
Programming in C

Socket Programing

Cristina Nita-Rotaru 3

Reference Material

l User friendly introduction to networking
http://www.ecst.csuchico.edu/~beej/guide/net/html

l Unix Network Programming, W. R. Stevens
§ book code: http://www.kohala.com/start/unpv12e.html

l The GNU C library:
§ http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-

0.02/library_toc.html

Cristina Nita-Rotaru 4

Hardware Addresses

l Hosts access the physical medium via network cards.
l Each network card is uniquely identified by a 48 bit (6

bytes) number, called hardware address, or Ethernet
address.

l Ethernet addresses are hardwired into the electronics
of the network device.

b1 b2 b3 b4 b5 b6

l ARP/RARP protocols map IP addresses to hardware
addresses and vice versa.

unique to the
manufacturer of the
card.

assigned by the
manufacturer.

Cristina Nita-Rotaru 5

IP Addresses

l Hosts are identified in the network by 32-
bit IP addresses (xxx.xxx.xxx.xxx) (also
referred as IPv4 addresses).

l Each decimal number represents eight
bits of binary data (value between 0 and
255).

l Divided in classes.
l Examples:

§ 128.220.224.76

Cristina Nita-Rotaru 6

IPv4 vs. IPv6 Address

l Two different network addresses:
§ IPv4 addresses: 32 bits addresses.
§ IPv6 addresses: 128 bits addresses.

l IPv4 is still the one mostly used. Many of
the networking functions handle both
network addresses families.

l The examples in this lecture will use
IPv4.

Cristina Nita-Rotaru 7

Hostnames and IP Addresses

l People prefer names for hosts
(hostnames):
§ Name: ugrad1
§ Fully qualified name: ugrad1.cs.jhu.edu

l DNS (Domain Name System) maps
hostnames to IP addresses.

l Example:
ugrad1.cs.jhu.edu has the IP 128.220.224.76

Cristina Nita-Rotaru 8

Ports

l Remember:
§ Hardware addresses identity network cards
§ IP addresses identify hosts
§ Names identify hosts in a human friendly way.

l However, transport protocols (TCP and
UDP) ensure communication between
processes.

l How do computers differentiate what data is
for which process?

l Port numbers
16-bit numbers

Cristina Nita-Rotaru 9

Ports contd.

l In general servers use well-known ports,
while clients use ephemeral ports

l Example: port 80 is assigned to web
server (HTTP)

l Port numbers:
§ Well-known ports: 0 - 1023
§ Registered ports: 1024 – 49151
§ Dynamic/private ports: 49152 - 65535

Cristina Nita-Rotaru 10

Socket and Socket Pair

l Socket: identifies a communication end-
point.

socket = (IP address, port number)

l Socket pair: uniquely identifies a TCP
connection over the Internet:

l

socket pair = (local IP address, local IP port,
remote IP, remote IP port)

l Socket pair concept can also be
extended to UDP.

Cristina Nita-Rotaru 11

Byte Order

l Different systems store multibyte values
(for example int) in different ways.
§ HP, Motorola 68000, and SUN systems

store multibyte values in Big Endian order:
stores the high-order byte at the starting
address

§ Intel 80x86 systems store them in Little
Endian order: stores the low-order byte at
the starting address.

l Why is this a problem for network
applications? Data is interpreted
differently on different host.

Cristina Nita-Rotaru 12

Byte Order Conversions

l By convention, network order is Big Endian.
l Set of functions for byte order conversion:

#include <netinet/in.h>
unsigned long int htonl(unsigned long int hlong);
unsigned short int htons(unsigned short int hshort);
unsigned long int ntohl(unsigned long int nlong);
unsigned short int ntohs(unsigned short int nshort);

l h means for host
l n means for network
l l means for long integer
l s means short integer

Cristina Nita-Rotaru 13

Name and Address Conversions

#include <netdb.h>
struct hostent *gethostbyname(const char *name);

#include <sys/socket.h> /* for AF_INET */
struct hostent *gethostbyaddr(const char *addr,

int len, int type);

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

/* in network byte order. */
}

Cristina Nita-Rotaru 14

hostent
struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}

l h_name: the official name of the host.
l h_aliases: a zero-terminated array of alternative

names for the host.
l h_addrtype: type of address; always AF_INET at

present.
l h_length: length of the address in bytes.
l h_addr_list: a zero-terminated array of network

addresses for the host in network byte order.

