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Abstract. We create BEADS, a framework to automatically generate
test scenarios and find attacks in SDN systems. The scenarios capture
attacks caused by malicious switches that do not obey the OpenFlow
protocol and malicious hosts that do not obey the ARP protocol. We
generated and tested almost 19,000 scenarios that consist of sending mal-
formed messages or not properly delivering them, and found 831 unique
bugs across four well-known SDN controllers: Ryu, POX, Floodlight, and
ONOS. We classify these bugs into 28 categories based on their impact;
10 of these categories are new, not previously reported. We demonstrate
how an attacker can leverage several of these bugs by manually creat-
ing 4 representative attacks that impact high-level network goals such as
availability and network topology.

1 Introduction

Software-defined networking (SDN) is an attractive alternative to traditional
networking, offering benefits for large enterprise and data-center networks. In
SDNs, the control and management of the network (i.e., the control plane) is
separated from the delivery of data to the destinations (i.e., the data plane). Such
a separation offers enhanced manageability, flexibility, and programmability to
the network administrators, enabling them to perform better resource allocation,
centralized monitoring, and dynamic network reconfiguration.

SDN’s benefits, however, come at a cost to security. The programmability
and malleability of the network presents new attack surfaces. In addition to the
network-based attacks applicable to traditional networks, new attack vectors
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are available to an attacker to maliciously impact the network functionality by
manipulating, poisoning, or abusing the malleable network logic. For example,
we show that ARP spoofing attacks have broader impact in SDNs because of the
centralized control. In particular, many controllers maintain a centralized ARP
cache and implement Proxy ARP to resolve ARP queries, making the impact of
poisoning this cache much broader than in traditional networks.

Recent efforts at the intersection of SDN and security have focused on de-
veloping new languages for SDN programming, some of which offer formally
verifiable guarantees [9,15,30,43], such as flow rule consistency [16,18,40]. Some
work has focused on possible attacks from the data plane to control plane and
vice versa [44]. Protocol-level attacks and corresponding defenses have also been
studied [7, 10, 16, 42]. Finally, the dynamism and agility offered by SDNs has
been leveraged to build new defenses [11, 13, 25]. Several of these approaches
have identified specific attacks in the context of SDNs [7,10,16,38,42,44]. These
efforts highlight the need for systematic approaches to find attacks in SDNs.

In order to systematize OpenFlow testing, the Open Networking Foundation
created conformance test documents for OpenFlow 1.0.1 [32] and 1.3.4 [34]. Fol-
lowing these documents, the SDN community started two projects, OFTest [8]
and FLORENCE [29]. Both of them focus only on OpenFlow switches and con-
sist of manually written tests. OFTest supports 478 manually written tests for
OpenFlow 1.0-1.4, while FLORENCE supports 18 manually written tests for
OpenFlow 1.3. Examples of tests performed are: AllPortStats, which “Verif[ies]
[that] all port stats are properly retrieved” for OFTest and Port Range test to
“Verify that the switch rejects the use of ports that are greater than OFPP MAX
and are not part of the reserved ports” for FLORENCE.

Both OFTest and FLORENCE focus on testing how well a switch conforms
to the OpenFlow specification. However, OpenFlow is a configuration protocol;
it specifies how a controller instructs a switch to do something, but not what
the controller should tell the switch to do. As a result, many bugs and attacks
on SDNs arise from incorrect assumptions in the controller software about the
switches. Frameworks like OFTest and FLORENCE that exclude the controller
from the testing process are unable to find such issues.

Further, conformance testing is not sufficient to detect attacks. In fact, the
Open Flow Foundation conformance testing documents explicitly state: “This
document does not include requirements or test procedures to validate security,
interoperability or performance.” Previous work on automated attack finding
on communication protocols has been confined to distributed systems [23] and
transport protocols [12] which are less complex than SDN systems.

In this work, we develop BEADS, a framework to automatically and sys-
tematically test SDN systems for attacks resulting from malicious switches and
malicious hosts. Our framework automatically generates and tests thousands of
scenarios involving malicious switches that do not obey the OpenFlow proto-
col and malicious hosts that do not obey the ARP protocol. BEADS combines
known techniques such as Byzantine fault injection, semantically-aware testcase
generation, and black box testing to test whole SDN systems comprising Open-



Flow switches, controllers, and hosts. As such it differs from existing SDN testing
tools in the following aspects: (1) it supports malicious (Byzantine) participants
– hosts and switches; (2) it does not require access to the the code of the switch
or controller; (3) it targets attacks at a deeper layer than simple parsing (that
can be tested using simple random fuzzers); (4) it achieves higher coverage by
using message grammar and semantically-aware test case generation; (5) it can
test controller algorithms like routing, topology detection, and flow rule man-
agement by also including the controller in its test cases; (6) it makes better use
of resources by performing targeted and preferential search. BEADS is publicly
available at https://github.com/samueljero/BEADS.

Using BEADS, we identify bugs that trigger error messages, network topology
or reachability changes, or increased load. We then show that these bugs can
be exploited with damaging impacts on SDN networks. Our results show the
importance of malicious testing for SDNs as well as the practicality of blackbox
testing for such systems. Our contributions are:

• We create BEADS, a framework to automatically find malicious switch- and
host-level attacks. BEADS combines network emulation with software switches
and real SDN controllers running in a virtualized environment. It takes a black-
box approach to the SDN switches and controller and does not require access
to the source code of either. Attack scenarios are automatically generated based
on message grammar and the protocol semantics associated with special fields
(such as port). BEADS uses four criteria to detect bugs: error messages, network
topology changes, reachability changes, and controller or switch load.

• We use BEADS to automatically test almost 19,000 scenarios, and find
831 unique bugs across four well-known SDN controllers: Ryu [45], POX [27],
ONOS [5], and Floodlight [39]. We classify these bugs into 28 categories based
on their impact; 10 of these categories have not been previously reported. Out-
comes include preventing the installation of flow rules network-wide, periodic
switch disconnections, inducing packet loss in the data plane, denial of service
against the controller, and removing network links.

