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Abstract—With the growing reliance on driving direction
applications that dynamically account for live traffic updates,
drivers are much more likely to act optimally, by taking the
shortest path to their destination, and therefore more predictably.
As city networks transition into being made up of connected
and autonomous vehicles, autonomous driving pilots are even
more likely to act optimally and predictably. The predictability
that comes from acting optimally allows motivated attackers to
manipulate driver(s) to travel chosen slower alternative routes
by causing disruptions on road segments that are part of faster
routes. A motivated attacker could use this method to cause
a number of different harms such as forcing specific vehicles
to take unnecessarily long routes, forcing all vehicles traveling
between popular locations to follow a chosen route, or making
vehicles travel specific road segments that the attacker chose,
such as toll roads. In this work, we show the feasibility and
practicality of conducting such attacks on several real traffic
networks of major North American cities. We analyze several
attack objectives under different attacker constraints and we
demonstrated that an attacker could find an attack strategy in
a matter of seconds.

Index Terms—Security, Connected and Autonomous Vehicles,
Alternative route-based attacks

I. INTRODUCTION

Driving direction applications that dynamically account for
live traffic updates are widely used, especially in cities because
interruptions in traffic are much more likely to drastically
increase travel time. This increase can be avoided by using
such driving applications which dynamically re-route drivers
to avoid interruptions. As connected and autonomous vehicles
take over the streets of cities, it will lead to an increased, and
potentially universal, reliance on applications and algorithms
that find optimal routes and dynamically re-route drivers to
avoid interruptions. Some examples of connected and au-
tonomous vehicles include [2]–[4], [7], [12], [17]–[19].

Although connected and autonomous vehicles are designed
with capabilities and features that have the potential to provide
increased safety, satisfaction, comfort, and convenience, they
also bring emerging challenges to security and privacy [15].
Previous work has shown how one compromised car, with
different levels of adversarial control, can be used to target
a victim to make it crash into another vehicle by simply
disseminating incorrect information [1], [5], [6], [9], [10],
[20]. Such attacks can be extended to have a higher impact on
auto transportation in an area, preventing goods transportation,
access to resources, access to services in target areas, and
cascading effects on supply chains for specific industries. For

example, the work on threat detection in collaborative adaptive
cruise control by Jagielski et al. conducted a detailed analysis
of various attacks that a motivated attacker can launch on a
vehicle’s adaptive cruise control by influencing acceleration
reported by another car’s LIDAR or RADAR sensors [13].
The study on vehicle platoon misbehavior done by DeBruhl
et al. considers the design of a set of insider attacks and
abnormal behavior attacks that can occur in a cooperative
adaptive cruise control (CACC) platoon of vehicles [6]. Other
works investigate the impact street networks can have on the
overall resilience to non-adversarial scenarios. Specifically, the
work done by Zhang et al. examines how a transportation
network’s topological characteristics can indicate its ability
to cope with disasters [22], while the study by Feyessa et
al. conducts empirical analysis on various network robustness
measures to study the contribution of a node [8].

Unlike previous work that considered attacks against a
single vehicle to create crashes, we consider what the larger
impact of such attacks can be on a metropolitan traffic system.
Specifically, we consider attackers that want to manipulate
the routes connected and autonomous vehicles travel. Unfortu-
nately, as the routes that vehicles take become more likely to
be optimal, they also become more predictable for a motivated
attacker to manipulate. Given such a possibility to compromise
victim vehicles on roads, a motivated attacker equipped with
such an ability, after careful planning and crafting a coordi-
nated attack, could crash or halt victim vehicles at strategic
points in a metropolitan area or highways to cause congestion
of denial of traffic movement. We assume that the attacker
coordinates a pre-planned attack and gains control over a set,
S, of vehicles. For example, in the case of a cooperative
adaptive cruise control platoon, each platoon could have an
attacker at various parts of the metropolitan area and the
attackers could coordinate crashes together as a team.