Cristina Nita-Rotaru 15

h_errno

l The variable h_errno can have the
following values:
§ HOST_NOT_FOUND: the specified host is

unknown.
§ NO_ADDRESS or NO_DATA: the requested name

is valid but does not have an IP address.
§ NO_RECOVERY: A non-recoverable name server

error occurred.
§ TRY_AGAIN: A temporary error occurred on an

authoritative name server. Try again later.

Cristina Nita-Rotaru 16

gethostbyname

#include <netdb.h>
struct hostent *gethostbyname(const char *name);

l Returns a structure of type hostent for the
given host name. The argument name is either a
host name, an IPv4 address or an IPv6 address.

l On failure, it returns a NULL pointer and the
error code h_errno is set appropriately.
The herror function can be used to print
the error message describing the failure.

Cristina Nita-Rotaru 17

Example

int main(int argc, char*argv[]) {
struct hostent *h=NULL;

if(argv[1] == NULL) {
fprintf(stderr, “Provide hostname\n”);
exit(1);

}
h = gethostbyname(argv[1]);
if(h == NULL) {

herror(“ss”);
exit(1);

}
printf("%s \n", h->h_name);
return 0;

}

Cristina Nita-Rotaru 18

gethostbyaddr

#include <sys/socket.h>
struct hostent *gethostbyaddr(const char *addr,

int len, int type);

l Returns a structure of type hostent for the
given host address addr of length len and
address type type. The only valid address
type is currently AF_INET.

l On failure, it returns a NULL pointer and the
error code h_errno is set appropriately. The
herror function can be used to print an
error message describing the failure.

Cristina Nita-Rotaru 19

More Conversions

#include <arpa/inet.h>
int inet_aton(const char *str, struct_in
addr *addr);

in_addr_t inet_addr(const char *str);
char *inet_ntoa(struct in_addr in);

l These functions make conversions from of IP
addresses from string to binary byte order or
vice versa. They are deprecated. Use
inet_ntop and inet_pton instead.

Cristina Nita-Rotaru 20

inet_ntop
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
const char *inet_ntop(int af, const void *src, char *dst,

size_t cnt);

l Converts the network address structure src in the af
address family into a string in dst, which is cnt bytes
long. Address families are currently supported:
§ AF_INET: src points to a struct in_addr (network byte

order format) which is converted to an IPv4 network
address. Dst must be at least INET_ADDRSTRLEN
bytes long.

§ AF_INET6: src points to a struct in6_addr (network
byte order format) which is converted to an IPv6 network
address. Dst must be at least INET6_ADDRSTRLEN
bytes long.

Cristina Nita-Rotaru 21

inet_pton

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
int inet_pton(int af, const char *src, void

*dst);

l Converts the character string src into a network
address structure in the af address family, then
copies the network address structure to dst.

l The following address families are currently
supported:
§ AF_INET: src points to IPv4 network address
§ AF_INET6: src points IPv6 network address

Cristina Nita-Rotaru 22

Example

struct hostent *h;
char *p, **pp;
char str[INET_ADDRSTRLEN];

h = gethostbyname(“commedia");
if(h == NULL) {

herror(“ss”);
exit(1);

}
printf("%s \n", h->h_name);
for(pp=h->h_aliases; *pp != NULL; pp++) {

printf("\talias: %s\n", *pp);
}

if(h->h_addrtype == AF_INET) {
for(pp=h->h_addr_list; *pp != NULL; pp++) {

printf("\tadresses: %s\n",
inet_ntop(h->h_addrtype, *pp, str, sizeof(str)));

}
}

Cristina Nita-Rotaru 23

IPv4 Socket Address Structure

Struct in_addr {
in_addr_t s_addr; /* 32 bit IPv4 address */

/* network byte order */
}
struct sockaddr_in {
uint8_t sin_len; /* length of structure*/
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP or UDP port*/

