
Cristina Nita-Rotaru

CS4700/5700: Network
fundamentals

P2P Systems.

Traditional Internet Services Model

} Client-server
} Many clients, 1 (or more) server(s)
} Web servers, DNS, file downloads, video streaming

} Problems
} Scalability: how many users can a server support?

} What happens when user traffic overload servers?
} Limited resources (bandwidth, CPU, storage)

} Reliability: if # of servers is small, what happens when they
break, fail, get disconnected, are mismanaged by humans?

} Efficiency: if your users are spread across the entire globe, how
do you make sure you answer their requests quickly?

P2P2

The Alternative: Peer-to-Peer

} A simple idea
} Users bring their own resources to the table
} A cooperative model: clients = peers = servers

} The benefits
} Scalability: # of “servers” grows with users

} BYOR: bring your own resources (storage, CPU, B/W)

} Reliability: load spread across many peers
} Probability of them all failing is very low…

} Efficiency: peers are distributed
} Peers can try and get service from nearby peers

P2P3

Peer-to-Peer Systems Challenges

} What are the key components for leveraging P2P?
} Communication: how do peers talk to each other
} Service/data location: how do peers know who to talk to

} New reliability challenges
} Network reachability, i.e. dealing with NATs
} Dealing with churn, i.e. short peer uptimes

} What about security?
} Malicious peers and cheating
} The Sybil attack

P2P4

1: Napster. Gnutella. Kazaa.

Centralized Approach

} The original: Napster
} 1999-2001
} Shawn Fanning, Sean Parker
} Invented at NEU
} Specialized in MP3s (but not for long)

} Centralized index server(s)
} Supported all queries

} What caused its downfall?
} Not scalable
} Centralization of liability

P2P6

Napster Architecture

Napster
Central Server

Log-in, upload
list of filesSearch for Star

Wars

A
B

C

D

E

F

G

B and C
have the file

P2P7

Unstructured P2P Applications

} Centralized systems have single points of failure
} Response: fully unstructured P2P

} No central server, peers only connect to each other
} Queries sent as controlled flood
} Later systems are hierarchical for performance reasons

} Limitations
} Bootstrapping: how to join without central knowledge?
} Floods of traffic = high network overhead
} Probabilistic: can only search a small portion of the system
} Uncommon files are easily lost

P2P8

Gnutella

} First massively popular unstructured P2P application
} Justin Frankel, Nullsoft, 2000
} AOL was not happy at all

} Original design: flat network
} Join via bootstrap node
} Connect to random set of existing hosts
} Resolve queries by localized flooding

} Time to live fields limit hops

} Recent incarnations use hierarchical structure
} Problems

} High bandwidth costs in control messages
} Flood of queries took up all avail b/w for dialup users

P2P9

File Search via Flooding in Gnutella

What if the
file is rare or

far away?

Redundancy

Traffic
Overhead

P2P10

Peer Lifetimes

} Study of host uptime and application uptime (MMCN
2002)
} Sessions are short (median is 60 minutes)
} Hosts are frequently offline

Host Uptime (out of 100%)

Pe
rc

en
ta

ge
 o

f H
os

ts

P2P11

Resilience to Failures and Attacks

} Previous studies (Barabasi) show interesting dichotomy of
resilience for “scale-free networks”
} Resilient to random failures, but not attacks

} Here’s what it looks like for Gnutella

1771 Peers in Feb, 2001After random 30% of peers removedAfter top 4% of peers are removedP2P12

Hierarchical P2P Networks

} FastTrack network (Kazaa, Grokster, Morpheus, Gnutella++)

supernode

• Improves scalability
• Limits flooding
• Still no guarantees of performance
• What if a supernode leaves the network? P2P13

Kazaa

} Very popular from its inception
} Hierarchical flooding helps improve scale
} Large shift to broadband helped quite a bit as well
} Based in Europe, more relaxed copyright laws

} New problem: poison attacks
} Mainly used by RIAA-like organizations
} Create many Sybils that distribute “popular content”