• We construct and implement 4 representative attack scenarios using several
bugs we identified to break high-level network goals such as availability, reacha-
bility, and network connectivity. The scenarios are (1) TLS Man-in-the-Middle,
(2) Web Server Impersonation, (3) Breaking Network Quarantine, and (4) Deni-
able Denial of Service. We demonstrate the feasibility of these attack scenarios
on real SDN controllers.

• We have notified the SDN vendors of bugs we found. Ryu has issued a patch
(CD2,CD3 in Table 2) while ONOS has confirmed that the latest version is no
longer impacted (EP1 in Table 2).

Roadmap. Section 2 specifies the threat models. Section 3 describes the
design of BEADS. Section 4 discusses the bugs we found and presents our attack
demonstrations. Section 5 discusses some limitations of BEADS while Section 6
summarizes related work and Section 7 concludes the paper.



2 Threat Model

We consider a threat model where the attacker can control compromised SDN
switches or end-hosts connected to the SDN. We consider malicious switches
because prior work has shown that many SDN switches can be easily compro-
mised due to running operating systems with poor security defaults, out of date
software, and minimal updates [35, 36] and, once compromised, they can influ-
ence the entire control plane. Note that if communication is not conducted over
secure channels, a man-in-the-middle attacker can control otherwise uncompro-
mised switches and hosts. We do not consider malicious controllers.

Malicious Switches. Attackers who have compromised an OpenFlow switch can
confuse SDN controllers via malicious OpenFlow messages. This ability is unique
to SDNs and can confuse the controller about the network topology and the loca-
tions of target hosts [7,10]. Additionally, a malicious OpenFlow switch can mount
a DoS attack against the controller by sending OpenFlow messages, spoofed or
legitimate, at a very high rate. Some controllers enforce per-switch OpenFlow
rate limits in an attempt to mitigate this type of attack [7]. Recent work has
shown that OpenFlow switches are extremely vulnerable to attackers, running
old, unsecured software versions with default/hidden administrator accounts,
out of date software, and minimal updates [35,36].

Our analysis focuses on how malicious switches can disrupt or degrade other
parts of the network (e.g., QoS on other switches or making the controller redi-
rect distant traffic through a compromised switch) via the control-plane. Thus,
we do not consider pure data-plane attacks (e.g., dropping packets). We model
malicious switches as having the following basic capabilities with respect to
OpenFlow messages between the switch and controller:

Drop (percentage). This action drops a particular type of OpenFlow mes-
sage with a given probability specified as a parameter, for example barrier request

drop 20. This emulates a malicious switch that does not send these messages or
ignores them after receiving them.

Duplicate (times). This action duplicates a particular type of OpenFlow
message a certain number of times given as a parameter. For example barrier reply

duplicate 5 means the malicious switch duplicates this messages 5 times.
Delay (msec). This action delays a particular type of OpenFlow message

by a given number of milliseconds, emulating a malicious switch that delays
processing a request or taking some action; for example, of hello delay 1000.

Change (field, value). This action modifies a particular field of a particular
type of OpenFlow message with a particular value. Modifications supported
include setting a particular value as well as adding or subtracting a constant. We
select the modification values to be likely to trigger problems based on the field
type. This typically includes values like 0, minimum field value, and maximum
field value. This basic strategy corresponds to a malicious switch that performs
a different action or returns different information than that requested by the
controller. Examples of this action include flow add change priority 42 or
flow removed change reason 12.



Malicious Local Hosts. Attackers who have compromised a host that is directly
connected to an SDN, like a server or a user workstation, can launch attacks
to confuse the SDN controller about the network topology and the location of
target hosts, in order to hijack a target host or traffic of interest [7,10]. These are
primarily attacks that target the Address Resolution Protocol (ARP) [37] since
ARP is one of the few protocols that hosts can use to manipulate the SDN control
plane. Prior work has also pointed out that hosts can inject or tunnel LLDP
packets [7, 10]. However, we need not separately consider such hosts because
they appear to the network as malicious switches, which we already consider.

For ARP, SDN has brought back known vulnerabilities because, while tra-
ditional networks have deployed defenses against ARP spoofing, these defenses
have not been adapted for SDNs. Unlike traditional network switches that main-
tain their own local ARP tables, operate on L2/L3 networks, and can be checked
to prevent ARP poisoning attacks, SDN switches consist of a programmable flow
table and leave the SDN controllers to check for ARP corruption. Such controllers
do not currently implement ARP spoofing defenses. Moreover, some controllers
(including POX and ONOS) maintain a centralized ARP cache and implement
Proxy ARP to resolve ARP queries. This creates a single, centralized ARP cache
for the entire network. Poisoning this cache has broader network-wide impact
rather than limited subnetwork-wide impact as in traditional networks.

We model malicious or compromised local hosts as follows:

ARP-location-injection (victim-MAC, victim-IP). The malicious host
injects ARP packets with the spoofed Ethernet source address of the victim to
make the controller believe that the victim is at the same port as the attacker.
Example: ARP-location-injection 00:00:00:00:00:04 10.0.0.4.

ARP-map-injection (attacker-MAC, victim-IP). The malicious host
injects ARP packets that indicate a mapping between the victim’s IP and the
attacker’s MAC. This disrupts the IP-to-MAC mapping, and leads the controller
to believe that the attacker has the victim’s IP address. An example of this attack
would be ARP-map-injection 00:00:00:00:00:01 10.0.0.4.

3 BEADS Design and Implementation

We first describe the design principles behind BEADS and then provide more
details about each component.

3.1 Design Goals

There are several guiding principles behind BEADS: automation of attack gen-
eration and attack search, realism by testing real-world implementations of com-
plete SDN systems generalizable to many different implementations independent
of language and operating system, reproducibility of the results, high coverage of
test scenarios, efficient use of resources, and last but not least, focus on security
(rather than conformance) by supporting malicious switches and hosts.



