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} General Motors: 
} Available in Cadillac CTS sedans since 2017

} Toyota: 
} Toyota and Lexus enabled with DSRC-based V2V 

communications in Japan since 2015
} Announced plans to begin deployment of V2V and V2I 

technology in the U.S. market starting in 2021
} Volkswagen:

} Announced in 2017 that will have DRSC in Europe 
beginning in 2019
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Edge
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Cloud

Edge

Edge

How to ensure that safety 
applications achieve their goal in an 
adversarial environment?

} Traffic and 
congestion control

} Collision avoidance
} Intersection 

management
} Assisted-turn
} Collaborative 

adaptive cruise 
control
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} Consider collaborative 
adaptive cruise control for 
connected cars architectures 
using DSRC

} Demonstrate the impact 
of attacks on safety 
applications

} Design mitigation 
techniques

A group of self-driving cars successfully 
formed a platoon (July 2017)
https://www.volpe.dot.gov/
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} Each car:
} Periodically broadcasts its own acceleration

} Each follower:
} Uses input: 

} Preceding car acceleration received via network, i.e. DRSC
} Local sensors for speed  and distance of previous car

} Computes the new acceleration to maintain a  safety time gap
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Figure 1: CACC overview.

simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most e�ective against e�ciency, and
the POS and VEL-POS attacks both result in a crash.
• We propose two solutions: PHY – rooted in cyber-physical

properties – enforces constraints derived from kinematics equa-
tions and HMM – drawn from anomaly detection – uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors. Our HMM based defense
can be potentially extended to include information from multiple
cars if such information is available.

2 CACC
Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Di�erent methods have been proposed
for providing this application, using di�erent algorithms, di�erent
sensors, and di�erent sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

This CACC algorithm uses a longitudinal control system with
an upper-level controller and lower-level controller. The lower-
level controller determines the throttle and/or brake commands
required to track the desired acceleration. The upper-level con-
troller has multiple operation modes (Speed Control mode (SC),
Gap Control mode (GC) and Collision Avoidance mode (CA)), and
the system transits between these modes in order to generate the
desired acceleration. Each vehicle in the platoon tries to maintain a
safe space-gap with its preceding vehicle. Safe space-gap, denoted
by �saf e , is determined by speed and maximum deceleration ability
of the vehicle (� and Dmax ) and those of the preceding vehicle (�p
and Dpmax ) , and is given by

�saf e = � ⇤ 0.1 +
�2

2Dmax �
�p 2

2Dpmax + 1.0

where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap �  �saf e , the vehicle switches to CA mode and uses
maximum deceleration Dmax to avoid collision. Acceleration is
computed as:

at+1 = Kaat + K� (�p �� ) + K� (� �Gmin ��T� )
where at+1 is next timestep’s acceleration, at is current acceler-
ation, Ka is an acceleration constant, K� is a velocity constant,
K� is a position constant, �p is preceding car’s velocity, � is car’s
velocity, g is current gap,Gmin is minimum gap, andT� is safe gap.
( Ka = 0.66,K� = 0.99s�1,K� = 4.08s�2,Gmin = 2m,T� = 0.55s as
speci�ed in [2].)

The CACC algorithm has three main goals: safety, e�ciency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap �tsaf e (computed as the
safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap �ti between each pair of
consecutive cars i, i + 1 is at least �tsaf e . The whole run will be safe
if it is safe at every time-step, Tj . The severity of a safety violation
is captured by the proportion of �tsaf e by which the gap is violated:

crash = max
Tj

8>><>>:
0,max

i

�tsaf e � �
t
i

�tsaf e

9>>=>>;
.

The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.

E�ciency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be e�cient a run needs to minimize the value for car i of

wastei =

Z tend

t=0

✓
�ti � �tsaf e

◆
dt .

This integral is computed until the end of the run tend , and total
waste is the maximum waste on a car.

Passenger comfort.When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

jerk =
da

dt
.

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC
The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

In�uence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the
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simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most e�ective against e�ciency, and
the POS and VEL-POS attacks both result in a crash.
• We propose two solutions: PHY – rooted in cyber-physical

properties – enforces constraints derived from kinematics equa-
tions and HMM – drawn from anomaly detection – uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors. Our HMM based defense
can be potentially extended to include information from multiple
cars if such information is available.