} Files are corrupted, truncated, scrambled
} In some cases, audio/video about copyright infringement

} Quite effective in dissuading downloaders

P2P14

Skype: P2P VoIP

} P2P client supporting VoIP, video, and
text based conversation, buddy lists, etc.
} Based on Kazaa network (FastTrack)
} Overlay P2P network consisting of ordinary and Super Nodes (SN)
} Ordinary node connects to network through a Super Node

} Each user registers with a central server
} User information propagated in a decentralized fashion

} Uses a variant of STUN to identify the type of NAT and
firewall

P2P15

What’s Different About Skype

} MSN, Yahoo, GoogleTalk all provide similar functionality
} But generally rely on centralized servers

} So why peer-to-peer for Skype?
} One reason: cost

} If redirect VoIP through peers, can leverage geographic distribution
} i.e. traffic to a phone in Berlin goes to peer in Berlin, thus becomes a

local call

} Another reason: NAT traversal
} Choose peers to do P2P rendezvous of NAT’ed clients

} Increasingly, MS is using infrastructure instead of P2P

P2P16

2: BitTorrent

What is BitTorrent

} Designed for fast, efficient content distribution
} Ideal for large files, e.g. movies, DVDs, ISOs, etc.
} Uses P2P file swarming

} Not a full fledged P2P system
} Does not support searching for files
} File swarms must be located out-of-band
} Trackers acts a centralized swarm coordinators

} Fully P2P, trackerless torrents are now possible

} At times, insanely popular
} 35-70% of all Internet traffic (in 2007ish)

P2P18

BitTorrent Overview

Tracker

Swarm

Leechers

Seeder

P2P19

.torrent File

} Contains all meta-data related to a torrent
} File name(s), sizes
} Torrent hash: hash of the whole file
} URL of tracker(s)

} BitTorrent breaks files into pieces
} 64 KB – 1 MB per piece
} .torrent contains the size and SHA-1 hash of each piece

} Basically, a .torrent tells you
} Everything about a given file
} Where to go to start downloading

P2P20

Torrent Sites

} Just standard web servers
} Allow users to upload .torrent files
} Search, ratings, comments, etc.

} Some also host trackers
} Many famous ones

} Mostly because they host illegal content

} Legitimate .torrents
} Linux distros
} World of Warcraft patches

P2P21

Torrent Trackers

} Really, just a highly specialized webserver
} BitTorrent protocol is built on top of HTTP

} Keeps a database of swarms
} Swarms identified by torrent hash
} State of each peer in each swarm

} IP address, port, peer ID, TTL
} Status: leeching or seeding
} Optional: upload/download stats (to track fairness)

} Returns a random list of peers to new leechers

Tracker

P2P22

Peer Selection

} Tracker provides each client with a list of peers
} Which peers are best?

} Truthful (not cheating)
} Fastest bandwidth

} Option 1: learn dynamically
} Try downloading from many peers
} Keep only the best peers
} Strategy used by BitTorrent

} Option 2: use external information
} E.g. Some torrent clients prefer peers in the same ISP

P2P23

Sharing Pieces

Initial Seeder

1 2 3 4 5 6 7 8

Leecher

1 2 3

Leecher

54 76 8 1 2 3 54 76 8

Seeder Seeder P2P24

The Beauty of BitTorrent

} More leechers = more replicas of pieces
} More replicas = faster downloads

} Multiple, redundant sources for each piece

} Even while downloading, leechers take load off the
seed(s)
} Great for content distribution
} Cost is shared among the swarm

P2P25

Typical Swarm Behavior

P2P26

Sub-Pieces and Pipelining

} Each piece is broken into sub-pieces
} ~16 KB in size

} TCP Pipelining
} For performance, you want long lived TCP connections (to get

out of slow start)
} Peers generally request 5 sub-pieces at a time
} When one finished, immediately request another
} Don’t start a new piece until previous is complete

} Prioritizes complete pieces
} Only complete pieces can be shared with other peers