Our main goal is to test real-world implementations of complete SDN sys-
tems. This requires including switches, controllers, and hosts in our tests to be
able to capture their interplay. Similarly, our tests would ideally include the
physical hardware and operating systems running the various system nodes, the
production network connecting the physical hardware, and the actual applica-
tion binaries running on the operating systems. However, using physical hard-
ware to test all possible configurations and operating systems is not scalable
and prohibitively expensive. We address this challenge by choosing a virtualized
environment that supports different operating systems and languages, and net-
work emulation using Mininet [21] that enables strong control over the network,
while still being close enough to a real-world installation.

Another design goal is to run actual implementations of the system of interest
without discriminating based on programming language, compiler, toolkit, or
target operating system, and without imposing restrictions solely for visibility
into algorithmic behavior. Ideally, we should use the same implementation that
will be deployed. We achieve this goal by using a proxy to create the behavior
of the malicious switch. Malicious host behavior is injected directly into the real
data-plane, similarly enabling the use of unmodified switches and controllers.

Finally, a major goal for our test case generation is to create meaningful,
semantically-aware test cases that can go beyond testing parsers. One simple
method to generate an attack strategy is to use random fuzzing where the en-
tire packet or some of its fields are replaced with random strings. While random
fuzzing has been used successfully to test API inputs, it would have a low success
rate for OpenFlow messages. OpenFlow messages are complex data structures
involving many layers of nested objects as well as other syntactic and semantic
dependencies. Although any packet can be represented as a bit string, the ma-
jority of bit strings are not valid OpenFlow messages. Hence, the majority of
test cases generated by random fuzzing only test the OpenFlow message parser
while the attacks we are interested in lie at a much deeper layer, in the algorithms
creating and processing those messages. Basic knowledge of the packet format
or fields helps generate valid, meaningful messages by satisfying the syntactic
requirement. However, an ideal testing tool should also consider the semantic
meaning of different packet fields. For example, it should treat a field represent-
ing a switch port number differently from a field representing an IP address, and
treat the switch port number differently from the length of an embedded struc-
ture. This approach enables testing on semantically meaningful, yet problematic
values for a field—for example IP addresses actually in the network—and pro-
vides a means for tuning the testing to focus on particular types or locations
of attacks. Similarly, our test generation creates tests with malicious hosts and
switches at multiple locations in our test topology to ensure that our results are
general and not tied to a specific topology.

3.2 Design Details

Our automated attack discovery platform, BEADS, is depicted in Figure 1. We
separate the attack strategy generation functionality controlled by a Coordinator



from the testing of a strategy in an SDN system controlled by an Execution Man-
ager (Manager for short). Several managers can run in parallel under the reign
of one coordinator. The coordinator has three roles: generate attack strategies,
assign those strategies to different managers for testing, and receive feedback
about the execution of those strategies and their results. The attack strategies
are generated based on the format of the messages and on the network topol-
ogy in order to choose what entity (host or switch) will behave maliciously. The
coordinator generates strategies for both malicious host and malicious switch be-
havior and decides how to interleave them. The coordinator uses feedback from
the execution and testing of prior strategies for future strategy generation.
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Fig. 1: BEADS Framework Design

The (execution) manager controls the execution environment for a set of at-
tack strategy tests. This environment consists of an SDN, with a given topology,
a specified placement and type of attackers (hosts and/or switches), as well as a
list of attack strategies and a mechanism for interleaving host and switch strate-
gies. BEADS combines network emulation using software switches and emulated
hosts with real SDN controllers running in a virtualized environment. We select



Mininet for emulation because it offers the flexibility to test different network
topologies and traffic patterns while providing attack isolation and increased
reproducibility. Mininet exhibits high fidelity through the use of real network
stacks, software switches, and real traffic. We leverage virtualization to run a
wide range of SDN controllers independent of required operating systems, li-
braries, or system configurations. BEADS does not require access to the source
code of the OpenFlow implementation in the switch or controller.

The manager uses Mininet to create an emulated data-plane network con-
sisting of SDN switches and emulated hosts capable of both generating normal
network traffic and injecting host-based attacks. This network is controlled using
OpenFlow by one or several controllers running on a separate virtual machine,
as depicted in Figure 1. A Host Controller running on the same virtual ma-
chine as Mininet controls the hosts connected to the testing network. Each host
has a Traffic component that generates the traffic used during testing, and a
Malicious Host Attack component that injects attacks that emulate a malicious
host according to the strategy and timing specified by the HostController and
received in turn from the manager of the execution environment. Finally, a Ma-
licious Switch Proxy intercepts all messages in both directions between the SDN
switches and the SDN controllers and creates malicious switch behavior accord-
ing to strategies received from the manager of the execution environment.

The entire system from strategy generation to strategy testing and bug de-
tection is automated. The user supplies the controller under test and receives a
list of strategies that trigger bugs as the output. The user is then responsible to
manually examine these strategies and identify the bugs triggered and any fixes
required, as we do in Section 4.

3.3 Strategy Generation

Two questions must be answered to enable the coordinator to perform automatic
strategy generation in BEADS: (1) what is an attack strategy and (2) when to
inject an attack strategy. We discuss these aspects below.

In order to target attacks beyond simple parsing validation, we use at-
tack strategies that represent malicious actions (by compromised switches or
hosts) which target protocol packets: OpenFlow for malicious switches and ARP
for malicious hosts. A detailed list of these actions is presented in Section 2.
BEADS supports the testing of malicious switch actions, malicious host actions,
and combinations of both. For combinations, we need some form of coordination
between malicious host and malicious switch actions, as they are launched from
independent components, not necessarily connected. We currently provide a ba-
sic level of coordination between these strategies based on time relative to the
start of each test; i.e., we specify the time at which different malicious switch
and malicious host actions occur relative to the start of the test.