2 CACC
Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Di�erent methods have been proposed
for providing this application, using di�erent algorithms, di�erent
sensors, and di�erent sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

This CACC algorithm uses a longitudinal control system with
an upper-level controller and lower-level controller. The lower-
level controller determines the throttle and/or brake commands
required to track the desired acceleration. The upper-level con-
troller has multiple operation modes (Speed Control mode (SC),
Gap Control mode (GC) and Collision Avoidance mode (CA)), and
the system transits between these modes in order to generate the
desired acceleration. Each vehicle in the platoon tries to maintain a
safe space-gap with its preceding vehicle. Safe space-gap, denoted
by �saf e , is determined by speed and maximum deceleration ability
of the vehicle (� and Dmax ) and those of the preceding vehicle (�p
and Dpmax ) , and is given by

�saf e = � ⇤ 0.1 +
�2

2Dmax �
�p 2

2Dpmax + 1.0

where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap �  �saf e , the vehicle switches to CA mode and uses
maximum deceleration Dmax to avoid collision. Acceleration is
computed as:

at+1 = Kaat + K� (�p �� ) + K� (� �Gmin ��T� )
where at+1 is next timestep’s acceleration, at is current acceler-
ation, Ka is an acceleration constant, K� is a velocity constant,
K� is a position constant, �p is preceding car’s velocity, � is car’s
velocity, g is current gap,Gmin is minimum gap, andT� is safe gap.
( Ka = 0.66,K� = 0.99s�1,K� = 4.08s�2,Gmin = 2m,T� = 0.55s as
speci�ed in [2].)

The CACC algorithm has three main goals: safety, e�ciency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap �tsaf e (computed as the
safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap �ti between each pair of
consecutive cars i, i + 1 is at least �tsaf e . The whole run will be safe
if it is safe at every time-step, Tj . The severity of a safety violation
is captured by the proportion of �tsaf e by which the gap is violated:

crash = max
Tj

8>><>>:
0,max

i

�tsaf e � �
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i

�tsaf e

9>>=>>;
.

The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.

E�ciency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be e�cient a run needs to minimize the value for car i of

wastei =

Z tend

t=0

✓
�ti � �tsaf e

◆
dt .

This integral is computed until the end of the run tend , and total
waste is the maximum waste on a car.

Passenger comfort.When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

jerk =
da

dt
.

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC
The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

In�uence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the
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} Safety: 
} Cars need to maintain a 

minimum safe time-gap gtsafe
} Efficiency: 

} Platoon of cars should be 
traveling with as little distance 
as possible between them 

} Passenger comfort: 
} Avoid abrupt changes
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simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most e�ective against e�ciency, and
the POS and VEL-POS attacks both result in a crash.
• We propose two solutions: PHY – rooted in cyber-physical

properties – enforces constraints derived from kinematics equa-
tions and HMM – drawn from anomaly detection – uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors. Our HMM based defense
can be potentially extended to include information from multiple
cars if such information is available.

2 CACC
Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Di�erent methods have been proposed
for providing this application, using di�erent algorithms, di�erent
sensors, and di�erent sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

This CACC algorithm uses a longitudinal control system with
an upper-level controller and lower-level controller. The lower-
level controller determines the throttle and/or brake commands
required to track the desired acceleration. The upper-level con-
troller has multiple operation modes (Speed Control mode (SC),
Gap Control mode (GC) and Collision Avoidance mode (CA)), and
the system transits between these modes in order to generate the
desired acceleration. Each vehicle in the platoon tries to maintain a
safe space-gap with its preceding vehicle. Safe space-gap, denoted
by �saf e , is determined by speed and maximum deceleration ability
of the vehicle (� and Dmax ) and those of the preceding vehicle (�p
and Dpmax ) , and is given by

�saf e = � ⇤ 0.1 +
�2

2Dmax �
�p 2

2Dpmax + 1.0

where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap �  �saf e , the vehicle switches to CA mode and uses
maximum deceleration Dmax to avoid collision. Acceleration is
computed as:

at+1 = Kaat + K� (�p �� ) + K� (� �Gmin ��T� )
where at+1 is next timestep’s acceleration, at is current acceler-
ation, Ka is an acceleration constant, K� is a velocity constant,
K� is a position constant, �p is preceding car’s velocity, � is car’s
velocity, g is current gap,Gmin is minimum gap, andT� is safe gap.
( Ka = 0.66,K� = 0.99s�1,K� = 4.08s�2,Gmin = 2m,T� = 0.55s as
speci�ed in [2].)