P2P27

Piece Selection

} Piece download order is critical
} Worst-case scenario: all leeches have identical pieces

} Nobody can share anything :(

} Worst-case scenario: the initial seed disappears
} If a piece is missing from the swarm, the torrent is broken

} What is the best strategy for selecting pieces?
} Trick question
} It depends on how many pieces you already have

P2P28

Download Phases

} Bootstrap: random selection
} Initially, you have no pieces to trade
} Essentially, beg for free pieces at random

} Steady-state: rarest piece first
} Ensures that common pieces are saved for last

} Endgame
} Simultaneously request final pieces from multiple

peers
} Cancel connections to slow peers
} Ensures that final pieces arrive quickly

0%

100%

%
 D

ow
nl

oa
de

d

P2P29

Upload and Download Control

} How does each peer decide who to trade with?
} Incentive mechanism

} Based on tit-for-tat, game theory
} “If you give a piece to me, I’ll give a piece to you”
} “If you screw me over, you get nothing”
} Two mechanisms: choking and optimistic unchoke

P2P30

A Bit of Game Theory

} Iterated prisoner’s dilemma
} Very simple game, two players, multiple rounds

} Both players agree: +2 points each
} One player defects: +5 for defector, +0 to other
} Both players defect: +0 for each

} Maps well to trading pieces in BitTorrent
} Both peers trade, they both get useful data
} If both peers do nothing, they both get nothing
} If one peer defects, he gets a free piece, other peer gets

nothing

} What is the best strategy for this game?
P2P31

Tit-for-Tat

} Best general strategy for iterated prisoner’s dilemma
} Meaning: “Equivalent Retaliation”

Round Points

1 Cooperate Cooperate +2 / +2

2 Cooperate Defect +0 / +5

3 Defect Cooperate +5 / +0

4 Cooperate Cooperate +2 / +2

5 Cooperate Defect +0 / +5

6 Defect Defect +0 / +0

7 Defect Cooperate +5 / +0

Totals: +14 / +14

Rules
1. Initially: cooperate
2. If opponent cooperates,

cooperate next round
3. If opponent defects,

defect next round

P2P32

Choking

} Choke is a temporary refusal to upload
} Tit-for-tat: choke free riders
} Cap the number of simultaneous uploads

} Too many connections congests your network

} Periodically unchoke to test the network connection
} Choked peer might have better bandwidth

P2P33

Optimistic Unchoke

} Each peer has one optimistic unchoke slot
} Uploads to one random peer
} Peer rotates every 30 seconds

} Reasons for optimistic unchoke
} Help to bootstrap peers without pieces
} Discover new peers with fast connections

P2P34

BitTorrent Protocol Fundamentals

} BitTorrent divides time into rounds
} Each round, decide who to upload to/download from
} Rounds are typically 30 seconds

} Each connection to a peer is controlled by four states
} Interested / uninterested – do I want a piece from you?
} Choked / unchoked – am I currently downloading from you?

} Connections are bidirectional
} You decide interest/choking on each peer
} Each peer decides interest/chocking on you

Leecher
1 2 3

Leecher
4

P2P35

Connection States

} Download control
} d – interested and choked
} D – interested and unchoked
} K – uninterested and unchoked
} S – snubbed (no data received in 60 seconds)
} F – piece(s) failed to hash

} Upload control
} u – interested and choked
} U – interested and unchoked
} O – optimistic unchoke
} ? – uninterested and unchoked

} Connection information
} I – incoming connection
} E/e – Using protocol encryption

¤ h – used UDP hole punching

¤ P – connection uses µTP

¨ How was this peer located?
¤ H – DHT (distributed hash table)

¤ L – local peer discovery (multicast)

¤ X – peer exchange

Most peers are d or D.
No need to connect with

uninteresting peers.Error states.
Connection

should be closed.

More on
this later…

P2P36

Upload-Only Mode

} Once a peer completes a torrent, it becomes a seed
} No downloads, no tit-for-tat
} Who to upload to first?

