
Cristina Nita-Rotaru

CS6740: Network security

Introduction: Class overview. Fundamentals.

1: Class overview

Introduction 3

Introduction 4

Internet of Things

Introduction 5

Introduction 6

What is network security

Introduction 7

``Network Security is the process of taking physical
and software preventative measures to protect the
underlying networking infrastructure from
unauthorized access, misuse, malfunction,
modification, destruction, or improper disclosure,
thereby creating a secure platform for computers,
users and programs to perform their permitted critical
functions within a secure environment.’’

SANS Institute

Why study network security?

}  JOB SECURITY

}  Security is a major component of computer science with
great impact on critical infrastructure and everyday life

}  Network-enabled devices and gadgets presence in
everyday life increased and will continue to increase

Introduction 8

What is this course about?

}  Learn to think about (network) security:
}  Threats, defenses, policies
}  Software, human and environment factors

}  Think as an attacker:
}  Learn to identify threats

}  Think as a security designer:
}  Learn how to prevent attacks and/or limit their consequences
}  Understand and apply security principles
}  Learn tools that can defend against specific attacks, no silver-

bullet solution

Introduction 9

Prerequisites

}  Strong systems and networking background
}  Assembly language and memory layouts
}  The ISO/OSI network stack, BGP, DNS, and HTTP

}  Fluency in many languages
}  C/C++
}  HTML and Javascript
}  Python or some other scripting language

}  Linux command line proficiency
}  Computer security and cryptography fundamentals

Introduction 10

Course outline

}  Security and privacy goals for network protocols. Fundamentals.
}  Internet:

}  Link layer and transport security: ARP, TCP, IPSEC, TLS, HTTPS, QUIC
}  Naming: DNS, DNSSEC, RPKI
}  Routing: OSPF, BGP
}  Web security

}  Wireless networks:
}  802.11
}  Cellular
}  Other: bluetooth, WIMAX, IoT

}  Anonymity: mixnets, onion routing, TOR, location privacy
}  Emergent networks: vehicular, car, SDN

Introduction 11

Course information

}  Meetings
}  Tu 6:00-9:00 221 Hayden Hall

}  Professor contact info:
}  Office: 258 WVH
}  Email: c.nitarotaru
}  Office hours: 4pm – 6pm before class and by appointment

}  Class webpage
 http://cnitarot.github.io/courses/ns_Fall_2016/index.html

}  Use Piazza for questions and postings
}  Hw and projects posted on piazza

Introduction 12

Grading policy

}  Written assignments 10%
}  Programming projects 35%
}  Midterm 20%
}  Final 30%
}  Class participation 5%

}  There is no curve for grades

Introduction 13

Written assignments

}  Purpose of the written assignments is to prepare
you for the midterm and final exams
}  Read the material before solving them and solve them

with closed books and notebooks

}  3 written theoretical assignments
}  Homework is individual
}  Homework must be typed – PDF submission format only
}  For submission, follow the information in the homework

description

 Introduction 14

Programming projects

}  Purpose of the programming projects is to help
you understand practical aspects of things
discussed in class
}  Read all material in class and the description of the

project in details before starting
}  Make sure you understand the observed results for the

items you are asked to investigate for the reports

}  3 programming projects
}  Programming projects are individual
}  All the code must be from scratch
}  Use the VMs/machines specified in the project description

Introduction 15

Late policy

}  Each of you gets 5 LATE DAYS that can be used any way
you want for homework and projects; you do not need to
let us know if you plan to take any late day; just submit
late
}  Keep track of your late days used
}  20% off from grade obtained per day late