/* network byte order */
struct in_addr sin_addr; /* 32-bit IPv4 address */

/* network byte order */
char sin_zero[8]; /* unused *;

}

Cristina Nita-Rotaru 24

Simple TCP Client-Server

l Server
§ connects to a well-known port and waits for client

connections
§ For each client, prints on the screen what the client

send him, and send the data back.
l Client

§ Connects to the well-known port of the server and
sends him data

§ Prints on the screen whatever he received from the
server

Cristina Nita-Rotaru 25

Simple Client-Server TCP Example

Create socket

Connect to server

Send to server

Read data
from server

Close the
connection

Create socket

Wait for requests
from clients

Read data
from client

Write back to
the client

Close the
connection

TCP Client TCP Server

Connection
establishment

Blocks until connection
from client

Close notification

Data(reply)

Data(request)

Cristina Nita-Rotaru 26

Library support

l socket
l Bind, getsockname, getpeername
l Connect
l Listen
l Accept
l Close
l Select

Cristina Nita-Rotaru 27

IPv4 Socket Address Structure

struct in_addr {
in_addr_t s_addr; /* 32 bit IPv4 address */

/* network byte order */
}
struct sockaddr_in {

uint8_t sin_len; /* length of struct.*/
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP/UDP port*/

/* network byte order */
struct in_addr sin_addr; /* 32-bit IPv4 address */

/* network byte order */
char sin_zero[8]; /* unused *;

}

Cristina Nita-Rotaru 28

IPv6 Socket Address Structure

struct in6_addr {
uint8_t_t s6_addr[16]; /* 128 bit IPv6 address

network byte order */
}
struct sockaddr_in6 {
uint8_t sin6_len; /* length of struct.*/
sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* 16-bit TCP/UDP port*/

/* network byte order */
uint32_t sin6_flowinfo; /* priority & flow label,

network byte order */
struct in6_addr sin6_addr; /* IPv6 address

network byte order */
}

Cristina Nita-Rotaru 29

Generic Socket Address Structure

l All networking functions take socket arguments by
reference and also need to handle both socket structure
types.

l Solution: all take reference to a generic socket structure.

struct sockaddr {
uint8_t sin_len; /* length of struct.*/
sa_family_t sin_family; /* AF_xxx */
char sa_data[14]; /*protocol specific*/;

}

Cristina Nita-Rotaru 30

socket

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

l Creates an endpoint for communication and
returns a descriptor.

l On success returns a descriptor referencing
the socket. On failure returns -1 and sets
errno appropriately.

Cristina Nita-Rotaru 31

socket contd.

int socket(int domain, int type, int protocol);

l domain : protocol communication family. Examples:
§ PF_INET IPv4 Internet protocols
§ PF_INET6 IPv6 Internet protocols

l type: communication semantics. Examples:
§ SOCK_STREAM: Provides sequenced, reliable, two-way,

connection- based byte streams. An out-of-band data
transmission mechanism may be supported.

§ SOCK_DGRAM Supports datagrams (connectionless,
unreliable messages of a fixed maximum length).

l protocol: a particular protocol to be used with the
socket. Normally only a single protocol exists to
support a particular socket type within a given
protocol family.

Cristina Nita-Rotaru 32

socket contd.

l Examples:

/* Create a TCP socket */
tcpfd = socket(PF_INET, SOCK_STREAM, 0)

/* Create an UDP socket */
udpfd = socket(PF_INET, SOCK_DGRAM, 0);

Cristina Nita-Rotaru 33

connect

#include <sys/socket.h>
int connect(int s, const struct sockaddr *address,

socklen_t address_len);

l Requests a connection to be made on a socket .
§ s: the file descriptor associated with the socket.
§ address: contains the peer address.
§ address_len: the length of the sockaddr structure pointed

to by the address argument.
l On success, returns 0. On failure, returns -1 and
errno is set to indicate the error.

l If the socket has not already been bound to a local
address, connect will bind it: choose and ephemeral
port and the IP address if needed.

