
Programming in C

Data types: basic types,
pointers, arrays, strings.

Cristina Nita-Rotaru 1

What are types?

l Data types are sets of values along with
operations that manipulate them

l Values must be mapped to data types
provided by the hardware and operations
compiled to sequences of hardware
instructions

l Example: integers in C are made up of
the set of values ..., -1, 0, 1, 2, ... along
with operations such as addition,
subtraction, multiplication, division...

Cristina Nita-Rotaru 2

Types in C

l Convenient way of reasoning about
memory layout

l All values (regardless of their type)
have a common representation as a
sequence of bytes in memory

l Primitive type conversions are always
legal

Cristina Nita-Rotaru 3

Words

l Hardware has a `Word size` used to
hold integers and addresses
§ Different words sizes (integral number of bytes)

are supported
§ Modern general purpose computers usually use

32 or 64 bits

l The size of address words defines the
maximum amount of memory that can be
manipulated by a program
§ 32-bit words => can address 4GB of data
§ 64-bit words => could address up to 1.8 x

1019
Cristina Nita-Rotaru 4

Addresses

l Addresses specify byte location in computer
memory, i.e. address of first byte in a word

l Address of following words differ
by 4 (32-bit) and 8 (64-bit)

Cristina Nita-Rotaru 5

…

8 bits = byte (28 = 256 different values)

10101101
0xbffffaab

Types representation

l Basic types
§ int - used for integer numbers
§ float - used for floating point numbers
§ double - used for large floating point numbers
§ char - used for characters
§ void - used for functions without parameters or return

value
§ enum - used for enumerations

l Composite types
§ pointers to other types
§ functions with arguments types and a return type
§ arrays of other types
§ structs with fields of other types
§ unions of several types

Cristina Nita-Rotaru 6

Qualifiers, modifiers, storage

l Type qualifiers
§ short - decrease storage size
§ long - increase storage size
§ signed - request signed representation
§ unsigned - request unsigned representation

l Type modifiers
§ volatile - value may change without being written to by

the program
§ const - value not expected to change

l Storage class
§ static - variable that are global to the program
§ extern - variables that are declared in another file

Cristina Nita-Rotaru 7

Byte order

l Different systems store multibyte values
(for example int) in different ways.
§ HP, Motorola 68000, and SUN systems store

multibyte values in Big Endian order: stores the
high-order byte at the starting address

§ Intel 80x86 systems store them in Little Endian
order: stores the low-order byte at the starting
address.

l Data is interpreted differently on
different hosts.

l Where it shows up:
§ Network protocols
§ Binary file created on a computer is read on

another computer with different endianness.
Cristina Nita-Rotaru 8

Sizes

Cristina Nita-Rotaru 9

Type Range (32-bits) Size in bytes
signed char −128 to +127 1
unsigned char 0 to +255 1
signed short int −32768 to +32767 2
unsigned short int 0 to +65535 2
signed int −2147483648 to +2147483647 4
unsigned int 0 to +4294967295 4
signed long int −2147483648 to +2147483647 4 or 8
unsigned long int 0 to +4294967295 4 or 8
signed long long int −9223372036854775808 to +9223372036854775807 8
unsigned long long int 0 to +18446744073709551615 8
Float 1×10-37 to 1×1037 4
Double 1×10−308 to 1×10308 8
long double 1×10-308 to 1×10308 8, 12, or 16

sizeof(x) returns the size in bytes.

Characters representation

l ASCII code (American Standard Code for
Information Interchange): defines 128
character codes (from 0 to 127),

l In addition to the 128 standard ASCII codes
there are other 128 that are known as
extended ASCII, and that are platform-
dependent.

l Examples:
The code for ‘A’ is 65
The code for ‘a’ is 97
The code for ‘0’ is 48

Cristina Nita-Rotaru 10

Understanding types in C matters …

l Incorrect use may result in bugs
§ There are implicit conversions that take place

and they may result in truncation
§ Some data types are not interpreted the same

way on different platforms, they are machine-
dependent
• sizeof(x) returns the size in bytes of the object x

(either a variable or a type) on the current
architecture

l Ineffective use may result in higher cost
§ Storage, performance

Cristina Nita-Rotaru 11

What will this program output?

#include <stdio.h>
int main() {

char c = -5;
unsigned char uc = -5;

printf(”%d %d \n", c, uc);

return 0;
}

Cristina Nita-Rotaru 12

Printf format

c Character
d or i Signed decimal integer
f Decimal floating point
s String of characters
u Unsigned decimal integer
x Unsigned hexadecimal integer
p Pointer address

NOTE: read printf man pages for additional formats

Cristina Nita-Rotaru 13

What will this program output?

#include <stdio.h>
int main() {

char c = ‘a’;

printf(“%c %d %x \n", c, c, c);

return 0;
}

Cristina Nita-Rotaru 14

#include <stdio.h>

int main() {
char c;
short int s_i;
long int l_i;
int i;
float f;
double d;
long double l_d;

printf(" Size of char: %d (bytes)\n", sizeof(c));
printf(" Size of short: %d (bytes)\n", sizeof(s_i));
printf(" Size of long: %d (bytes)\n", sizeof(l_i));
printf(" Size of int: %d (bytes)\n", sizeof(i));
printf(" Size of float: %d (bytes)\n", sizeof(f));
printf(" Size of double: %d (bytes)\n", sizeof(d));
printf(" Size of long double: %d (bytes)\n", sizeof(l_d));

return 0;
}

Cristina Nita-Rotaru 15

Implicit conversions: What can go wrong?