}  Do not wait till the last moment
}  Follow the requirements from project description to see

how to submit
}  Assignments are due at 9:59:59 pm, no exceptions

}  1 second late = 1 hour late = 1 day late

Introduction 16

Midterm and final exams

}  Midterm is two hours
}  Preliminary date is Feb 23 in class

}  Final is two hours
}  We will have review for the midterm and final
}  We will discuss the midterm solutions in class
}  All exams are closed books, closed notebooks
}  No electronic devices, laptops, tablets, phones, etc
}  Exams cover everything, including written

assignments and projects

Introduction 17

Class attendance and notes

}  Your are strongly recommended to attend and take notes
}  If you miss class is your responsibility to go through the

covered material on your own
}  Slides will be made available online before lecture;
}  There is no book for the class, there will be assigned

reading from papers and other online materials
}  Class participation is 5% of your grade

}  Be active on Piazza
}  Ask questions in class
}  Answer questions in class

Introduction 18

Regrading

}  YOU HAVE 1 WEEK to ASK for REGRADING of a
homework, project or midterm from the moment
solutions were posted on piazza or discussed in class

}  Make sure you read and understand the solution before
asking for a regrade

}  Request for a regrade will result in the regrading of the
entire homework, project or midterm

Introduction 19

Academy integrity

}  It is allowed to discuss homework problems before
writing them down; however, WRITING IS INDIVIDUAL
}  if you look at another student’s written or typed answers, or

let another student look at your written or typed answers, that
is considered cheating.

}  Never have a copy of someone else's homework or
program in your possession and never give your
homework (or password) or program to someone else.

}  NO CHEATHING WILL BE TOLERATED.
}  ANY CHEATING WILL AUTOMATICALLY RESULT in F

grade and report to the university administration

Introduction 20

How to ask on Piazza

}  Read slides, notes, homework or project description
}  Use #hashtags (#lecture2, #project3, #hw1, etc.)

}  Describe the problem clearly, using the right terms
}  Add code in attached files
}  Add output from compiler
}  Add any other relevant information
}  Don’t post solutions on piazza
}  Anything that relates to solution post PRIVATELY

Introduction 21

Weather/Emergency

}  In the event of a major campus emergency, course
requirements, deadlines and grading percentages are
subject to changes that may be necessitated by a revised
semester calendar or other circumstances beyond the
instructor’s control.

}  Monitor weather and piazza particularly if you don’t live
close to school.

Introduction 22

Ethics

}  We will talk much more about ethics and security later
}  For now, follow these simple rules

}  Only develop and launch attacks against systems setup by us or
yourself

}  Do not launch attacks against anyone else

}  Attacking computers is a serious crime, punishable by
huge fines and/or jail time

Introduction 23

One last word …

}  No meetings will be accepted with the TA or
instructor the day homework or projects are due,
or the day of exam

}  Start early, plan carefully
}  Develop your solution gradually, test gradually so you

always have functionality for which you can receive a
grade; YOUR CODE MUST WORK

}  Do not wait to submit your code last minute
}  Don’t post solutions on piazza
}  Don’t cheat

Introduction 24

PIAZZA ACCOUNTS

}  All communication is on piazza, make sure you get
notifications and you check piazza constantly

}  If you have not received a piazza notification email
me c.nitarotaru@neu.edu

Introduction 25

2: Security and privacy goals for network protocols

Lots of networks …

}  Networks:
}  The Internet
}  Wifi
}  Cellular
}  Sensor

}  Protocol: Defines rules of
sending/receiving packets:
}  Format and type of the packets
}  Actions in response of receiving a

certain type of packets …

Introduction 27

Network protocols

}  Network protocols do not exist in a vacum
}  They facilitate interactions between

}  Different devices sometimes with different operating systems
and different security policies

}  Many protocols are implemented as part of the operating
system and organized in stacks

}  They depend on the physical medium where
communication takes place
}  Particularly true for wireless communication

}  They provide an entry/exit of information

Introduction 28

}  WHAT DOES SECURITY MEAN?