} BitTorrent policy
} Upload to the fastest known peer
} Why?
} Faster uploads = more available pieces
} More available pieces helps the swarm

P2P37

Trackerless Torrents

} New versions of BitTorrent have the ability to locate
swarms without a tracker
} Based on a P2P overlay
} Distributed hash table (DHT)

} Recall: peers located via DHT are given “H” state
} More on this next week

P2P38

2: DHTs. Chord

Distributed Hash Tables

} Decentralized distributed systems that partition a set of
keys among participating nodes

} Goal is to efficiently route messages to the unique owner
of any given key

} Typically designed to scale to large numbers of nodes and
to handle continual node arrivals and failures

} Examples: Chord, CAN, Pastry,Tapestry

P2P40

DHT Design Goals

} Decentralized system:
} One node needs to coordinate with a limited set of

participants to find the location of a file; should work well in
the presence of dynamic membership

} Scalability:
} The system should function efficiently even with thousands or

millions of nodes

} Fault tolerance:
} The system should be reliable even with nodes continuously

joining, leaving, and failing

P2P41

DHT: Keys and Overlays

} Key space:
} Ownership of keys is split among the nodes according to some

partitioning scheme that maps nodes to keys

} Overlay network:
} Nodes self organize in an overlay network; each node

maintains a set of links to other nodes (its neighbors or
routing table).

} Overlay and routing information is used to locate an object
based on the associated key

P2P42

DHT: Storing an Object

} Compute key according to the object-key mapping
method

} Send message store(k,data) to any node participating in
the DHT

} Message is forwarded from node to node through the
overlay network until it reaches the node S responsible
for key k as specified by the keyspace partitioning method

} Store the pair (k,data) at node S (sometimes the object is
stored at several nodes to deal with node failures)

P2P43

DHT: Retrieving an Object

} Compute key according to the object-key mapping
method

} Send a message to any DHT node to find the data
associated with k with a message retrieve(k)

} Message is routed through the overlay to the node S
responsible for k

} Retrieve object from node S

P2P44

Key Partitioning

} Key partitioning: defines
what node “owns what keys” <=> ”stores what objects”
} Removal or addition of nodes should not result in entire

remapping of key space since this will result in a high cost in
moving the objects around

} Use consistent hashing to map keys to nodes. A function d(k1,k2)
defines the distance between keys k1 to key k2. Each node is
assigned an identifier (ID). A node with ID i owns all the keys for
which i is the closest ID, measured according to distance function
d.

} Consistent hashing has the property that removal or addition of
one node changes only the set of keys owned by the nodes with
adjacent IDs, and leaves all other nodes unaffected.

P2P45

Overlay Networks and Routing

} Nodes self-organize in a logical network defined by the
set of links to other nodes each node must maintain

} Routing:
} Greedy algorithm, at each step, forward the message to the

neighbor whose ID is closest to k.
} When there is no such neighbor, then this is the closest node,

which must be the owner of key k

P2P46

CHORD

} Efficient lookup of a node which stores data items for a
particular search key.

} Provides only one operation: given a key, it maps the key
onto a node.

} Example applications:
} Co-operative mirroring
} Time-shared storage
} Distributed indexes
} Large-scale combinatorial search

P2P47

Design Goals

} Load balance: distributed hash function, spreading keys
evenly over nodes

} Decentralization: CHORD is fully distributed, nodes have
symmetric functionality, improves robustness

} Scalability: logarithmic growth of lookup costs with
number of nodes in network

} Availability: CHORD guarantees correctness, it
automatically adjusts its internal tables to ensure that the
node responsible for a key can always be found

P2P48

Assumptions

} Communication in underlying network is both symmetric
and transitive

} Assigns keys to nodes with consistent hashing
} Hash function balances the load
} Participants are correct, nodes can join and leave at any

time
} Nodes can fail

P2P49

Chord Rings

} Key identifier = SHA-1(key)
} Node identifier = SHA-1(IP address)
} Consistent hashing function assigns each node and key an

m-bit identifier using SHA-1
} Mapping key identifiers to node identifiers:

} Identifiers are ordered on a circle modulo 2m called a chord
ring.

