new values of the position, velocity, and acceleration. It can easily
be deployed on a car.

Threats to validity. While PHY is suited for scenarios where the
attacker controls only a single metric (i.e. position only), it does not
work well for sophisticated attackers that can control two or more
metrics (i.e. position and velocity). Such an attacker may be able to
change the metrics in a consistent manner to mimic cyber-physical
properties, matching thus the detection equations and avoiding
detection. As any threshold-based method, PHY is also vulnerable
to attacks just below the detection threshold.

Hidden Markov Model (HMM). For scenarios where an at-
tacker controls more than one metric, we leverage the strong tem-
poral component of CACC - position, velocity, and acceleration of a



car and its leader all influence these values later in the protocol. We
use a Hidden Markov Model, an anomaly detection mechanism, to
fit the time series data of CACC and learn temporal dependencies.

An HMM can be described as a set of n states Q, an nxn transition
probability matrix A, emission probabilities . We use two states,
as we observe two types of behavior in the CACC algorithm - a
synchronization phase where cars create the safe gaps, and a stable
phase, where cars stay at a roughly fixed velocity. The i, jth entry
of A represents the probability that, given that state i is observed at
time ¢ —1, the state j will be observed at ¢. The emission probabilities
0 represent the probability distributions of values taken at each state.
In our case, the emission probabilities represent the distribution of
position, velocity, and acceleration values for each state. We can
use a dynamic programming solution called the forward algorithm
[24] to compute a log-likelihood that a time series was generated
by a given HMM and detect anomalies by using a threshold py,.

While HMM can address attackers that control multiple metrics,
it is more complex than PHY. The dynamic programming solution
for probability computation, the forward algorithm, runs in time
O(n?t), where t is the number of time steps in the time series
considered, and n is the number of states. It also requires O(n + t)
space, more than the constant amount required in PHY.

Threats to validity. Given knowledge of the parameters of an
HMM, it is possible to construct attacks on the model, either at-
tempting to bypass the detection (evasion), or attempting to influ-
ence the training to make the model less reliable (poisoning). For
example, such a misclassification for speech (a different setting than
our application) given access to the HMM parameters, was shown
in [6]. While not trivial, a similar attack could be performed for our
application by constructing an optimization problem to maximize
impact under the constraint that the strategy is not flagged as an
anomaly. This is a well known weakness of machine learning mod-
els in general and on-going work in adversarial machine learning
is trying to address it. One possible solution is to use ensembling
of models to provide some resilience to both evasion and poison-
ing attacks [3, 5]. In our case, an ensemble of PHY and HMM, or
an ensemble of models constructed from disparate vantage points
(where they would be difficult to manipulate simultaneously), would
improve the robustness of our proposed defense.

5 EXPERIMENTAL RESULTS

Methodology. We implemented our own simulator in Python,
simulation is discrete, a run is 400 steps, where each step is 0.1s
and was chosen to match the frequency of acceleration messages.
We simulate a platoon of 7 cars, car length is 5m. The cars start
at 1m/s with a distance between cars of 10m. We model sensor
measurement error with Gaussian noise, with standard deviation of
3cm [19] for LIDAR and 0.1m/s [12] for RADAR. We use the CACC
algorithm from Section 2. The minimum safe-gap is 0.55s [2], with
a 2m leeway, resulting in a 2.55m gap (or 7.55m from front to front
including car length). The maximum deceleration is 5m/s?.

The attacker implements the attacks described in Section 3. We
use only one attacker in the platoon, For the ACL attack, the victim
is Car 3 and the attacker is Car 2. For the other attacks, the com-
promised car and victim are the same — Car 2. A distance of 5m
between two adjacent cars indicates a crash has occurred.
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Figure 2: Impact of ACL attack (c; = 5 and f = 5).
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Figure 3: Impact of VEL attack on positions within the pla-
toon. Note the increasing gap between Car 1 and the victim.
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(a) POS attack (cq = 0.1) (b) VEL-POS attack (¢, = 0.2 and c¢g =

0.1)

Figure 4: Impact of POS and VEL-POS attacks. In both cases
the attack causes a crash (indicated by distance of 5m) at 27.6
seconds (left) and 21.2 seconds (right) into the run.

5.1 Attacks

We show several instances of our attacks and a summary in Table
1). We report averages over 10 runs.

ACL attack. This adversary, with the goal of introducing in-
stability, adds a sinusoidal value (¢, = 5m/s® and f = 5Hz) to
its accelerations as shown in Figure 2(a). The corresponding jerk
is shown in Figure 2(b). The average magnitude of the jerk ex-
perienced by Car 3 is 7.07 m/s3, compared to an average jerk of
magnitude 0.56 m/s> when there is no attack. Even Car 6 is affected
- its average magnitude of jerk when under attack is 0.61 m/s
while its jerk has an average magnitude of 0.43 m/s> in an benign
environment. We find that the attack also impacts Car 3’s efficiency,
the average time gap is 6.22 seconds for Car 3 when under attack,
but is only 2.10 seconds when not under attack.

VEL attack. The VEL adversary slowly decreases the RADAR
velocity measurements of the car in front of it, leading the victim
to believe its direct leader is going slower than it really is. As a
result, the victim slows down to compensate, increasing the gap.



Attack ‘ Jerk (m/s%) ‘ Waste (s) ‘ Crash ‘
No attack 0.56 2.10 0
ACL (cq =5, f =5) 7.07 3.14 0
VEL (¢, = 1) 0.59 9.32 0
POS (cg = 0.1) 0.73 0.69 crash
VEL-POS (¢, = 0.2, ¢4 = 0.1) 0.86 0.60 crash

Table 1: Comfort, efficiency, and safety metrics for victim.