The CACC algorithm has three main goals: safety, e�ciency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap �tsaf e (computed as the
safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap �ti between each pair of
consecutive cars i, i + 1 is at least �tsaf e . The whole run will be safe
if it is safe at every time-step, Tj . The severity of a safety violation
is captured by the proportion of �tsaf e by which the gap is violated:

crash = max
Tj
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The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.

E�ciency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be e�cient a run needs to minimize the value for car i of

wastei =

Z tend

t=0

✓
�ti � �tsaf e

◆
dt .

This integral is computed until the end of the run tend , and total
waste is the maximum waste on a car.

Passenger comfort.When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

jerk =
da

dt
.

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC
The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

In�uence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the
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simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most e�ective against e�ciency, and
the POS and VEL-POS attacks both result in a crash.
• We propose two solutions: PHY – rooted in cyber-physical

properties – enforces constraints derived from kinematics equa-
tions and HMM – drawn from anomaly detection – uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors. Our HMM based defense
can be potentially extended to include information from multiple
cars if such information is available.

2 CACC
Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Di�erent methods have been proposed
for providing this application, using di�erent algorithms, di�erent
sensors, and di�erent sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

This CACC algorithm uses a longitudinal control system with
an upper-level controller and lower-level controller. The lower-
level controller determines the throttle and/or brake commands
required to track the desired acceleration. The upper-level con-
troller has multiple operation modes (Speed Control mode (SC),
Gap Control mode (GC) and Collision Avoidance mode (CA)), and
the system transits between these modes in order to generate the
desired acceleration. Each vehicle in the platoon tries to maintain a
safe space-gap with its preceding vehicle. Safe space-gap, denoted
by �saf e , is determined by speed and maximum deceleration ability
of the vehicle (� and Dmax ) and those of the preceding vehicle (�p
and Dpmax ) , and is given by

�saf e = � ⇤ 0.1 +
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where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap �  �saf e , the vehicle switches to CA mode and uses
maximum deceleration Dmax to avoid collision. Acceleration is
computed as:

at+1 = Kaat + K� (�p �� ) + K� (� �Gmin ��T� )
where at+1 is next timestep’s acceleration, at is current acceler-
ation, Ka is an acceleration constant, K� is a velocity constant,
K� is a position constant, �p is preceding car’s velocity, � is car’s
velocity, g is current gap,Gmin is minimum gap, andT� is safe gap.
( Ka = 0.66,K� = 0.99s�1,K� = 4.08s�2,Gmin = 2m,T� = 0.55s as
speci�ed in [2].)

The CACC algorithm has three main goals: safety, e�ciency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap �tsaf e (computed as the
safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap �ti between each pair of
consecutive cars i, i + 1 is at least �tsaf e . The whole run will be safe
if it is safe at every time-step, Tj . The severity of a safety violation
is captured by the proportion of �tsaf e by which the gap is violated:

crash = max
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The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.

E�ciency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be e�cient a run needs to minimize the value for car i of

wastei =

Z tend
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◆
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This integral is computed until the end of the run tend , and total
waste is the maximum waste on a car.

Passenger comfort.When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

jerk =
da

dt
.

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC
The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

In�uence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the
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simulations: the ACL attack has the strongest impact on passenger
comfort, the VEL attack is the most e�ective against e�ciency, and
the POS and VEL-POS attacks both result in a crash.
• We propose two solutions: PHY – rooted in cyber-physical

properties – enforces constraints derived from kinematics equa-
tions and HMM – drawn from anomaly detection – uses hidden
Markov models. We demonstrate the defense mechanisms through
simulations. Our results show that while simple and fast, PHY can
not detect all considered attacks, including attacks causing crashes,
while HMM can detect all attacks we considered.