The injection points differ for malicious hosts and malicious switches. In the
case of malicious switches, the attack is executed by a malicious proxy which has
the ability to modify or affect the delivery of OpenFlow messages as discussed
in Section 2. At the start of each test we define a set of one or more malicious



switches. For these switches, we then use send-based attack injection; i.e., when
the proxy receives an OpenFlow message to/from these switches, it takes any ac-
tions relevant to that message type, and forwards the message to its destination.
To curtail state space explosion, we only consider strategies where the same ac-
tion is applied to every message of a given type. These strategies manipulate the
delivery or fields of OpenFlow messages based on their message type and individ-
ual message fields. For instance, a strategy may be to duplicate features reply

messages 10 times or to modify the in port field of a packet out message to 7.
Our malicious proxy supports all manipulations discussed in Section 2, including
dropping, duplicating, and delaying messages based on message type, as well as
modifying message field values based on message type.

Our testing applies this procedure to a list of strategies that we automatically
generate based on the OpenFlow message formats and semantics associated with
their fields. This list of strategies includes our message delivery attacks for each
message type and manipulations of each field in each message type. The field
values we use in our field manipulations are based on the field type, and are
chosen to be likely to cause unexpected behavior. This includes setting values
to zero, and the minimum and maximum values that the field can handle. For
fields representing switch ports, we also consider all real switch ports as well as
OpenFlow virtual ports like CONTROLLER. When selecting strategies to test, we
only consider strategies for message types that we observe actually occurring in
communication between the switch and controller. Because controllers usually do
not use all the messages detailed in the OpenFlow specification, this dramatically
reduces the number of strategies we need to test.

For malicious hosts, we consider the injection of ARP packets as discussed
in Section 2. We again define a list of malicious hosts at the start of each test.
We use time-based attack injection with these malicious hosts, where we launch
attacks for a few seconds at different times during each test. The exact time of
attack, duration, and frequency of packet injection are configurable.

This automatic strategy generation enables us to quickly and easily gener-
ate tens of thousands of strategies in a manner that considers both message
structure and protocol semantics. In contrast, DELTA [24] uses blind fuzzing,
supplemented with a few manual tests. It is able to generate an unbounded num-
ber of strategies, but considers neither message structure nor protocol semantics.
OFTest and FLORENCE make no attempt at strategy generation and rely on a
manually developed set of tests. As a result, FLORENCE only tests 18 different
scenarios and OFTest only covers a few hundred. BEADS is able to generate
several orders of magnitude more tests in a fraction of the time. While number
of test cases does not perfectly correspond with amount of search space covered,
this does strongly suggest that BEADS can cover a much larger portion of the
search space, especially in combination with the new attacks that we find.

3.4 Impact Assessment

Once we have executed a strategy, we automatically determine the impact based
on a variety of system and network characteristics. Our framework collects sev-



eral outputs and, at the end of each test, checks them for conditions indicating a
deviation from normal behavior and a possible vulnerability. If such conditions
are detected, we automatically schedule a re-test of the strategy to make sure
that the failure is repeatable. If it is, we declare this strategy to be a vulnerability.

We use four methods to determine if a tested strategy leads to unexpected
behavior: (1) OpenFlow error messages, (2) network configuration changes, (3)
network reachability failures, and (4) controller or switch resource usage.

Since BEADS aims to identify actions that are the most damaging to the
network, we gradually filter actions based on their impact. First, we consider
the error messages, then the static network state, then the network connectivity,
and finally the controller and switch resource usage. Below we provide more
details about each of these and the rationale for considering them.

OpenFlow Error Messages. One mechanism we use to observe protocol
deviation is monitoring the OpenFlow connections for error messages. Error
messages are sent when an OpenFlow device (switch or controller) fails to parse
an OpenFlow message or the message indicates an invalid or unsupported option.
These messages indicate an anomalous condition in the OpenFlow connection,
and that some desired change to the network was not performed.

Network State. One of the most powerful indicators of undesirable changes
in the network are changes in the network state, including changes to routing,
access control lists (ACLs), and priorities of flows in the network. We define
network state as the state of the flow rules at each switch. The manager collects
the flow rules from all switches at the end of each test, canonicalizes them, and
compares them to reference flow rules from a benign run.

Unfortunately, the network state is not completely deterministic. Part of our
canonicalization process filters out known non-deterministic elements (times-
tamps, etc). Additionally, we use multiple benign test runs to detect other non-
deterministic elements and filter them out. Note that without detailed knowledge
of the application algorithms the SDN controller has implemented we cannot de-
cide whether a given non-deterministic rule is correct.

Reachability. Another protocol deviation indicator we use is pair-wise con-
nectivity tests. In particular, our test system uses pair-wise ICMP pings and
iperf to verify that all hosts are reachable from all other hosts. This is ex-
tremely effective in detecting spoofing attacks and attacks on connectivity. It
also detects many manipulations of flow rules that our network state detection
mechanism cannot detect due to non-determinism.

Controller or Switch Resource Usage. The final protocol deviation indi-
cator we use is monitoring the RAM and CPU time used by the SDN controller
and switches. Excessive usage, compared to a benign baseline, indicates an op-
portunity for denial of service, where the the ability of the switches or controller
to process messages and packets in a timely fashion is impaired.

3.5 Implementation

We use KVM for virtualization and Mininet for the emulated network. The hosts
were written in Python and use iperf and ping for traffic generation, and the



scapy library4 for malicious host attack injection. The hosts communicate with a
HostController Python script to execute malicious host attacks, generate traffic
in the network, and conduct reachability tests on the network.

We insert our malicious proxy into the path between the Open vSwitch5 soft-
ware switches started by Mininet and our SDN controllers by simply having the
proxy listen for TCP connections on a specified port and address, and supplying
this port and address to Mininet as the address of the controller. When a switch
connects, the proxy opens a second TCP connection to the controller and passes
messages back and forth, modifying the message as required by the strategy.
The proxy is implemented in C++ and leverages the C version of the Loxigen6

library to parse and modify OpenFlow messages.