We experiment with two different values of ¢, 0.1 and 1. When
¢y = 1, as seen in Figure 3(a), this attack significantly impacts the
efficiency at Car 2. The mean gap between the victim and Car 1
is 9.31 seconds, compared to 2.10 seconds with no attack. This is
an increase of 343%. The jerk in this case is still 0.60 m/s3, not
significantly different from 0.56 m/s®> without any attack. With
¢y = 0.1, as shown in Figure 3(b), there is still some efficiency
impact. The mean gap in this case is 2.37 seconds, a 13% increase
over no attack. There is still little stability change - the maximum
jerk is only 0.61 m/s3.

POS attack. This adversary manipulates the victim’s LIDAR
reading to slowly increase the distance measured to the direct
leader. This will cause the victim to decrease the gap. We set the
parameter for the attack to match the magnitude in error for LIDAR
sensors, we set ¢ = 0.1. The key impact of the POS attack is that
it is able to cause the victim, Car 2, to crash. This is illustrated in
Figure 4(a). After an average of 27.6 seconds, the magnitude of the
error is large enough to cause a crash (distance of 5m vs. 7.55m
in stable state). The crash is induced with a fairly small impact in
performance and stability, the victim ’s average jerk magnitude is
only 0.70 m/s®, compared to 0.56 m/s* without the attack. This may
be an indication that the attack will be difficult to detect.

VEL-POS attack. This adversary combines the power of the
VEL and POS adversaries, we select comparable values for the
parameters for VEL and POS, we use ¢, = 0.2 and ¢y = 0.1.

The VEL-POS attack is a strict improvement over POS, so we ex-
pect it to cause crashes — we see this happening in Figure 4(b). While
POS caused crashes after an average of 27.6 seconds, VEL-POS is
able to cause crashes after an average of 21.2 seconds. Similar to
POS, this is done with limited impact on performance and stability.

5.2 Defenses

Summary of detection rate is shown in Table 2 over 10 runs, of 400
steps each. The detection rate is defined as number of successful
detections divided by the number of times detection algorithm is
invoked. PHY is invoked 400 times (at each step, or every 0.1s), for
HMM this number is 20 (every 50 steps, or 5 seconds).

PHY defense. We configure PHY with tolerance parameters
€y = 0.4m/s and €p = 0.15m. Figure 5(a) shows the ACL attack
(cq = 5, f = 5), with the PHY defense in place. The vertical bar
indicates that an attack was detected and as seen from the graphs
this attack is detected at several timesteps. We next applied PHY
to three instances of VEL attack (¢, = 0.05, ¢, = 0.1, and ¢, = 1)
and to the POS and VEL-POS attacks from Figure 4. We show only
VEL attack with ¢, = 1 and ¢, = 0.05 in Figures and 5(b) and 5(c).
While PHY detects the VEL attack (c,, = 1), it can not detect any
of the other attacks including the ones causing crashes. Table 2
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Attack | PHY |[HMM |
No attack (false positives) 0.35% 1.5%
ACL (cq =5, f =5) 25.75% | 77.5%
VEL (cp, = 1) 95.13% | 83.5%
VEL (cp, = 0.1) 0.58% | 79.5%
VEL (c5, = 0.05) 0.45% | 79.5%
POS (cg = 0.1) 0.25% | 74%
VEL-POS (¢, = 0.2, ¢4 = 0.1) | 0.13% | 90%

Table 2: Detection rate for all attacks (over 10 runs).

shows that the only attack for which PHY has consistently good
performance is the VEL attack (c,, = 1).

HMM defense. We set the threshold for anomaly detection
to minimize false positives, pp, = —25. We test HMM against all
attack instances shown in Figures 2,3,4 and 5(c). HMM is successful
at detecting all of them. Notably, the POS attack is successfully
identified by HMM well before it causes a crash (see Figure 6(a)).
We are also able to identify the VEL-POS attack before it causes
a crash (see Figure 6(b)). We also show in Figure 6(c), that HMM
correctly identifies that there is no attack in the benign scenario.
Table 2 shows HMM has good detection accuracy for all considered
attacks, being the most effective against VEL-POS.

6 RELATED WORK

In-car. Previous work studied in-car vulnerabilities and defenses.
Attacks examples include taking control of the brakes and steering
of a vehicle [8, 17, 20], influencing the tire-pressure monitoring
system (TPMS) [26] and proposed defenses include authentication
and integrity for CAN [31] or for car-to-car communication [30],
intrusion detection system [9] or secure access for CAN [27].

Connected cars. Most of the work for connected cars to date
has focused on attacks. In particular, attacks have been shown to
be effective against DSRC, the MAC protocol for car-to-car com-
munications [18], and demonstration of physical against sensors
like RADAR [7] and LIDAR [21].

CACC. Attacks against CACC controllers have also been done
in recent works [1, 10, 11, 13, 14, 28] exploiting the network commu-
nication protocol, jamming the physical layer, or using limitations
of the public key infrastructure for DSRC. The difference in the
algorithms for CACC lies in the sensors assumed by the algorithm,
their positioning on the car, and the control algorithms themselves.
Most of the work has focused on attacks manifested through ac-
celeration or deceleration of other cars. Our work is closest to the
work in [1] which considers the same car sensors and algorithm we
use and the work in [28] which considers sensor malfunctioning.

7 CONCLUSION

We demonstrate attacks against cooperative adaptive cruise control
applications that use acceleration reported via car-to-car communi-
cation, and distance and velocity measured by LIDAR and RADAR
sensors, respectively. We show that the attacks have an impact on
safety, efficiency, and passenger comfort, with two attacks causing
crashes. We also propose an HMM-based mitigation technique that
can successfully detect the specific attacks we considered.
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from Figure 4 before the crash and correctly indicates no attack in benign case.
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