Cristina Nita-Rotaru 34

connect contd.

int connect(int s, const struct sockaddr *address,
socklen_t address_len);

l UDP (SOCK_DGRAM sockets):
§ connect sets the socket's peer address, but no connection

is made. The peer address identifies where all datagrams are
sent on subsequent send, and limits the remote sender for
subsequent recv calls.

l TCP (SOCK_STREAM):
§ connect attempts to establish a connection to the address
address. The connection can be established synchronously
(connect will block), or asynchronously (select will indicate
when the file descriptor for the socket is ready for writing).

l If connect fails, the state of the socket is
unspecified. Close the file descriptor and create a
new socket before attempting to reconnect.

Cristina Nita-Rotaru 35

bind

#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *my_address,

socklen_t addrlen);

l Assigns an address to an unnamed socket.
Sockets created with socket function are
identified only by their address family.

l On success, returns 0. On error, returns -1 is
returned and errno is set appropriately.

Cristina Nita-Rotaru 36

bind contd.

int bind(int sockfd, struct sockaddr *my_addr,
socklen_t addrlen);

l Servers usually bind a well-known port, while clients
leave the kernel to choose an ephemeral port.

l A process can bind a specific IP address (must belong
to an interface of the host):
§ For a TCP client specifies the IP source for packets sent from

that socket
§ For a TCP server it restricts the socket to receive incoming

client connection destined only to that IP address
l It is normally necessary to assign a local address

using bind before a SOCK_STREAM socket may
receive connections.

Cristina Nita-Rotaru 37

getsocketname

#include <sys/socket.h>
int getsockname(int socket, struct sockaddr

*address, socklen_t *address_len);

l Retrieves the locally-bound name of the specified
socket, stores it in the address argument, and its
length in the address_len argument.

l Truncates the stored address if the actual length of
the address is greater than the length of the supplied
sockaddr structure).

l If the socket has not been bound to a local name, the
value stored in address is unspecified.

l On success returns 0. On failure returns –1 and
errno is set to indicate the error.

Cristina Nita-Rotaru 38

getpeername

include <sys/socket.h>
int getpeername(int socket, struct sockaddr

*address, socklen_t *address_len);

l Retrieves the peer address of the specified socket,
stores it in the address argument, and its length in
the address_len argument. Truncation happens if
the actual length of the address is greater than the
length of the supplied sockaddr structure.

l If the protocol permits connections by unbound
clients, and the peer is not bound, then address will
be unspecified.

l On success returns 0. On error returns -1 and sets
errno to indicate the error.

Cristina Nita-Rotaru 39

listen

#include <sys/socket.h>
int listen(int socket, int backlog);

l Called only by a TCP server:
§ Converts un unconnected socket into a passive socket,

for which the operating system will accept connections.
§ Specifies the maximum number of connections

(backlog) that the operating system should queue for
this socket. If backlog exceeds the implementation-
dependent maximum queue length, the length of the
socket's listen queue will be set to the maximum
supported value.

l On success, 0 is returned. On error, -1 is returned,
and errno is set appropriately.

Cristina Nita-Rotaru 40

accept

#include <sys/socket.s>
int accept (int socket, struct sockaddr *address,

socklen_t *address_len);

l Extracts the first connection on the queue of pending
connections, creates a new socket with the same
socket type protocol and address family as the
specified socket, and allocates a new file descriptor
for that socket.

l If address is not a null pointer, the address of the
peer for the accepted connection is stored in
address, and its length is stored in address_len.

l If the protocol permits connections by unbound
clients, and the peer is not bound, then the value
stored in address is unspecified.

Cristina Nita-Rotaru 41

accept contd.
int accept (int socket, struct sockaddr *address,

socklen_t *address_len);

l Accept can block or not, depending on how the
operation is defined for the file descriptor for the
socket (synchronously/asynchronously).

l The accepted socket cannot itself accept more
connections. The original socket remains open and
can accept more connections.

l On success returns the nonnegative file descriptor of
the accepted socket. On error returns -1 and errno is
set to indicate the error.

l When a connection is available, select will indicate
that the file descriptor for the socket is ready for
reading.