4 Experimental Results

We present the results obtained by applying BEADS to four SDN controllers:
ONOS, POX, Ryu, and Floodlight. We then demonstrate the impact of these
bugs with 4 real attacks.

4.1 Methodology

We applied BEADS to ONOS 1.2.1, POX version eel7, Ryu 3.27, and Floodlight
1.2. For ONOS we used its default forwarding, which uses topology detection
and shortest path routing along with proxy ARP, and a flow rule idle time of
30 seconds; for POX, we used the proto.arp responder, openflow.discovery,
openflow.spanning tree, and forwarding.l2 multi modules to enable topol-
ogy detection and shortest path routing along with proxy ARP; for Ryu, we used
the simple switch module, which emulates a network of learning switches; for
Floodlight, we used its default forwarding, which uses topology detection and
shortest path routing, and a flow rule idle time of 90 seconds.

The emulated network was created using Mininet 2.2.1 and Open vSwitch
2.0.2. While BEADS supports OpenFlow versions 1.0-1.5, our testing was done
with OpenFlow 1.0 because it was the default negotiated by Open vSwitch and
none of the SDN controllers we tested make use of the additional features in-
troduced in later versions of OpenFlow. We configured Mininet with a simple
two-tier tree topology of three switches and four hosts. The malicious switches
and hosts vary depending on the test being run.

Our testing was done on a hyper-threaded 20 core Intel Xeon 2.4 GHz system
with 125GB of RAM. Each test takes about 60 seconds. We parallelize the tests
by running between 2 and 6 managers simultaneously. Testing required around
200 hours of total computation per tested SDN controller.

4 http://www.secdev.org/projects/scapy/
5 http://openvswitch.org/
6 https://github.com/floodlight/loxigen
7 Commit 4ebb69446515d9d9a0d5a002243cdca3c411520b from 9/24/2015



Table 1 presents a summary of tested scenarios and bugs found. We tested
6,996 strategies for ONOS, 4,286 for POX, 3,228 for Ryu, and 4,330 for Flood-
light. Not all the controllers take advantage of the complete functionality of
OpenFlow, and as we test only the messages that are actually used by the
tested system, the number of testing scenarios for each controller depended on
the implemented and used OpenFlow functionality. As a result, we tested sig-
nificantly more strategies for ONOS because ONOS automatically polls every
switch for statistics about flow rules and ports periodically using the OpenFlow
flow stats * and port stats * messages. The other controllers do not poll for
statistics and so have no need to use these message types, effectively utilizing a
much smaller portion of the OpenFlow protocol. Similarly Ryu’s learning switch
behavior requires no topology detection which reduces the number of messages
it uses. We found a total of 831 unique bugs, with 178 common to all four con-
trollers and a further 134 common to two or three controllers. Table 1 also shows
the detection criteria (Section 3.4) for each bug.

Table 1: Summary of tested scenarios and bugs.

SDN
Controller

Total
Tested

Bugs
Found

Error
Msg.

Net.
State

Reach-
ability

Res.
Usage

ONOS 6,996 578 104 372 102 0
POX 4,286 487 121 335 29 2
Ryu 3,228 251 48 168 32 3
Floodlight 4,330 577 95 478 4 0

Total 18,840 1,893 368 1,353 167 5

4.2 Detailed Results

We analyze all 831 unique bugs, based on their outcome, and present a summary
in Table 2.

OpenFlow Operation Stall (OS)–No Known Mitigations. Several
bugs have the common outcome of preventing or delaying OpenFlow operations
that may affect multiple switches. By ignoring or dropping barrier request and
barrier reply messages or changing their transaction IDs, a malicious switch
can stall the installation of flow rules forming a path through that switch as
we discovered in POX. A similar operation stall occurs when dropping or ig-
noring flow add messages; the flow will eventually be inserted, but it will take
extra messages and controller processing. These bugs are due to the design of
OpenFlow and there are no known mitigations.

Periodic Switch Disconnect (SD)–Some Mitigations. We found many
bugs that cause the malicious switch to periodically disconnect. This causes
topology churn and prevents the installation of flow rules or the delivery of
packet in/packet out messages. It takes about 3 seconds for the network to
fully recover from one of these events, although the TCP level disconnection is
only about half a second.

While most of these bugs are unavoidable and due to the reception of invalid
OpenFlow messages, we did identify two subcategories of these bugs that can



Table 2: Discovered bugs, each line corresponds to several bugs grouped by message
and action. Note that some bugs may occur multiple times, in different categories for
different controllers. FL=Floodlight.

Outcome Name Strategy Num Controllers New

OpenFlow OS1 Drop barrier messages 4 POX No
operation OS2 Change xid in barrier messages 12 POX No
stall OS3 Drop flow add 3 ALL No

Periodic
switch

SD1 Change version,type,length fields of
handshake messages

197 ALL No

disconnect SD2 Duplicate handshake messages 20 ONOS Yes
SD3 Change version,type,length of bar-

rier request/barrier reply
36 ONOS/POX/FL No

SD4 Change version,type,length in
flow add/flow delete/flow removed

48 ALL No

SD5 Change version,type,length in
packet in/packet out

46 ALL No

SD6 Change version,type,length in
port mod/echo reply/echo request

42 POX/RYU/FL No

SD7 Change version,type,length in
of * stats reply/of * stats request

68 ONOS No

SD8 Change role in
of nicira controller role *

12 ONOS/FL No

SD9 Add CONTROLLER port to fea-
tures reply/port status

15 ONOS/POX/FL Yes

Data-plane DP1 Delay/drop packet in/packet out 17 ALL No
loss DP2 Mod buffer id in pkt in/flow add 8 ALL No

Flow rule
modification

FM Change flow rule match, actions,
etc in flow add

162 ALL No

Port config
modification

PC Change port mod to change port
configuration

39 POX No

Packet
location

LH1 Change port where packet was re-
ceived in packet in

14 ALL No

hijacking LH2 Change port for packet out 14 ALL No

Empty
packet ins

EP1 Change inner packet length to 0 in
packet in

1 ONOS Yes

EP2 Set packet in length=0 2 POX/RYU/FL No

Controller CD1 Delay flow add 2 POX No
DoS CD2 Change length to 0 on any message 8 RYU Yes

