Programming in C

Data types: basic types,
pointers, arrays, strings.

Cristina Nita-Rotaru 1

What are types?

o Data types are sets of values along with
operations that manipulate them

o Values must be mapped to data types
provided by the hardware and operations
compiled to sequences of hardware
instructions

o Example: integers in C are made up of
the set of values ..., -1, 0, 1, 2, ... along
with operations such as addition,
subtraction, multiplication, division...

Cristina Nita-Rotaru

Typesin C

o Convenient way of reasoning about
memory layout

o All values (regardless of their type)
have a common representation as a
sequence of bytes in memory

o Primitive type conversions are always
legal

Cristina Nita-Rotaru

Words

o Hardware has a Word size used to
hold integers and addresses

= Different words sizes (integral number of bytes)
are supported

= Modern general purpose computers usually use
32 or 64 bits

o [he size of address words defines the
maximum amount of memory that can be
manipulated by a program

= 32-bit words => can address 4GB of data

* 64-bit words => could address up to 1.8 x
1019

Cristina Nita-Rotaru

Addresses

Oxbffffaab

10101101

\ J
Y

8 bits = byte (28 = 256 different values)

o\, Addresses specify byte location in computer
memory, i.e. address of first byte in a word

o Address of following words differ
by 4 (32-bit) and 8 (64-bit)

Cristina Nita-Rotaru

Types representation

o Basic types
= int - used for integer numbers
» float - used for floating point numbers
= double - used for large floating point numbers
» char - used for characters

= void - used for functions without parameters or return
value

= enum - used for enumerations

« Composite types
= pointers to other types
= functions with arguments types and a return type
= arrays of other types
= structs with fields of other types
= unions of several types

Cristina Nita-Rotaru

Qualifiers, modifiers, storage

o Type qualifiers
* short - decrease storage size
* |long - increase storage size
= signed - request signed representation
= unsigned - request unsigned representation

o Type modifiers

= volatile - value may change without being written to by
the program

= const - value not expected to change

o Storage class

= static - variable that are global to the program
= extern - variables that are declared in another file

Cristina Nita-Rotaru

Byte order

o Different systems store multibyte values
(for example int) in different ways.

= HP, Motorola 68000, and SUN systems store
multlbyte values in B|g Endian order: stores the

high-order byte at the starting address
= Intel 80x86 systems store them in Little Endian
order: stores the low-order byte at the startlng
address.
o Data is interpreted differently on
different hosts.
o Where it shows up:
= Network protocols

= Binary file created on a computer is read o
another computer with different endianness.

Cristina Nita-Rotaru 8

Sizes

Type Range (32-bits) Size in bytes

signed char -128 to +127 1

unsigned char 0 to +255 1

signed short int -32768 to +32767 2

unsigned short int 0 to +65535 2

signed int —-2147483648 to +2147483647 4

unsigned int 0 to +4294967295 4

signed long int —-2147483648 to +2147483647 40r8

unsigned long int 0 to +4294967295 4o0r8

signed long long int —9223372036854775808 to +9223372036854775807 8

unsigned long long int 0 to +18446744073709551615 8

Float 1%x10-37 to 1 x 1037 4

Double 1% 10308 to 1 x 10308 8

long double 1x10-308 to 1 x 10308 8,12, or 16
[sizeof(x) returns the size in bytes.

Cristina Nita-Rotaru

Characters representation

o ASCII code (American Standard Code for
Information Interchange): defines 128
character codes (from 0 to 127),

o In addition to the 128 standard ASCII codes
there are other 128 that are known as
extended ASCII, and that are platform-
dependent.

o« Examples:
The code for ‘A’ is 65
The code for ‘a’ is 97
The code for ‘0" is 48

Cristina Nita-Rotaru 10

Understanding types in C matters ...

o Incorrect use may result in bugs

* There are implicit conversions that take place
and they may result in truncation

= Some data types are not interpreted the same
way on different platforms, they are machine-
dependent

® sizeof(x) returns the size in bytes of the object x
(either a variable or a type) on the current
architecture

o Ineffective use may result in higher cost
= Storage, performance

Cristina Nita-Rotaru

11

What will this program output?

#include <stdio.h>
int main() {
char ¢ = -5;
unsigned char uc = -5;

printf("%d %d \n", ¢, uc);

return O;

Cristina Nita-Rotaru

12

Printf format

C Character

d ori Signed decimal integer

f Decimal floating point

S String of characters

u Unsigned decimal integer

X Unsigned hexadecimal integer
o) Pointer address

NOTE: read printf man pages for additional formats

Cristina Nita-Rotaru

13

What will this program output?

#include <stdio.h>
int main() {
char ¢ = ‘a’;

printf(“%c %d %x \n", c, c, c);

return O;

Cristina Nita-Rotaru

14

#include <stdio.h>

int main() {
char
short int
long int
int
float
double
long double

printf (" Size
printf (" Size
printf (" Size
printf (" Size
printf (" Size
printf (" Size
printf (" Size

return 0;

}

Cristina Nita-Rotaru

1 d;

of char:
of short:
of long:
of int:
of float:
of double:

of long double:

(bytes)\n",
(bytes)\n",
(bytes) \n",
(bytes) \n",
(bytes) \n",
(bytes) \n",
(bytes) \n",

sizeof(c)) ;
sizeof(s_1i));
sizeof (1l i));
sizeof (1)) ;
sizeof (f)) ;
sizeof (d));
sizeof (1 _d));

15

Implicit conversions: What can go wrong?