In this paper, we study the feasibility of city-wide co-
ordinated attacks utilizing connected autonomous vehicles,
by focusing on one specific attack: alternate route-based
attack. In such an attack, the attacker knows the source
and destination of the targeted victim vehicle(s) and blocks
road segments preventing them from being used such that a
specifically chosen sub-optimal alternative path becomes the
shortest between the source and destination. While on a small
scale, it may seem obvious that such attacks are feasible, it is
not clear at large a scale how effective they can be and what
factors influence them. We demonstrate experimentally that



such attacks are possible by using publicly available traffic
maps from OpenStreetMap [16]. We model the attack as a
graph problem where graph weights represent vehicle travel
time and blocking a road segment means removing an edge,
with edge removal costs representing the attacker’s capabilities
to shut down road segments. We adapt the Force Cut Problem
[14] to attacks against traffic systems by modifying it to
work for directed graphs, defining meaningful edge weights
and edge removal costs, to model different attacks goals and
capabilities. Our experimental results on the traffic systems of
four major cities (Boston, San Francisco, Chicago, and Los
Angeles) provide insights into the feasibility of the attack and
the factors that influence it. Specifically, our contributions are:

• We evaluate four different algorithms in our experi-
ments, one optimization-based (LP-PathCover) and three
heuristic-based (GreedyEdge, GreedyEig, and Greedy-
PathCover). We observed that while LP-PathCover re-
moved the lowest cost edges, it took prohibitively longer
to run compared to the other algorithms. We also ob-
served that the baseline naive algorithms (GreedyEdge
and GreedyEig) were most effective for the more lat-
tice cities, such as Chicago and San Francisco. Overall,
GreedyPathCover was the most effective algorithm be-
cause it was consistently as effective as LP-PathCover,
but was 5 to 10 times faster. All the heuristic-based
algorithms found attack strategies in a matter of seconds.

• We compare two different attack goals: one where the at-
tacker is targeting road segments based on the LENGTH of
the road, and one where the attacker is targetting road
segments based on the TIME it would take a vehicle going
the speed limit to travel the length of the road. Intuitively,
TIME seems more realistic given the application and we
consider LENGTH a baseline given that this information is
readily available from OpenStreetMap. Our results show
that using both attack goals did not drastically impact
the effectiveness of the attack (i.e. average number of
removed edges) or the cost of the attack (i.e. average
cost of removed edges).

• We compare three attack cost methods, UNIFORM, where
each edge removal has the same cost of 1, LANES, where
the cost of an edge removal is set to the number of lanes
in the corresponding road segment, and WIDTH, where
the cost of removing an edge is set to the road width
divided by the average width of an American car [21].
These costs model different types of attacker capabilities
that we considered. Our results show that different cost
types drastically affected the average number of removed
edges and the average cost of removed edges and that
an attacker with the same fixed budget (i.e. the cost of
removing an edge from the graph) will be less successful
in the LANES or WIDTH models.

• We investigate the impact of graph topology on the
effectiveness of the attack by conducting experiments on
the traffic systems of four different cities; Boston, San
Francisco, Chicago, and Los Angeles. We observed that

for cities with traffic maps that are more lattice-like, such
as Chicago, the naive algorithms were more likely to
find the ideal solutions the optimization-based algorithm
found, while for cities with traffic maps less lattice-
like, such as Boston, the naive algorithms were much
less likely to find the ideal solutions the optimization-
based algorithms found. Our results show that the gap
in the average cost of an attack between the baseline
naive algorithms (GreedyEdge and GreedyEig) and the
optimization-based algorithm (LP-PathCover) was 1.6
times bigger for Boston, a less lattice street network,
than it was for Chicago, a very lattice street network.
Therefore, the much faster baseline naive algorithms were
much more efficient for lattice cities, making it quicker
and cheaper to attack lattice cities.

The rest of the paper is organized as follows. We describe
the attacks in Section II and present our results in Section
III. We overview related work in Section IV and conclude in
Section V.

II. ALTERNATIVE ROUTE-BASED ATTACKS

In this section, we describe the attacks we consider in this
work. We first describe our attacker model, then describe the
attacks.

A. Attacker Model

In this work we look beyond the scenarios with one attacker
controlling a car and its attack impact on one platoon of
autonomous vehicles. Instead, we examine the scenarios with
an attacker (or set of coordinated attackers) controlling several
vehicles trying to create disruptions in a metropolitan traffic
system. We ask the question, given a set of attacker vehicles
and a street map, what kind of denial of service connectivity-
related attack can the attacker create with minimal resources?
This can be seen as similar to denial of service attacks in
computer networks where an attacker prevents communica-
tion on particular parts of the network or targets a specific
victim. In the case of traffic systems, given a set of attacker
vehicles, a street map, and a service depending on the correct
functioning of the street system and implemented by a set of
vehicles with coordinated routes, the goal of the attacker is
to disrupt critical services. Examples of such services include:
emergency, police, food delivery, supply chains for specific
industries, and hospitals.