Concurrent work [22] considers position lying attacks, in a
model where the adaptive cruise control algorithm uses messages
from more than one car, proposing defenses that leverage voting. In
our model, the only information available to the adaptive cruise con-
trol algorithm is acceleration from the preceding car, and RADAR
and LIDAR information from own sensors. Our HMM based defense
can be potentially extended to include information from multiple
cars if such information is available.

2 CACC
Collaborative Adaptive Cruise Control (CACC) extends traditional
Adaptive Cruise Control (ACC) by involving the preceding car in the
acceleration computation. Di�erent methods have been proposed
for providing this application, using di�erent algorithms, di�erent
sensors, and di�erent sensor placements.

We consider the CACC algorithm described in [2] and showed
in Figure 1, which is used for platoon management of cars. Each car
is equipped with dedicated short-range communications (DSRC)
communication [16], which allows it to receive acceleration infor-
mation from the preceding car, and with its own RADAR and LIDAR
sensors, that allow it to measure the velocity and position of the
preceding car. The acceleration of the preceding car is sent using
the DSRC protocol and its basic safety messages (BSMs). (DSRC
provides authentication and integrity of the communication and
its availability in cars is increasing [15, 29].)

This CACC algorithm uses a longitudinal control system with
an upper-level controller and lower-level controller. The lower-
level controller determines the throttle and/or brake commands
required to track the desired acceleration. The upper-level con-
troller has multiple operation modes (Speed Control mode (SC),
Gap Control mode (GC) and Collision Avoidance mode (CA)), and
the system transits between these modes in order to generate the
desired acceleration. Each vehicle in the platoon tries to maintain a
safe space-gap with its preceding vehicle. Safe space-gap, denoted
by �saf e , is determined by speed and maximum deceleration ability
of the vehicle (� and Dmax ) and those of the preceding vehicle (�p
and Dpmax ) , and is given by
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where 1.0 is the minimum space-gap. As soon as the instantaneous
space-gap �  �saf e , the vehicle switches to CA mode and uses
maximum deceleration Dmax to avoid collision. Acceleration is
computed as:

at+1 = Kaat + K� (�p �� ) + K� (� �Gmin ��T� )
where at+1 is next timestep’s acceleration, at is current acceler-
ation, Ka is an acceleration constant, K� is a velocity constant,
K� is a position constant, �p is preceding car’s velocity, � is car’s
velocity, g is current gap,Gmin is minimum gap, andT� is safe gap.
( Ka = 0.66,K� = 0.99s�1,K� = 4.08s�2,Gmin = 2m,T� = 0.55s as
speci�ed in [2].)

The CACC algorithm has three main goals: safety, e�ciency, and
passenger comfort captured by metrics described below.

Safety: Given a minimum safe time-gap �tsaf e (computed as the
safe space gap divided by velocity), we will call a given timestep
of a run of CACC safe if the time-gap �ti between each pair of
consecutive cars i, i + 1 is at least �tsaf e . The whole run will be safe
if it is safe at every time-step, Tj . The severity of a safety violation
is captured by the proportion of �tsaf e by which the gap is violated:

crash = max
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The maximum value this can take is 1, at which point two cars have
crashed. The minimum, when all gaps are safe, is 0.

E�ciency: The goal of CACC is to build a platoon of cars which
are traveling with as little distance as possible between them. In
order to be e�cient a run needs to minimize the value for car i of

wastei =

Z tend

t=0

✓
�ti � �tsaf e

◆
dt .

This integral is computed until the end of the run tend , and total
waste is the maximum waste on a car.

Passenger comfort.When safety and correctness are accounted
for, the algorithm also needs to provide for passengers’ comfort. A
common way to quantify passenger comfort is using the magnitude
of jerk, the third derivative of position:

jerk =
da

dt
.

We will consider the maximum jerk over all timesteps in order to
measure passenger comfort over a run of CACC.

3 ATTACKS AGAINST CACC
The considered CACC algorithm running on a car relies on acceler-
ation from other cars and its own RADAR and LIDAR sensors in
order to compute the new acceleration. Based on the information
they can manipulate we consider two types of attackers.