#include <stdio.h>
int main () {

short s = 9;
long l = 32770;
printf("%d\n", s);
s = l;
printf("%d\n", s);

return 0;
}

Cristina Nita-Rotaru 16

short can store -32768 to 32767

Pointers

l The address of a location in memory is also a type
based on what is stored at that memory location
§ char * is “a pointer to char” or the address of memory where a

char is stored
§ int * points to a location in memory where a int is stored
§ float * points to a location in memory where a float is stored

l We can do operations with this addresses
l The size of an address is platform dependent.

Cristina Nita-Rotaru 17

…10101101
0xbffffaab

& and *

l Given a variable v
&v means the address of v

l Given a pointer ptr
*ptr means the value stored at the

address specified by ptr

Cristina Nita-Rotaru 18

#include <stdio.h>

int main() {
char c;
char *c_ptr = &c;

printf(“Size of char *: %d (bytes)\n", sizeof(c_ptr));
printf(“Address of c is: %p \n", &c);
printf(“Value of c_ptr is: %p \n", c_ptr);

printf(“Value of c is: %c \n", c);
printf(“Value of *c_ptr is:%c \n", *c_ptr);

return 0;
}

Cristina Nita-Rotaru 19

Arrays of characters

char c[10];

for (i=0; i< 10; i++) {

printf(“%c\n”, c);
}

&c[0] or c (the name of the array) represents the start
memory address where the array is stored in the memory

char *p = &c[0];

Cristina Nita-Rotaru 20

First element of the array
starts at index 0, in this

case c[0]

Arrays of characters
char c[10];
char *p = &c[0];

for (i=0; i < 10; i++) {
c[i] = ‘a’;

}

c[5] = ‘b’;

What’s the address of c[5]? It is p+5

Cristina Nita-Rotaru 21

Pointer vs. what’s stored at the
address indicated by a pointer
#include <stdio.h>

int main() {
char c;
char * c_ptr = &c;
char array[5];

array[2] = 'b';
c_ptr = array;

printf("Address where array starts: %p\n", array);
printf("Value of variable c_ptr: %p\n", c_ptr);
printf("Value stored at the address c_ptr+2: %c\n", *(c_ptr+2));

return 0;
}

Cristina Nita-Rotaru 22

Strings

l In C a string is stored as an array of
characters, terminated with null, 0, hex 00 or
‘\0’

l The array has to have space for null
l Function strlen returns the length of the string

excluding the string terminator

Cristina Nita-Rotaru 23

ALWAYS MAKE SURE YOU DON’T
GO BEYOND THE SIZE OF THE

ARRAY – 1; the last item in the array
should be the null string terminator

Symbolic constants: #define

l Followed by the name of the macro and
the token sequence it abbreviates

l By convention, macro names are written
in uppercase.

l There is no restriction on what can go in
a macro body provided it decomposes
into valid preprocessing tokens.

l If the expansion of a macro contains its
name, it is not expanded again

l #define NO100
Cristina Nita-Rotaru 24

#define vs const modifier

l Declaring some variable with const
means that its value can not be modified

l const int no = 100;

l Alternative is to use #define
l #define NO 100

l Is there any difference?

Cristina Nita-Rotaru 25

#include<stdio.h>

const int MAX=10;

int main() {
char s[MAX];
int i;

s[MAX-1] = 0;

for(i=0; i<MAX-1; i++) {

s[i] = ‘a’;
}

s[0] = ‘b’;
printf("%s\n", s);

return 0;
}

Cristina Nita-Rotaru 26

What’s wrong with this code?

Consider that we have the following declaration

const int MAX=10;
int main() {
char s[MAX];

….

What’s wrong in each of the following:

(1) s[MAX] = 0;

(2)
for(i=1; i<=MAX; i++) {

s[i] = ‘a’;
}
printf("%s\n", s);

(3) MAX = 12;

Cristina Nita-Rotaru 27

Strlen vs sizeof
include<stdio.h>
#include<string.h>

const int MAX = 10;
int main() {
char s[MAX];
int len, size, i;

s[0] = 'a';
s[1] = '\0';

len = strlen(s);
size = sizeof(s);

printf("len: %d characters, size: %d bytes\n", len, size);
printf("The content of array s is: ");
for(i=0; i< MAX; i++) {
printf("%X ", s[i]);

}

printf("\n");

return 0;
}

Cristina Nita-Rotaru 28

Operations with strings

l strlen
l strncpy vs strcpy
l strncmp vs strcmp
l /usr/include/string.h

int strlen(char s[]) {
int i = 0;
while(s[i] != ‘\0’)

++i;
return i;

}
Cristina Nita-Rotaru 29

Good coding habits

l Use const and or define for
SIZES and avoid using
numbers in the code

l Always check your arrays,
that they start at 0 and end
at SIZE-1

l Allow space for null in
strings

Cristina Nita-Rotaru 30

Boolean

l Std 89 the first C standard does not
define boolean

l It I supported in standard std 99.
l It is not really a needed type and that’s

why was not included in the original
design

l #include <stdbool.h> type is _Bool

Cristina Nita-Rotaru 31

Readings for this lecture

K&R Chapter 1 and 2

READ man for printf

http://en.wikipedia.org/wiki/Word_(
computer_architecture)

READ string related
functions

Cristina Nita-Rotaru 32