Cristina Nita-Rotaru 42

select

include <sys/time.h>
int select(int nfds, fd_set *readfds,

fd_set *writefds, fd_set *errorfds,
struct timeval *timeout);

l Indicates which of the specified file descriptors is
ready for reading, ready for writing, or has an error
condition pending.

l If the specified condition is false for all of the specified
file descriptors, select blocks, up to the specified
timeout interval, until the specified condition is true
for at least one of the specified file descriptors.

l nfds: the range (0 to nfsd-1) of file descriptors to be
tested.

Cristina Nita-Rotaru 43

select contd.
int select(int nfds, fd_set *readfds,

fd_set *writefds, fd_set *errorfds,
struct timeval *timeout);

l readfds: if not null, on input specifies the file
descriptors to be checked for being ready to read, on
output indicates which ones are ready to read.

l writefds: if not null, on input specifies the file
descriptors to be checked for being ready to write,
and on output indicates which ones are ready to write.

l errorfds: if not null, on input specifies the file
descriptors to be checked for error conditions
pending, and on output indicates which ones have
error conditions pending.

Cristina Nita-Rotaru 44

select contd.

l If timeout is not a null pointer, it specifies a
maximum interval to wait for the selection to
complete. If the timeout argument points to an
object of whose members are 0, select does not
block. If timeout is a null pointer, select blocks
until an event causes one of the masks to be
returned with a valid (non-zero) value.

l If the time limit expires before any event occurs that
would cause one of the masks to be set to a non-
zero value, select completes successfully and
returns 0.

l On successful completion, select returns the total
number of bits set in the bit masks. Otherwise, -1 is
returned, and errno is set to indicate the error.

Cristina Nita-Rotaru 45

select contd.

void FD_CLR(int fd, fd_set *fdset);

l Clears the bit for the file descriptor fd in the file
descriptor set fdset.

int FD_ISSET(int fd, fd_set *fdset);

l Returns a non-zero value if the bit for the file
descriptor fd is set in the file descriptor set pointed to
by fdset, and 0 otherwise.

void FD_SET(int fd, fd_set *fdset);

l Sets the bit for the file descriptor fd in the file
descriptor set fdset.

void FD_ZERO(fd_set *fdset);

l Initializes the file descriptor set fdset to have zero
bits for all file descriptors.

Cristina Nita-Rotaru 46

select contd.

l A file descriptor for a socket that is listening
for connections will indicate that it is ready for
reading, when connections are available.

l A file descriptor for a socket that is connecting
asynchronously will indicate that it is ready for
writing, when a connection has been
established.

Cristina Nita-Rotaru 47

close

#include <unistd.h>
int close(int fd);

l If fd refers to a socket, close destroys the
socket. If the socket is connection-mode, and
the SO_LINGER option is set for the socket
with non-zero linger time, and the socket has
un-transmitted data, then close will block for
up to the current linger interval until all data is
transmitted.

Cristina Nita-Rotaru 48

Simple Client-Server TCP App.

socket()

connect()

write()

read()

close()

socket()

bind()

listen()

accept()

read()

write()

read()

close()

TCP Client

TCP
Server

Process request

Connection
establishment

Blocks until connection from
client

End-of-file notification

Data(reply)

Data(request)

Cristina Nita-Rotaru 49

UPD Example

l The server
§ Binds to a well-known port
§ Waits for 100 messages from the client
§ Sends an acknowledgement message to the

client
§ Exits

l Client:
§ Sends 100 packets to a the server
§ Waits for a an acknowledgement message

from the server
§ Exits

Cristina Nita-Rotaru 50

Simple Client-Server UDP Example

Create socket

Send 100 packets
to server

Receive ACK
from server

exit

Create socket

Receive 100 packets
from client

Send ACK to
the client

exit

UDP Client UDP Server

Cristina Nita-Rotaru 51

Revisiting connect

#include <sys/socket.h>
int connect(int s, const struct sockaddr *address,

socklen_t address_len);

l Requests a connection to be made on a socket .
§ s: the file descriptor associated with the socket.
§ address: contains the peer address.
§ address_len: the length of the sockaddr structure pointed

to by the address argument.
l On success, returns 0. On failure, returns -1 and
errno is set to indicate the error.

l If the socket has not already been bound to a local
address, connect will bind it: choose and ephemeral
port and the IP address if needed.