In�uence acceleration of other than the victim’s car. Information
between cars is sent over DSRC, which provides authentication
and integrity, thus outside adversaries cannot compromise this
information unless they break the cryptographic assumptions of the
protocol. Outside adversaries can also disturb the communication
at the physical layer [4]. We do not consider such attacks. Instead,
we consider an attacker who has compromised a car other than the

2



Attacker Goal and Capabilities
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} Influence acceleration of car preceding the victim
} Attacker has compromised the car preceding the victim and 

sends incorrect acceleration values via DSRC communication
} Influence RADAR and/or LIDAR sensors of the victim.

} Attacker has control over just the LIDAR, just the RADAR, and 
over both LIDAR and RADAR 

} Can manipulate data from the victim’s sensors, either directly, 
by compromising a subset of the victim car, or indirectly, by 
remotely manipulating the sensor’s physical layer signals 

Goal: impact safety, efficiency and passenger comfort by 
influencing the computation of the new acceleration



How to Model Attacks

} (ACL) Lying about acceleration
} Passenger comfort

} (VEL) Lying about velocity
} Efficiency

} (POS) Lying about distance
} Safety

} (VEL-POS) Lying about velocity 
and distance
} Safety

11

afake = atrue + ca sin(ft) 

vfake = vtrue - cv t 

dfake = dtrue + cd t 

vfake = vtrue + cv t
dfake = dtrue + cd t  

Cristina Nita-Rotaru



Defenses: Leveraging Invariants
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PHY (εp ,εv)
vmintd + 0.5amintd

2 − εp ≤ pnew − pold

pnew − pold ≤ vmaxtd + 0 . 5 amax td
2 + εp

amintd−εv  ≤ vnew−vold ≤ amaxtd+εv

} Cars are physical objects, their behavior in terms of 
position, velocity, and acceleration must follow certain 
well defined laws of kinematics

} By using these laws, we can detect inconsistencies 
between these values as a result of an attack



Defenses: Hidden Markov Models
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} Use a Hidden Markov Model, an anomaly detection 
mechanism, to fit the time series data of CACC and 
learn temporal dependencies

HMM (𝛿ℎ)
- a synchronization phase where cars create 

the safe gaps
- a stable phase, where cars stay at a roughly 

fixed velocity. 



Simulations Setup
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} Simulation is discrete, a run is 400 steps, each step is 0.1s 
} Platoon of 7 cars, car length is 5m, cars start at 1m/s with 

a distance between cars of 10m
} Sensor measurement error with Gaussian noise, with 

standard deviation of 3cm  for LIDAR and 0.1m/s  for 
RADAR

} CACC algorithm: minimum safe-gap is 0.55s, with a 2m 
leeway, resulting in a 2.55m gap (or 7.55m from front to 
front including car length); Maximum deceleration is 
5m/s2

} PHY is invoked at each step, and  HMM every 50 steps



Summary of Attacks
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Attack Jerk Waste Crash

No attack 0.56 2.10 0

ACL 7.07 3.14 0

VEL 0.59 9.32 0

POS 0.73 0.69 1 (crash)

VEL-POS 0.86 0.60 1 (crash)



Detection Rate
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Attack PHY HMM

No attacks (false positives) 0.35 1.5

ACL (ca = 5, f = 5) 25.75 77.5

VEL (cv = 1) 95.13 83.5

VEL (cv = 0.1) 0.58 79.5

VEL (cv = 0.05) 0.45 79.5

POS (cd = 0.1) 0.25 74.0

VEL-POS (cv = 0.2, cd = 0.1) 0.13 90.0



ACL Attack
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VEL-POS Attack Detection
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Crash occurs at 21.72 s 
(distance of 5 m means a 
crash has occurred)

HMM detects the crash 
before it occurs !



Conclusion
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} One can not have safety 
without security: 
} We were able to show 

how attackers can create 
crashes

} We also showed attacks 
that impact efficiency and 
passenger comfort

} Proposed mitigation 
techniques that were able 
to detect the attacks before 
the crash occurred https://nds2.ccs.neu.edu/