CD3 Change inner packet length to 0 in
packet in

2 RYU Yes

Link detec-
tion failure

LD Change port lists in fea-
tures reply/port status

33 ONOS/POX/FL Yes

Broken ARP
broadcast

BB Change port lists in fea-
tures reply/port status

20 ONOS/FL Yes

Unexpected
flowrule

FR1 Change flow stats reply such that
flow rule entry does not match

8 ONOS Yes

removal FR2 Change flow stats reply such that
packet count is constant

4 ONOS Yes

Unexpected
broadcast

UB Change port in field of the
packet out message

6 POX/RYU Yes



be easily fixed. The first of these, consists of duplication of ONOS handshake
messages. The state machine ONOS uses to control its handshake with a switch
is not tolerant to message duplication. As a result, duplicating these messages
results in a connection reset. This could be avoided by designing the handshake
state machine to tolerate duplication.

The second subcategory of these bugs operates by modifying the features reply

message sent during the initial handshake to ONOS or POX to include a port
with number 0xFFFD. This triggers a disconnection by the malicious switch the
next time an ARP flood occurs, which might be hours later. The disconnection
occurs because this port number (in OpenFlow 1.0) indicates the controller and
results in an invalid packet in being sent to the controller. These bugs can be
mitigated by modifying the controller to sanity check the list of ports received
from the switch.

Data-Plane Loss (DP)–No Known Mitigations. While we do not ex-
plicitly consider data-plane level attacks, we found several bugs which can trigger
data-plane packet loss. All the controllers we tested are vulnerable to drop-
ping occasional data-plane packets as a result of malicious switches discarding
packet in or packet out messages. A different method to induce data loss is to
target the buffering of packets at malicious OpenFlow switches by corrupting the
buffers indicated in packet in or packet out messages. This causes the buffered
packet to eventually be dropped. These bugs can have particularly large impacts
on small flows like ARP and DNS where installing flow rules makes little sense.
We are not aware of any known mitigations against these bugs.

Flow Rule Modification (FM)–No Known Mitigations. Another class
of bugs disrupts flow rules from the controller by modifying flow add messages.
This enables the attacker to affect the timeout, priority, and match fields and
masks of flow rules in malicious switches as well as the actions performed on a
match. Our testing found a number of modifications that cause network-wide
denial of service, but specific changes to small sets of flows are also possible. We
are not aware of any known mitigations against these bugs.

Port Config Modification (PC)–No Known Mitigations. Similar to
the flow rule modification, a compromised switch can mislead a controller as
to the configuration of its ports by modifying port mod messages. This config-
uration primarily consists of the port’s enabled or disabled state and whether
it has broadcast enabled. Our testing found a number of specific modifications
that cause broad, network-wide denial of service, but these bugs could also be
used for specific modifications targeting specific topology changes in networks.
We are not aware of any known mitigations against these bugs.

Packet Location Hijacking (LH)–No Known Mitigations. Several
bugs allow a malicious switch to change the apparent source port of a packet
sent to the controller and the apparent destination port of packets send by
the controller. This hijacking of packet locations has dramatic and wide spread
effects across the network, including topology detection, MAC learning, and re-
active forwarding. Note that the topology poisoning attacks identified in prior
efforts [7, 10] apply these bugs to LLDP traffic on particular ports to carefully



forge specific links without breaking the entire network. While attacks forging
LLDP packets can be mitigated using cryptographic techniques, the more gen-
eral bugs are more difficult to address, and we are not aware of any known
mitigations.

Empty packet in’s (EP)–Some Mitigations. We identified a bug in the
ONOS controller where sending a packet in message with a zero-length payload
packet triggers a NULL pointer exception in the processing thread. ONOS’s de-
sign separates the processing of messages from different switches into different
threads. As a result, this exception causes this switch’s to terminate, discon-
necting the malicious switch, but allows the controller to continue running. We
reported this bug to the ONOS project, which confirmed it and verified that it
was no longer present in their most recent release.

However, a second bug exists which effectively prevents all topology detection
and useful reactive forwarding through a compromised switch on any controller.
The bug is exploited by configuring the compromised switch to send packet in

messages with a payload length of at most zero bytes. This means that no packet
headers will be sent to the controller, which can then do nothing useful with the
message, preventing topology detection, MAC learning, and reactive forwarding.
Preventing these bugs would require an update to the OpenFlow specification
to disallow very small payload lengths.

Controller DoS (CD)–Some Mitigations. We identified several possible
bugs that can overload and DoS the controller. One unavoidable way to do this
is simply to delay the installation of flow rules in malicious switches, causing
a flood of packet in messages. This bug has been identified by several other
studies, including [7, 42, 44]. Note that ONOS and Floodlight partially mitigate
this bug by tracking flow rules to prevent repeated insertion attempts. The only
complete mitigation is to proactively insert all needed flow rules and never send
packets to the controller.

We also identified two new bugs that crash the Ryu controller. The first
of these causes an infinite loop when receiving an OpenFlow message with a
zero-length header while the second terminates the controller with an uncaught
exception when a packet in message with a zero length payload is received. We
reported these bugs to the Ryu project, which has patched both.

Link Detection Failure (LD)–Some Mitigations. This bug works against
implementations of the LLDP protocol to prevent a correct global topology from
being constructed by a vulnerable controller. It exists in ONOS, Floodlight, and
POX; Ryu is not vulnerable only because it does not attempt to construct a
global view of the topology, but simply emulates a set of learning switches. Link
detection is typically implemented by having the controller send LLDP packets
out of each port on each switch that it knows about and observing where the
packet in messages containing those packets arrive. From the packet in mes-
sage, the controller knows what port the packet was received on, allowing it to
identify a unidirectional link between the port where this packet was sent and
the port where it was received.