Cristina Nita-Rotaru 52

Revisiting connect contd.

int connect(int s, const struct sockaddr *address,
socklen_t address_len);

l UDP (SOCK_DGRAM sockets):
§ connect sets the socket's peer address, but no

connection is made. The peer address identifies
where all packets are sent on subsequent send,
and limits the remote sender for subsequent recv
calls.

l TCP (SOCK_STREAM):
§ connect attempts to establish a connection to the

address address.
l If connect fails, the state of the socket is

unspecified. Close the file descriptor and create a
new socket before attempting to reconnect.

Cristina Nita-Rotaru 53

Revisiting bind

#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *my_address,

socklen_t addrlen);

l Assigns an address to an unnamed socket.
Sockets created with socket function are
identified only by their address family.

l On success, returns 0. On error, returns -1 is
returned and errno is set appropriately.

Cristina Nita-Rotaru 54

Revisiting bind contd.

int bind(int sockfd, struct sockaddr *my_addr,
socklen_t addrlen);

l Servers usually bind a well-known port, while clients
leave the kernel to choose an ephemeral port.

l A process can bind a specific IP address (must belong
to an interface of the host):
§ For a TCP client specifies the IP source for packets sent from

that socket
§ For a TCP server it restricts the socket to receive incoming

client connection destined only to that IP address
l It is normally necessary to assign a local address

using bind before a SOCK_STREAM socket may
receive connections.

Cristina Nita-Rotaru 55

Sending Data

#include <sys/types.h>
#include <sys/socket.h>
int send(int s, const void *msg, size_t len, int flags);
int sendto(int s, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t
tolen);

int sendmsg(int s, const struct msghdr *msg, int flags);

l Connection-oriented:
§ send, sendto, sendmsg

l Connectionless:
§ sendto, sendmsg

Cristina Nita-Rotaru 56

Sending Data contd

l When a message is sent, first it is stored locally by
the operating system. If not enough space is
available at the sending socket to hold the message
to be transmitted:
§ If the sending socket was placed in blocking I/O

(socket file descriptor does not have
O_NONBLOCK set), the sending function blocks
until space is available.

§ If the sending socket was place in non-blocking
I/O mode (socket file descriptor does have
O_NONBLOCK set) the sending function fails
(errno set to EAGAIN). The select call can be
used to determine when more data can be sent.

Cristina Nita-Rotaru 57

Sending Data contd.

l All sending functions have similar behavior
with respect of returning values:
§ On success they return the number of characters

sent.
§ On error they return -1 and set errno

appropriately (check info pages for details of
error codes).

§ Successful completion does not guarantee
delivery of the message. A return value of -1
indicates only locally-detected errors.

Cristina Nita-Rotaru 58

sendto

#include <sys/types.h>
#include <sys/socket.h>
int sendto(int s, const void *msg, size_t len,

int flags, const struct sockaddr *to,
socklen_t tolen);

l Sends a message through a connection oriented or
connectionless socket (s):
§ connectionless socket, the message is sent to the

address to.
§ connection oriented socket, to and tolen are

ignored.

Cristina Nita-Rotaru 59

sendto contd.

int sendto(int s, const void *msg, size_t len,
int flags, const struct sockaddr *to, socklen_t
tolen);

l Arguments:
§ s: the sending socket
§ to/tolen: address/length of the target.
§ msg/len: messages and length of the message.

If the message is too long to pass through the
underlying protocol, sendto fails and no data is
transmitted.

§ flags: used to influence the behavior of the
function invocation beyond the options specified
for the associated socket.

Cristina Nita-Rotaru 60

send

#include <sys/types.h>
#include <sys/socket.h>
int send(int s, const void *msg,
size_t len, int flags);

l Initiates transmission of a message from the
specified socket to its peer.

l Sends a message only when the socket is
connected.