Attacker knowledge. We assume the attacker knows/has
access to: (1) the starting location of the targeted vehicle(s),
(2) the destination of the targeted vehicle(s), (3) and the
street map of the city the targeted vehicle(s) is traveling in.
The attacker only has access to public-domain information of
road transportation networks. Such information could include
- city street networks, city maps, highway networks, location
of various amenities and points of interest, traffic volume
information, travel time function of roads, traffic capacity of
roads, road speed limits, average incident response times, peak
hour and time period specific traffic data, etc.



Attacker’s objective. The main goal of the attacker is to
disrupt the traffic system. For example, an attacker can try
to disconnect (partition) some target area of interest in a
metropolitan city. Such an impact is intended to ensure that
the target area of interest is not practically reachable from any
other part of the city outside of the target area. By selecting a
target area containing key points of interest such as hospitals,
police stations, and other critical services, an attacker could
potentially severely impact the accessibility to such services.

An attacker can perform topological analysis on the road
network graph representation to find critical roads, as reflected
by their high (edge) betweenness centrality values of their
corresponding edges in the graph. The (edge) betweenness
centrality of an edge, e, is the fraction of shortest paths
between all possible pairs of nodes in the graph that pass
through e. Since edges with high (edge) betweenness centrality
are indicative of their control over information passing through
them by the virtue of being part of many shortest paths, the
metric is assumed to generally identify highly traveled roads
in a road network

Another attacker goal can be to force a single vehicle to
travel a chosen sub-optimal chosen route, and this attack
could be easily adapted to have much broader implications. A
motivated attacker could feasibly use the techniques discussed
in this paper to coerce multiple drivers to take a chosen sub-
optimal alternative route, make all drivers traveling between
common locations take much slower routes, force victim
vehicles onto a chosen road segment, such as a toll road, or
to utilize vehicles to disrupt access to a critical resource such
as a hospital or factory.

Attacker constraints. The attacker is constrained by phys-
ical capabilities in terms of the number and type of vehicles
and the cost associated with shutting down a road segment.
For example, a truck can be used to shut down a multi-lane
road, while a small vehicle can only partially shut down the
road, i.e. to shut down the entire road more than one vehicle
would be needed, thus the cost will be higher.

B. Alternative Route-based Attacks

We focus on one specific attack namely, alternative route-
based attacks. We model the attack as a graph problem, where
the city street network is represented by a directed graph, G =
(V,E). The set of vertices, V , is a set of intersections and the
set of edges, E, is a set of directed road segments representing
the ability to move between the intersections. Furthermore, we
have a non-negative edge weights w : E → R≥0 denoting the
path metric. We set the length of a path in G to be the sum of
the weights of its edges, therefore the length of the shortest
path will have minimum total weight. Also, each edge has a
cost c : E → R≥0 of being removed from G. Note that the
metric associated with the path can be seen as the attacker’s
objective, as the attacker wants to prevent the victim to achieve
its goal of traveling the shortest path according to path metric.

The attacker is also given two nodes (s, d ∈ V ), and has
the goal of routing traffic from s to d along a given path (p∗).
The attacker removes edges with full knowledge of G, w, and

c. Given a budget (b) the attacker’s objective is to remove
a set of edges E′ ⊆ E such that

∑
∈E′ c(e) ≤ b and p∗ is

the exclusive shortest path from s to t in the resulting graph
G′ = (V,E \E′). This is the Force Path Cut Problem, defined
by [14] and adapted to directed graphs for our application.

We used two different methods of assigning weights to each
edge capturing different attacker objectives:

1) LENGTH: the length, in meters, of the road segment
2) TIME: the time, in seconds it takes to travel the road

segment (assuming the driver is going the speed limit)

TIME = roadLength/speedLimit (1)

We used three methods of assigning the cost of removing an
edge, which in this context practically means causing a large
enough interruption on the road segment to shut it down, at
least temporarily:

1) UNIFORM: each road segment costs 1 to remove
2) LANES: each road segment costs the number of lanes it

has to remove
3) WIDTH: each road segment costs its width divided by

the average width of a car in the USA [21] to remove

WIDTH = roadWidth/widthOfAverageCar (2)

III. EXPERIMENTAL RESULTS

In this section, we describe our experimental methodology
and results. We seek to answer the following questions:

• How can a motivated attacker leverage existing tools
and public-domain information (maps of metropolitan
areas, city regulations in response to traffic accidents,
etc.) to plan sophisticated alternative route-based attacks
on metropolitan areas?