This bug tampers with the list of ports sent by a malicious switch in the
the features reply and port status messages that the controller uses to enu-
merate available switch ports. If ports are omitted in these messages, no LLDP
packets will be sent on them, which means no links can form from those ports.
Without knowledge of these links, the controller is limited in its ability to route
packets and may be unable to reach certain destinations.

These bugs can be substantially mitigated by monitoring received packet in

messages and looking for previously unknown ports. If such ports are observed,
the controller can begin to send LLDP packets on those ports and emit an alert
about a malicious or buggy switch sending inconsistent information.

Broken ARP Broadcast (BB)–Some Mitigations. This bug is concep-
tually similar to the link detection failure bug except that it applies to the net-
work edge ports of a malicious switch that are directly connected to hosts instead
of to other switches. It enables an attacker to render target hosts unreachable in
a network running ONOS or Floodlight. Both controllers identify edge ports as
those that have not received LLDP packets and are thus not connected to other
switches and only broadcast ARP requests on these ports. However, by relying
solely on the port lists from features reply and port status messages, certain
ports may be omitted from those messages and hidden from the controller, pre-
venting ARP broadcasts on those ports. This is despite other traffic from those
ports. This causes hosts behind these omitted ports of malicious switches to be
effectively unreachable. This lasts until each target host sends an ARP request
of its own, at which point the controller receives the ARP request and learns
the location of the target host. Much like link detection failure bugs, monitoring
received packet in messages can substantially mitigate these bugs.

Unexpected Flow Rule Removal (FR)–Complete Mitigations. These
bugs confuse the ONOS controller into removing flows that it installed on a
malicious switch, complicating debugging and directing suspicion away from the
malicious switch. This bug occurs because ONOS manages the flow rules in
switches with a very heavy hand. In particular, it will remove any flow rule
in the switch that it did not insert and will track the usage of flow rules and
request removal of flows rules that have been idle for some amount of time.
As a result, by modifying the flow rule information returned to ONOS in the
flow stats reply message, a malicious switch can make a flow rule appear idle
or appear sufficiently different that ONOS does not recognize it and orders its
removal. These bugs can be mitigated by relying on the ability of OpenFlow
switches to automatically remove flow rules based on idle timeouts [31, 33] and
ensuring that all expected rules are accounted for before beginning removal.

Unexpected Broadcast Behavior (UB)–Partial Mitigations. Open-
Flow packet out messages include a special broadcast option that asks a switch
to broadcast the included packet out of all ports with broadcast enabled that are
not the port on which this packet was received. However, this mechanism is vul-
nerable to subtle changes in behavior that cause unexpected packet forwarding
and cripples learning-switch type routing. This bug occurs when the packet out

message is modified by a malicious switch to change the in port, which results



in the packet being broadcast by the malicious switch out of the port on which
it was received. This has impact on learning switch routing because broadcast-
ing packets in this manner causes switches to learn incorrect locations for hosts
resulting in connectivity losses. These bugs can be detected by linking packets
sent at one switch with those received by other switches.

4.3 Attack Demonstrations

We demonstrate that one can weaponize the bugs in Table 2 into powerful attacks
with potentially disastrous consequences. We manually develop exploits for a few
of the bugs we discover and present these weaponized examples below. All attacks
were manually implemented and tested using BEADS. The network topology was
a simple tree with three switches and four hosts.

TLS Man-in-the-Middle. The security of TLS against man-in-the-middle
attacks relies on a correctly implemented certificate-based PKI and active user
involvement. Unfortunately, attackers can leverage maliciously obtained certifi-
cates [22] or tools like SSLStrip [26] to observe (and potentially modify) confi-
dential information exchanged between client and server.

We implemented this scenario using the Ryu controller, which provides learn-
ing switch routing. We assume that the attacker has access to a compromised
switch on path as well as a host that is not currently on the path between client
and server. We use the FM bug to alter the flow table of the attacker-controlled
switch to insert his host, potentially performing an SSL man-in-the-middle at-
tack, into the path between the target client and server. Additional rules must be
inserted using the FM vulnerability to ensure that each switch only sees packets
with addresses that conform to the network topology.

Web Server Impersonation. In this scenario, an attacker wishes to im-
personate an internal web server. We use the ONOS controller (we believe POX
is vulnerable to a similar attack) and a malicious host at an arbitrary location
in the network. We used the ARP-location-injection bug to confuse the con-
troller into believing that the target webserver is now located on the same port
as the attacker. All future connections from new or idle hosts are then sent to
the attacker. Since ONOS uses a global Proxy ARP cache, the attacker can be
anywhere on the network. This effect lasts until the target server starts a new
connection with a host that causes a packet in to the controller. This will reset
the target server’s location and end the attack.

If the switch to which the target server is connected is compromised, the
attacker can increase the duration of this attack by also using the DP1 vulner-
ability to drop all packet in messages from the target to the controller. This
prevents the target server from ever re-asserting its old location and causes the
attack to last indefinitely.

Break Network Quarantine. This scenario considers an attacker who has
found useful information (e.g., PII, credit card data, intellectual property, etc.)
but induced a network quarantine in the process, and must transfer that data
to an external server despite the imposed isolation.



In our demonstration of this attack, the Ryu controller is implementing a
firewall and attempting to quarantine a target host from the rest of the network
by dropping all packets from its port. The attacker is assumed to control an
arbitrary switch in the network and is trying to send traffic from the target host
to elsewhere in the network to exfiltrate discovered data. We use the CD2 bug
for this attack, which causes the controller to enter an infinite loop and become
unresponsive. Eventually, the switches in the network detect the failed connec-
tion and enter standalone mode, at which point they fall back to conventional
Layer-2 Ethernet learning switches. This purges the flow table and enables all-
to-all connectivity, allowing the attacker to exfiltrate the data. We were able to
successfully demonstrate this attack against Ryu.