Cristina Nita-Rotaru 61

send contd.

int send(int s, const void *msg, size_t len,
int flags);

l Arguments:
§ s: the sending socket
§ msg/len: message and length of the

message. If the message is too long to pass
through the underlying protocol, sendto fails
and no data is transmitted.

§ flags: used to influence the behavior of the
function invocation beyond the options
specified for the associated socket.

Cristina Nita-Rotaru 62

Sendmsg

#include <sys/types.h>
#include <sys/socket.h>
int sendmsg(int s, const struct msghdr *msg, int

flags);

l It sends a message through a connection oriented or
connectionless socket:
§ If s is a connectionless socket, the message is sent to

the address specified by msghdr.
§ If s is a connection-oriented socket, the destination

address in msghdr is ignored.
l If the message is too long to pass through the

underlying protocol, the functions fails and no data is
transmitted, errno is set appropriately.

Cristina Nita-Rotaru 63

Sendmsg contd

l Msghdr structure:
§ scatter/gather array structure, avoids additional memory

copying.
§ send control information using the msg_control and
msg_controllen members.

struct msghdr {
void * msg_name; /*optional address*/
socklen_t msg_namelen; /*size of address*/
struct iovec * msg_iov; /*scatter/gather array*/
size_t msg_iovlen; /*# elements in msg_iov*/
void * msg_control; /*ancillary data, see below*/
socklen_t msg_controllen; /*ancillary data buffer len*/
int msg_flags; /*flags on received message*/

};

Cristina Nita-Rotaru 64

Sendmsg contd.

int sendmsg(int s, const struct msghdr *msg, int
flags);

l Arguments:
§ s: the sending socket
§ msg: Points to a msghdr structure which contains

both a pointer to the buffer containing the
destination address, and the address of the
buffers which contains the message to be
transmitted. The msg_flags field is ignored.

§ flags: used to influence the behavior of the
function invocation beyond the options specified
for the associated socket.

Cristina Nita-Rotaru 65

Receiving Data

#include <sys/types.h>
#include <sys/socket.h>
int recv(int s, void *buf, size_t len, int flags);
int recvfrom(int s, void *buf, size_t len, int

flags, struct sockaddr *from, socklen_t
*fromlen);

int recvmsg(int s, struct msghdr *msg, int flags);

l Connection-oriented:
§ recvfrom, recvmsg, recv

l Connectionless:
§ recvfrom, recvmsg

Cristina Nita-Rotaru 66

Receiving Data contd.

l All three routines have similar behavior with
respect to return values:
§ On success, they return the length of the

message.
§ On failure, they return a value of -1 and sets
errno appropriately.

§ If a message is too long to fit in the supplied
buffer, excess bytes may be discarded
depending on the type of socket the
message is received from.

Cristina Nita-Rotaru 67

Receiving Data contd.

l Blocking/non-blocking behavior if no data is
available:
§ If the socket is in non-blocking mode, the call

returns -1 and errno is set to EAGAIN. The
select or poll call may be used to determine
when more data arrives.

§ If the socket is in blocking mode, the receive calls
wait for a message to arrive.

l The receive calls normally return any data
available, up to the requested amount, rather than
waiting for receipt of the full amount requested.

Cristina Nita-Rotaru 68

Recvfrom
#include <sys/types.h>
#include <sys/socket.h>
int recvfrom(int s, void *buf, size_t len,

int flags, struct sockaddr *from, socklen_t
*fromlen);

l Receives a message from a socket and the address
from which the data was sent:
§ SOCK_STREAM: as much information is returned as is

currently available, up to the size of the specified buffer.
§ SOCK_DGRAM: data is extracted from the first queued

message, up to the size of the specified buffer. If the
message is larger than the specified buffer, as much
data are stored in the buffer as possible and recvfrom
generates an error message (EMSGSIZE). The
remainder (or excess) of the message is lost if passed
via an unreliable protocol.