• What would the design of such sophisticated alternative
route-based attack strategies look like?

• What are factors that influence the effectiveness of the
attack?

A. Experimental Methodology

We compare four different algorithms adapted from [14].
We changed them to work for directed graphs and to use
several weight and cost options. The algorithms are:

1) LP-PathCover: Linear programming optimization ap-
proach

2) GreedyPathCover: Iteratively cuts the road segment, not
in p∗, that is part of the most routes shorter than p∗

3) GreedyEdge: Iteratively cuts the shortest road segment,
not in p∗, on the current shortest route between the
source and destination

4) GreedyEig: Iteratively cuts the road segment, not in p∗,
on the current shortest route between the source and
destination with the highest eigenvalue to cost ratio

Attacker Goal and Cost. Our experiments were focused
on comparing the effectiveness and the efficiency of the four
Force Path Cut approximation algorithms, the options for
assigning edge weights and edge removal costs, and the impact
of the graph topology of the city street networks. We believe



TABLE I
CITY GRAPH SUMMARIES

City Nodes Edges Avg. Node
Degree

Boston 11171 25715 4.60
San Francisco 9659 269002 5.57
Chicago 29299 78046 5.33
Los Angeles 51716 141992 5.08

that the TIME option for assigning weights is much more
reflective of real travel time, so we used the LENGTH option as
a baseline for comparison. Similarly, for edge removal cost we
implemented the UNIFORM option as a baseline to compare
to the more realistic WIDTH and LANES options. Although,
the method for assigning edge removal costs depends on
the budget and scale of the disruptions the attacker can
cause. For example, if they can cause large disruptions the
UNIFORM option might be more realistic because all they need
is one interruption to shut down a road segment.

Datasets. We used the Boston, San Francisco, Chicago, and
Los Angeles street networks gathered from OpenStreetMaps
and represented as NetworkX DiGraphs [16] [11]. We show
the characteristics of the corresponding graphs in Table I.

Source and Target selection. The source is a randomly
selected intersection and the destination is a hospital. We used
four major hospitals in Boston, San Francisco, Chicago, and
Los Angeles each for our experiments. Unfortunately, due to
the nature of OpenStreetMap data, points of interest, including
hospitals, frequently lie outside of any road segment [16]. In
such cases, we find the closest point on the road by calculating
the straight-line distance in the corresponding geographical
projection. We create an artificial node on that point. We then
join the point of interest with the artificial node on the road
segment and connect it with an artificial road segment. We
mark an attribute in the geodataframe for this road segment
to indicate the artificiality.

Alternative Route. The alternative path is set to the 100th
shortest path between the source and destination, which we
refer to as the path rank.

Metrics. In each set of experiments we randomly choose 10
different source nodes for each hospital, 40 experiments per
set total. All averages in this section are over 40 experiment
sets. We use the following metrics:

• Average Algorithm Time (Avg. Runtime): The average
time the algorithm took to run one experiment (in sec-
onds)

• Average Number of Edges Removed (ANER): The Aver-
age number of edges (road segments) removed to ensure
the specified alternative route, p∗, is the shortest path
between the source and destination

• Average Cost of Removed Edges (ACRE): The Average
cost of removed edges (road segments) to ensure the
specified alternative route, p∗, is the shortest path between
the source and destination

• Avg. Inc. to 100th/200th path: the average percent in-
crease of the path length (using the TIME weight) between

the shortest path between the source and destination and
the 100th/200th shortest path between the source and
destination.

Fig. 1. A Boston experiment using Brigham and Women’s hospital as the
target destination, source was randomly selected. LENGTH is the weight type
and WIDTH is the cost type.

Fig. 2. A San Francisco experiment using UCSF Medical Center at Mission
Bay as the target destination, source was randomly selected. LENGTH is the
weight type and WIDTH is the cost type.