} The circle is split into contiguous segments whose
endpoints are the node identifiers. If i1 and i2 are two
adjacent IDs, then the node with ID greater identifier
i2 owns all the keys that fall between i1 and i2.

P2P50

Example of Key Partitioning in Chord

m = 6
10 nodes

N14

N1

N56

N51

N48

N42

N21

N32N38

K10K54

K24

K30K38

N8

P2P51

How to Perform Key Lookup

} Assume that each node knows only how to contact its
current successor node on the identifier circle, then all
node can be visited in linear order.

} When performing a search, the query for a given
identifier could be passed around the circle via these
successor pointers until they encounter the node that
contains the key corresponding to the search.

P2P52

Example of Key Lookup Scheme

N1

N8

N14

N21N32

N38

N42

N48

K45

succesor(k) = first node whose ID is >= ID of k in identifier space

P2P53

Scalable Key Location

} To accelerate lookups, Chord maintains additional routing
information (m entries): finger table

} The ith entry in the table at node n contains the identity
of the first node s that succeeds n by at least 2i-1 on the
identifier circle.

} s = successor(n+2i-1).
} s is called the ith finger of node n

P2P54

Scalable Lookup Scheme

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

N1

N8

N14

N21
N32

N38

N42

N48

N51

N56 Finger Table for N8

finger 1,2,3

finger 4

finger 6

finger [i] = first node that succeeds (n+2i-1)mod2m

finger 5

m = 6

P2P55

Scalable Lookup

} Each node has finger entries at power of two intervals
around the identifier circle

} Each node can forward a query at least halfway along the
remaining distance between the node and the target
identifier.

P2P56

Lookup Using Finger Table

N1

N8

N14

N21N32

N38

N42

N51

N56

N48

K54

P2P57

Node Joins and Failures/Leaves

} When a node N joins the network, some of the keys
previously assigned to N’s successor should become
assigned to N.

} When node N leaves the network, all of its assigned keys
should be reassigned to N’s successor.

} How to deal with these cases?

P2P58

Node Joins and Stabilizations

} Everything relies on successor pointer.
} Up to date successor pointer is sufficient to guarantee

correctness of lookups
} Idea: run a “stabilization” protocol periodically in the

background to update successor pointer and finger table.

P2P59

Stabilization Protocol

} Guarantees to add nodes in a fashion to preserve
reachability

} Does not address the cases when a Chord system thas
split into multiple disjoint cycles, or a single cycle that
loops multiple times around the identifier space

P2P60

Stabilization Protocol (cont.)

} Each time node N runs stabilize protocol, it asks its
successor for its predecessor p, and decides whether p
should be N’s successor instead.

} Stabilize protocol notifies node N’s successor of N’s
existence, giving the successor the chance to change its
predecessor to N.

} The successor does this only if it knows of no closer
predecessor than N.

P2P61

Impact of Node Joins on Lookups

} If finger table entries are current then lookup finds the
correct successor in O(log N) steps

} If successor pointers are correct but finger tables are
incorrect, correct lookup but slower

} If incorrect successor pointers, then lookup may fail

P2P62

Voluntary Node Departures

} Leaving node may transfers all its keys to its successor
} Leaving node may notify its predecessor and successor

about each other so that they can update their links

P2P63

Node Failures

} Stabilize successor lists:
} Node N reconciles its list with its successor S by copying S’s

successor list, removing its last entry, and prepending S to it.
} If node N notices that its successor has failed, it replaces it

with the first live entry in its successor list and reconciles its
successor list with its new successor.

P2P64

CHORD Summary

} Efficient location of the node that stores a
desired data item is a fundamental problem in
P2P networks

} Separates correctness (successor) from
performance (finger table)

} Chord protocol solves it in a efficient
decentralized manner
} Routing information: O(log N) nodes
} Lookup: O(log N) nodes
} Update: O(log2 N) messages

} It also adapts dynamically to the topology
changes introduced during the run

P2P65