Cristina Nita-Rotaru 69

Recvfrom contd.

int recvfrom(int s, void *buf, size_t len,
int flags, struct sockaddr *from, socklen_t
*fromlen);

l If from is nonzero and the socket is not connection-
oriented, the network address of the peer that sent
the data is copied to from and fromlen (initialized
to the size of from) is modified on return to indicate
the actual size of the address stored there.

l If the socket is connection-oriented and the remote
side has shut down the connection gracefully, a
recvfrom call will complete immediately with 0
bytes received. If the connection has been reset,
recvfrom fails and errno is set to ECONNRESET.

Cristina Nita-Rotaru 70

Recvfrom contd.

int recvfrom(int s, void *buf, size_t len,
int flags, struct sockaddr *from, socklen_t
*fromlen);

l Arguments:
§ s : the receiving socket descriptor.
§ buf/len: the buffer/length in which to place the

message.
§ flags: allows the caller to control the reception.
§ from/fromlen : socket address

structure/length to record the address of the
message sender.

Cristina Nita-Rotaru 71

Recvmsg

#include <sys/types.h>
#include <sys/socket.h>
int recvmsg(int s, struct msghdr *msg, int flags);

l Receives a message from a socket and capture the
address from which the data was sent.
§ SOCK_STREAM socket: as much information is

returned as is currently available, up to the size of the
specified buffer.

§ SOCK_DGRAM sockets: data is extracted from the first
queued message, up to the size of the specified buffer.
If the message is larger than the specified buffer, as
much data are stored in the buffer as possible and
recvmsg generates an error message (EMSGSIZE).
The remainder (or excess) of the message is lost if
passed via an unreliable protocol.

Cristina Nita-Rotaru 72

Recvmsg contd

int recvmsg(int s, struct msghdr *msg, int
flags);

l If the socket is not connection-oriented, the network
address of the peer that sent the data is copied to
the msg_name and its length is returned in
msg_namelen; (both are part of the msg msghdr
structure)

l If the socket is connection-oriented and the remote
side has shut down the connection gracefully, a
recvmsg call completes immediately with 0 bytes
received. If the connection has been reset, recvmsg
fails and returns the error message ECONNRESET.

Cristina Nita-Rotaru 73

Recvmsg contd.

int recvmsg(int s, struct msghdr *msg, int
flags);

l Arguments:
§ s: the sending socket
§ msg: points to a msghdr structure which contains

both the buffer which is to contain the source
address, plus the address of buffers into which
the incoming message is stored. The msg_flags
field is ignored.

§ flags: used to influence the behavior of the
function invocation beyond the options specified
for the associated socket.

Cristina Nita-Rotaru 74

Recv

#include <sys/types.h>
#include <sys/socket.h>
int recv(int s, void *buf, size_t len, int

flags);

l Receives a message from a socket, normally used
on a connection mode socket

l Returns as much available information as the size of
the buffer supplied can hold.

l If the socket is connection-oriented and the remote
side has shut down the connection gracefully, a
recv call completes with 0 bytes received. If the
connection has been reset, recv fails and sets
errno to ECONNRESET.

Cristina Nita-Rotaru 75

Recv contd.

int recv(int s, void *buf, size_t len,
int flags);

l Arguments:
§ s: the receiving socket descriptor
§ buf/len: buffer/length of buffer where the

message will be stored.
§ flags: allows the caller to control the

reception.

Cristina Nita-Rotaru 76

Which Recv/Send to Use?

l Depends on your application: using TCP
(connection oriented) or UDP(connectionless)

l Using msghdr optimizes the time spend copying
buffers of data, however:
§ Portability: Msghdr structure not defined on all

platforms so for portability reasons your code
needs to handle cases when msghdr is not
defined.

§ Security: More complex when combined with
block cipher encryption/decryption . Also the
cost of adding such services is much bigger
than the optimization obtained by avoiding
multiple copying.

Cristina Nita-Rotaru 77

Simple Client-Server UDP App.

socket()

sendto()

recvfrom()

close()

socket()

bind()

recvfrom()

sendto()

close()

UDP Client

UDP
Server