TABLE II
BOSTON, WEIGHT TYPE: LENGTH

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 6.31 4 4 58.31 3.75 5 72.27 3.53 7.38
GreedyPathCover 2.83 4 4 6.72 3.78 5.03 6.09 3.53 7.38
GreedyEdge 1.03 4.5 4.5 3.78 5.25 6.5 2.64 4.5 9.42
GreedyEig 1.86 5 5 4.99 4.65 7.65 4.07 4.75 9.37

TABLE III
BOSTON, WEIGHT TYPE: TIME

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 66.82 3.78 3.78 21.17 4.18 6.6 19.56 3.58 7.48
GreedyPathCover 5.76 3.78 3.78 4.25 4.15 6.55 4.33 3.58 7.48
GreedyEdge 2.02 4.65 4.65 1.56 4.48 6.9 1.66 4.38 9.16
GreedyEig 3.22 4.65 4.65 2.77 4.48 8.33 2.92 4.4 9.21

TABLE IV
SAN FRANCISCO, WEIGHT TYPE: LENGTH

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 37.4 3.68 3.68 85.35 4.18 5.38 48.4 3.65 7.64
GreedyPathCover 6.44 3.68 3.68 5.81 4.43 5.68 5.74 3.65 7.65
GreedyEdge 2.2 6.58 6.58 2.14 7.5 8.45 2.33 6.28 13.13
GreedyEig 3.6 5.78 5.78 3.35 5.93 8.58 3.56 5.05 10.57

TABLE V
SAN FRANCISCO, WEIGHT TYPE: TIME

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 42.64 3.93 3.93 56.5 4.88 6.1 42.56 3.88 8.11
GreedyPathCover 4.98 3.9 3.9 5.57 4.85 6.1 4.85 3.88 8.11
GreedyEdge 1.36 4.48 4.48 1.56 6.18 7.48 1.12 4.68 9.78
GreedyEig 2.49 5.43 5.43 2.44 5.78 8.33 2 4.93 10.31

B. Results

Impact of Attacker’s Objective. We observed that the
attacker’s objective (i.e. edge weight type) did not drastically
affect the average number of edges removed or the average
cost of removed edges, as seen in Table IX. For example, for
all the Boston experiments LENGTH averaged 4.27 removed
edges and 6.27 as the average cost of removed edges while
TIME averaged 4.17 removed edges and 6.54 as the average
cost of removed edges, as seen in Table IX. Furthermore,
For all the San Francisco experiments LENGTH averaged 5.03
removed edges and 7.23 as the average cost of removed edges
while TIME averaged 4.73 removed edges and 6.84 as the
average cost of removed edges, as seen in Table IX. The goal
of assigning weights to road segments was to determine how
long those roads would realistically take to travel, therefore
we wanted to use a method of assigning weights that was as
realistic as possible, while remaining topological. In the end,
we concluded that TIME was the best method of assigning
weights because it was the most realistic representation of
real travel time because LENGTH only represented the actual
length of the road segment.

Impact of Attack Cost. We observed a clear increase in

the average cost of removed edges across the different edge
removal cost options (UNIFORM, LANES, and WIDTH), as
seen in Tables II to VIII. The UNIFORM option was always
going to be the cheapest because it simply assigns a cost of
1 to every edge, then the LANES option was the next most
expensive because it included larger costs for removing multi-
lane roads, and the WIDTH option was the most expensive
because the width of an average American car is smaller
than the width of an average lane. For example, in Table V
the average cost of removed edges using UNIFORM cost was
4.43, using LANES cost was 6.84, and using WIDTH cost was
9.08. Therefore, an attacker should choose whatever option
reflects their ability to cause an interruption. For example, if
the attacker can cause large interruptions the UNIFORM option
might make sense because they only need one interruption
to shut down a road segment. If the attacker can only cause
smaller interruptions, such as having a small car feign a
breakdown on the road, the LANES option might be more
realistic. Also, an attacker should consider their budget when
choosing a cost type. For example, if they have an extremely
large budget they might want to use WIDTH or LANES even if
they can cause large interruptions just to be safe. However,



TABLE VI
CHICAGO, WEIGHT TYPE: LENGTH

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 125.21 3.58 3.58 175.51 3.5 7.33 199.8 3.85 5.15
GreedyPathCover 11.33 3.6 3.6 12.46 3.53 7.38 9.91 3.93 5.2
GreedyEdge 4.82 5.08 5.08 5.88 5.7 11.93 4.9 6.43 7.73
GreedyEig 5.34 5.18 5.18 6.4 4.7 9.84 5.41 5.23 8.55