Deniable Denial of Service. In this scenario an adversary wishes to de-
grade network performance while remaining undetected for as long as possible.
Whole-network effects such as controller crashes are thus undesirable, as are any
actions that are easily traceable to attacker-controlled entities.

We implemented this attack scenario using ONOS. To stealthily disrupt net-
work service, we use an infinite sequence of SD9 bugs. This bug uses a malformed
features reply message to cause disconnection of the malicious switch on the
next ARP flood, which may be a long time after the message was sent. Blame
for the disconnection will be placed on the controller because of the invalid
packet out message that triggers the disconnection, thereby directing suspicion
away from the malicious switch. Using this attack, each ARP flood caused the
malicious switch to disconnect from the controller, resulting in about 3 seconds
of impaired service. ARP floods occurred 4 times in our tests, but an attacker
could use normal ARP requests for non-existent hosts to increase that by a factor
of 10. We successfully tested this attack against ONOS.

5 Discussion and Limitations

BEADS does not find fully weaponized attacks ready to launch against a tar-
get. Instead, it identifies strategies that cause significant impact on the network
stemming from one or more bugs much like stack-overflow vulnerabilities, there
is still manual effort needed to write an exploit that uses the bug in a targeted
way. This includes fixing the malicious host or switch locations, as the bugs
themselves exist irrespective of network location.

Many of the bugs found by BEADS allow a malicious switch to impact other
switches or hosts indirectly. While a malicious switch always has the ability to
impact such devices directly, there are two reasons it might want to use indirect
methods instead. First, it makes it difficult to identify the malicious party by
making the controller appear responsible for the undesirable behavior. Second,
if a switch does not protect its connection with the controller using TLS, these
bugs allow a Man-In-The-Middle attacker to maliciously control the switch using
OpenFlow alone. Prior work has established that a significant number of SDN
switches are not using TLS to protect their communication with the controller,
making this a promising attack avenue [35,36].



Because BEADS is designed to detect bugs in the SDN control plane, we do
not include metrics like latency, throughput, and packet drop rate in our detec-
tion. These are important data plane metrics, but provide little to no information
about the control plane, and thus for our testing.

Our malicious proxy is stateless, and thus cannot coordinate modifications
of particular requests or responses. Instead, it applies actions based on the type
of each message. This maps well to OpenFlow’s use of separate types for most
requests, responses, and commands and reduces the attack generation search
space. Adding additional state to this proxy could enable the discovery of more
complex attacks, but at the cost of an exponential increase in the search space.

6 Related Work

Network testing and debugging. The work that is closest to ours is DELTA [24].
DELTA also evaluates the whole SDN system, including both controller and
switches. However, it focuses on the SDN controller’s northbound interface and
uses only blind fuzzing without regard for message structure or probable vulner-
abilities on the OpenFlow southbound interface. BEADS focuses on the south-
bound interface and uses message format and semantic information to provide
much better test coverage, especially against controller algorithms like routing
and topology detection. As a result, BEADS finds all the malicious switch at-
tacks that DELTA finds and several that DELTA does not.

Other closely related efforts are OFTest [8] and FLORENCE [29]. Both of
these tools test OpenFlow switches using manually written tests focusing on
conformance to the OpenFlow specification. Since these tools do not consider
the controller, they are unable to find bugs and attacks in the controller software
based on incorrect assumptions about the switches.

Another work related to ours is NICE [6], which uses model checking and
symbolic execution to test SDN controller applications using network invari-
ants. NICE differs from our work in that it focuses on non-malicious SDN test-
ing, while we focus on malicious attacks. NICE was only shown to scale to
simple first-generation SDN controllers (e.g., NOX). The second generation of
SDN controllers we test, like ONOS and Ryu, include orders of magnitude more
code, which would substantially complicate the symbolic execution. In particu-
lar, topology generation requires the controller to send messages to the switches
on a timer which is not supported in NICE. BEADS successfully tests ONOS
and other large, second-generation SDN controllers. Finally, while NICE models
switches and hosts, our approach uses real (software) switches and real applica-
tions. OFTEN [20] (an extension of NICE) adds real switches, but it cannot test
for performance attacks. Further, neither NICE nor OFTEN consider sending
the switches malformed messages and both are dependent on difficult-to-design
network state invariants for bug detection.

STS [41] is another work looking at network debugging. This work develops
a method to minimize network execution traces containing bugs for OpenFlow
networks. To test their trace minimizing technique, they develop a network event



fuzzer that randomly injects events like link failures or packets into a network and
use it to find seven new bugs in five SDN controllers. Unlike the STS fuzzer, our
work focuses on manipulating the OpenFlow messages themselves and identifies
which of these messages are likely to lead to attacks.

Attacks and defenses in SDN. Work that studies SDN attacks includes
exploration of protocol attacks [10], saturation attacks [42, 44], and controller-
switch communication attacks [4]. Several defense and verification techniques
have been proposed to ensure that flow rules do not violate invariants [1,2,16–18].
These verification approaches focus on logic errors in rules, as opposed to mali-
cious manipulation of the SDN. The work by Mekky, et al. [28] allows efficient
inspection and filtering of higher network layers in SDNs. Kotani and Okabe [19]
filter packet in messages according to predefined rules to protect the controller.
LineSwitch [3] mitigates control plane saturation DoS attacks by applying prob-
abilistic black-listing. Recently, Spiffy [14] was proposed to detect link-flooding
DDoS attacks in SDNs by applying rate changes to saturated links. None of
these approaches considers the problem of automatic attack identification.

7 Conclusion

We have developed a framework, BEADS, to automatically find attacks in SDN
systems. BEADS considers attacks caused by malicious hosts or switches by
using semantically-aware test case generation and considering the whole SDN
system (switches, controllers, and hosts). We used BEADS to automatically
test almost 19,000 scenarios on four controllers and found 831 unique bugs. We
classified these into 28 categories based on their impact; 10 of which are new. We
demonstrated through 4 attacks how an attacker can use these bugs to impact
high-level network goals such as availability, network topology, and reachability.
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