#include <stdio.h>

int main () { short can store -32768 to 32767
short s = 9;
long 1 = 32770;

e
printf ("%d\n", s); 0 ‘

s = 1;
printf ("%d\n", s); @

return O;

Cristina Nita-Rotaru 16

Pointers

o The address of a location in memory is also a type
based on what is stored at that memory location

= char *is “a pointer to char” or the address of memory where a
char is stored
= int * points to a location in memory where a int is stored

» float * points to a location in memory where a float is stored
o We can do operations with this addresses
o The size of an address is platform dependent.

Oxbffffaab

10101101

Cristina Nita-Rotaru

17

& and *

o« Given a variable v
&v means the address of v

o Given a pointer ptr
*ptr means the value stored at the

address specified by ptr

Cristina Nita-Rotaru

18

#include <stdio.h>

int main() {
char c;
char *q_ptr = &C;

printf (“*Size of char *: %d (bytes)\n", sizeof(c ptr));
printf (“Address of c is: $p \n", &c);

printf (“Value of c ptr is: %p \n", c ptr);

o®

printf (“Value of c is: c \n", c);

printf (“Value of *c ptr is:%c \n", *c ptr);

return O;

}

Cristina Nita-Rotaru 19

Arrays of characters

char c[10];

for (i=0; i< 10; i++) {

printf (“sc\n”, c);

&c[0]

or ¢ (the name of the array) represents the start
memory address where the array is stored in the memory

char *p = &c[0];

-

o

First element of the array

starts at index 0, in this
case c|[0]

~

/

Cristina Nita-Rotaru

Don’t
FORGET!

FE
0@

20

Arrays of characters

char c¢[10];
char *p = &c[0];

for (i=0; i < 10; i++) {
c[i] = ‘a’;

}

c[5] = b’ ;

What’ s the address of c[5]? It is p+5

Cristina Nita-Rotaru

21

Pointer vs. what’ s stored at the
address indicated by a pointer

#include <stdio.h>

int main() {
char c;
char * c _ptr = &c;
char array[5];

array[2] = 'b';
c_ptr = array;

printf ("Address where array starts: $p\n", array);
printf ("Value of variable c_ptr: $p\n", c_ptr);
printf ("Value stored at the address c_ptr+2: %$c\n", *(c_ptr+2));
return O;

Cristina Nita-Rotaru

22

Strings

o In C a string is stored as an array of
characters, terminated with null, O, hex 00 or

‘\07
o [he array has to have space for null

o Function strlen returns the length of the string
excluding the string terminator

Don’t
N FORGET!

g ALWAYS MAKE SURE YOU DON'T

GO BEYOND THE SIZE OF THE NIA
ARRAY - 1; the last item in the array
should be the null string terminator/

_

Cristina Nita-Rotaru 23

Symbolic constants: #define

Followed by the name of the macro and
the token sequence it abbreviates

By convention, macro names are written
INn uppercase.

There is no restriction on what can go in
a macro body provided it decomposes
into valid preprocessing tokens.

If the expansion of a macro contains its
name, it is not expanded again

#define NO10O

Cristina Nita-Rotaru

24

#define VS const modifier

o Declaring some variable with const
means that its value can not be modified

e const int no = 100;

o Alternative is to use #define
o #define NO 100

o Is there any difference?

Cristina Nita-Rotaru

25

#include<stdio.h>
const int MAX=10;
int main() {
char s[MAX];
int i;
s [MAX-1] = O;

for (i=0; i<MAX-1;

1 b4

s[i] = a ;

1

s[0] = ‘b ;
printf ("%$s\n", s);

return 0;

Cristina Nita-Rotaru

i++)

26

What' s wrong with this code?

Consider that we have the following declaration

const int MAX=10;
int main() {
char s[MAX];

What’ s wrong in each of the following:

(1) s[MAX] = 0;

(2)
for(i=1l; i<=MAX; i++) {
s[i] = ‘@’ ;
}

printf ("%$s\n", s);

(3) MAX = 12;

Cristina Nita-Rotaru 27

Strlen vs sizeof

include<stdio.h>
#include<string.h>

const int MAX = 10;
int main() {
char s[MAX];

int len, size, 1i;

s[0] 'a';
s[1] = '\0';

len = strlen(s);
size = sizeof(s);

printf("len: %d characters, size: %d bytes\n", len, size);
printf ("The content of array s is: ");
for (i=0; i< MAX; i++) {

printf ("X ", s[i]);

printf ("\n") ;

return O;

}

Cristina Nita-Rotaru

28

Operations with strings

e strlen
e Strncpy vs strcpy
e sStrncmp vs strcmp

e /usr/include/string.h

int strlen(char s[]) {
int 1 = 0;
while(s[i] !'= ‘\0")
++1;
return 1i;

}

Cristina Nita-Rotaru

29

Good coding habits

o« Use const and or define for
SIZES and avoid using
numbers in the code

o Always check your arrays,
that they start at 0 and end
at SIZE-1

o Allow space for null in
strings

Cristina Nita-Rotaru

%

Don’t
FORGET!

® @

30

Boolean

o Std 89 the first C standard does not
define boolean

o It | supported in standard std 99.

o Itis not really a needed type and that's
why was not included in the original
design

o #include <stdbool.n> type is Bool

Cristina Nita-Rotaru

31

Readings for this lecture

K&R Chapter 1 and 2

READ man for printf

http://en.wikipedia.org/wiki/Word_(
computer_architecture)

READ string related
functions

Cristina Nita-Rotaru

/\
—/

32