TABLE VII
CHICAGO, WEIGHT TYPE: TIME

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 41.38 3.5 3.5 52.77 3.73 7.8 41.83 3.73 4.55
GreedyPathCover 8 3.5 3.5 8.41 3.73 7.8 7.3 3.73 4.55
GreedyEdge 1.51 4.1 4.1 1.53 4.18 8.74 1.6 4.58 5.4
GreedyEig 2.12 4.5 4.5 2.16 4.6 9.62 2.15 4.4 7.03

TABLE VIII
LOS ANGELES, WEIGHT TYPE: TIME

Algorithm UNIFORM LANES WIDTH
Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE Avg. Runtime ANER ACRE

LP-PathCover 85.77 3.71 3.71 66.8 3.8 7.95 34.85 4.04 7.14
GreedyPathCover 22.13 3.73 3.73 22.51 3.8 7.95 11.09 4.01 7.16
GreedyEdge 5.11 4.51 4.51 4.98 4.5 9.42 2.75 4.51 9.15
GreedyEig 8.73 4.51 4.51 8.31 4.48 9.37 3.88 4.51 9.15

TABLE IX
AVERAGE ANER AND ACRE ACROSS ALL CITY AND WEIGHT TYPE

COMBINATIONS

City LENGTH TIME
ANER ACRE ANER ACRE

Boston 4.27 6.27 4.17 6.54
San Francisco 5.03 7.23 4.73 6.84
Chicago 4.52 6.71 4.02 5.92
Los Angeles 4.35 7.23 4.18 6.85

TABLE X
THRESHOLD TABLE, WEIGHT TYPE: TIME

City Avg. Incr. to 100th path Avg. Incr. to 200th path
Boston 7.93% 9.54%
San Francisco 4.23% 5.35%
Chicago 1.58% 1.93%

if the attacker has a small budget they might need to use
UNIFORM even if it does not reflect the size of interruptions
they can cause.

Impact of Attack Algorithms Effectiveness. The time
it takes the attacker to compute the attack strategy of what
edges should be removed is a critical point for the feasibility
of the attack as they determine the needed computational
resources and time to obtain an effective strategy. While
all the algorithms were effective enough to come up with
viable solutions, the more intelligent algorithms often found
solutions half the cost of the naive algorithm’s solutions but
took much longer to run, as seen in Tables II to VIII. The
GreedyPathCover Algorithm was the most effective without
taking prohibitively long to run, 2.83 to 22.51 seconds on

Fig. 3. A Chicago experiment using Northwestern hospital as the target
destination, sources was randomly selected. LENGTH is the weight type and
UNIFORM is the cost type.

average, as seen in Tables II and VIII. The LP-PathCover



Fig. 4. A Los Angeles experiment using LA Downtown Medical Center as
the target destination, source was randomly selected. TIME is the weight type
and LANES is the cost type.

algorithm consistently found the same or marginally cheaper
solutions than the GreedyPathCover algorithm, but took about
5 to 10 times longer to generate its solution. The GreedyEgde
and GreedyEig algorithms were consistently the quickest, 1.03
to 8.73 seconds on average as seen in Tables II and VIII,
but their solutions were much more expensive than the LP-
PathCover and GreedyPathCover algorithms.

Impact of City Traffic Networks. Throughout these ex-
periments, we tested these algorithms on four different cities;
Boston, San Francisco, Chicago, and Los Angeles. We used
LP-PathCover as a near-optimal baseline for the other algo-
rithms, [14] reported it found the optimal solution in terms
of cost of removed edges in over 98% of experiments. We
observed for more lattice city networks, such as Chicago, naive
algorithms (GreedyEdge and GreedyEig) were able to find
close to the optimal average cost of removed edges despite
their relatively simple and fast approaches, as seen in Tables
VI and VII. However, for less lattice cities, such as Boston,
there was a more noticeable gap in the average cost of removed
edges between the naive and intelligent algorithms, as seen
in Tables II and III. This is largely because in less lattice
cities, such as Boston, there is a much bigger gap between
the length of the shortest path and the 100th shortest path
between a source and destination, as seen in Table X. This
larger gap in path length allowed the intelligent algorithms
to use their superior capabilities to find the ideal edges to

remove, while the naive algorithms we used either removed
more edges or more expensive edges to compensate, as seen in
Tables II and III. But for more lattice cities, such as Chicago,
there is a smaller gap between the length of the shortest and
100th shortest path, as seen in Table X, which meant the naive
algorithms were more likely to choose better edges to remove
because there were so many near-optimal edges to remove.
Our results show that the gap in the average cost of removed
edges between the baseline naive algorithms (GreedyEdge
and GreedyEig) and the optimization-based algorithm (LP-
PathCover) was 2.3 for Boston, a less lattice street network,
and 1.4 for Chicago, a very lattice street network, as seen in
Tables II, III, VI, and VII. That means that the gap in attack
cost between the naive and optimization algorithms for Boston
was 1.6 times bigger than for Chicago. Therefore, the much
faster baseline naive algorithms were much more efficient for
more lattice cities, making it quicker and cheaper to attack
more lattice cities.

As we stated in the introduction, an attacker should choose
the algorithm they use by considering how lattice the street
network is, their budget, and the time they have to run the
algorithm. For example, if the city network is less lattice and
the attacker has limited resources they may need to use the
optimization-based algorithm, LP-PathCover, to find a viable
solution, which takes more time. If the street network is very
lattice then using much faster naive algorithms could be near
as effective as LP-PathCover, which might be useful if the
attacker has limited time to plan their attack.

C. Examples

Figures 1, 2, 3, and 4 depict visualization examples for
Boston, San Francisco, Chicago, and Los Angeles. Each vi-
sualization shows the results from a single experiment, where
the blue circle is the source, the yellow circle is the destination
(a hospital), the blue path is the chosen alternative route, p∗,
between the source and destination, and the red roads are the
ones that were removed to make the chosen alternative route
the shortest path between the source and destination. We hope
that these images provide helpful visualizations of interesting
individual experiments.

In Figure 4, it is clear that a few edges above the blue
path had to be removed so that the blue path could become
the shortest path between the source and destination and that
the original shortest path was very different than the chosen
alternative route. Whereas, in Figure 2, the alternative path
was clearly close to the original path except for a few roads
removed around the middle of the path.

IV. RELATED WORK

Lots of research has been done on attacks on city networks
of connected and autonomous vehicles, especially on the
hardware and software needed for these new vehicles and
the topological properties of the city networks in conjunction
with the new stresses of integrating connected and autonomous
vehicles. For example, Jagielski et al. [13] conducted a detailed
analysis of various attacks that a motivated attacker can



launch on a vehicle’s adaptive cruise control by influencing
acceleration reported by another car’s LIDAR or RADAR
sensors. They studied two attacks that are capable of causing a
crash in a platoon. DeBruhl et al. [6] studied vehicle platoon
misbehavior. They considered the design of a set of insider
attacks and abnormal behavior attacks that can occur in a
CACC platoon of vehicles. In particular, they studied the
collision induction attack, in which an attacker can exploit
the platoon controller to cause a fatal crash with the vehicle
that is following it.

On the topological side, Zhang et al. [22] examined how
a transportation network’s topological characteristics can in-
dicate its ability to cope with disasters. They studied how the
transportation network’s topological attributes can significantly
affect resilience under disasters. In another example of similar
research, Feyessa et al. [8] conducted empirical analysis on
various network robustness measures to study the contribution
of a node to the overall street network’s robustness. Changes
in network-level measures, such as efficiency and average
clustering, were studied when individual nodes were removed.

We utilized recent work by Miller et al. [14]. They intro-
duced the Force Path Cut Problem, where an adversary wants
to promote a specific route by removing a minimum number
of edges in the graph. They showed that the problem was NP-
complete and formalized it as an instance of the Weighted Set
Cover problem. By using constraint generation, they overcame
the potentially factorial size of the universe for the set cover
problem. Their work focused on undirected graphs, while our
work focuses on directed graphs.

V. CONCLUSION

We showed that a motivated attacker could quickly and ef-
ficiently determine how to manipulate vehicle(s) into traveling
specifically chosen alternative routes. This type of attack could
have a wide range of effects such as targeting specific vehicles
and their passengers, forcing all vehicles traveling between
common locations to pass through certain road segments (such
as toll roads), targeting emergency vehicles, or slowing traffic
traveling between common destinations. Several other seman-
tically meaningful options for modeling the city networks,
choosing attack targets, and alternative routes are possible and
we plan to explore them in future work.
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