}  WHAT DOES IS MEAN TO BE SECURE
}  For SOFTWARE, OS, NETWORK PROTOCOLS, etc
}  DESIGN or IMPLEMENTATION

Introduction 29

Security is secondary

}  Security is secondary to the interactions that make
security necessary.
}  What protection/security mechanisms one has in the physical

world?
}  Why the need for security mechanisms arises?

Introduction

Robert H. Morris : The three golden rules to ensure
computer security are: do not own a computer; do
not power it on; and do not use it.

30

Security is not absolute

}  Is your car secure?
}  What does “secure” mean?
}  Are you secure when you drive your car?

}  Security is relative
}  to the kinds of loss one consider

}  security objectives/properties need to be stated

}  to the threats/adversaries under consideration
}  security is always under certain assumptions

Introduction 31

Fundamental security goals

}  Confidentiality
}  only those who are authorized to know can know
}  Example of attack breaking the goal for networking: packet sniffing

}  Integrity (and authentication)
}  only modified by authorized parties and in authorized ways
}  Example of attack breaking the goal for networking: connection hijacking,

packet injection
}  Access control

}  only those who are authorized to perform a certain operation can do it
}  Example of attack breaking the goal for networking: only traffic from

certain IPs is accepted
}  Availability

}  service is available to those authorized to access it
}  Example of attack breaking the goal for networking: denial of service

against a website
Introduction 32

Examples

}  ARP is not authenticated
}  APR spoofing (or ARP poisoning)

}  Network packets pass by untrusted hosts
}  Packet sniffing

}  TCP state can be easy to guess
}  TCP spoofing attack

}  Open access
}  Vulnerable to DoS attacks

}  DNS is not authenticated
}  DNS poisoning attacks

Introduction 33

Tools for information security

}  Cryptography
}  Authentication and access control
}  Hardware/software architecture for separation
}  Processes and tools for developing more secure

software
}  Monitoring and analysis
}  Recovery and response
}  Physical protection

34 Introduction

Attackers

}  Interaction with data and protocol
}  Eavesdropping or actively participating in the protocol

}  Resources
}  Computation, storage
}  Limited or unlimited

}  Access to previously encrypted communication
}  Only encrypted information (ciphertext)
}  Pairs of message and encrypted version (plaintext, ciphertext)

}  Interaction with the cipher algorithm
}  Choose or not for what message to have the encrypted

version (chose ciphertext)

Introduction 35

Interaction with data and protocol

}  Passive: the attacker only monitors the communication. It
threatens confidentiality.
}  Example: listen to the communication between Alice and Bob,

and if it’s encrypted try to decrypt it.

}  Active: the attacker is actively involved in the protocol in
deleting, adding or modifying data. It threatens all security
services.
}  Example: Alice sends Bob a message: ‘meet me today at 5’, Carl

intercepts the message and modifies it ‘meet me tomorrow at
5’, and then sends it to Bob.

Introduction 36

Access control

}  Policy specifying how entities can interact with resources
}  i.e., Who can access what?
}  Requires authentication and authorization

}  Access control primitives

37

Principal!Users of a system

Subject!Entity that acts on behalf of principals

Object!Resource acted upon by subjects

Introduction

Authentication

}  Verification of identity claim made by a subject on behalf
of a principal

}  Involves examination of factors, or credentials
}  Something you have – e.g., a badge
}  Something you know – e.g., a password
}  Something you are – e.g., your fingerprint

}  Desirable properties include being unforgeable,
unguessable, and revocable

38 Introduction

}  Authorization follows authentication
}  If asking what someone can do, you must know who they are

}  Usually represented as a policy specification of what
resources can be accessed by a given subject
}  Can also include the nature of the access

39

Authorization

Types of access control

}  Discretionary Access Control (DAC)
}  Owners of objects specify policy

}  Mandatory Access Control (MAC)
}  Policy based on sensitivity levels – e.g., clearance
}  Owners do not specify their own policies

}  Role-based Access Control (RBAC)
}  Central authority defines policy in terms of roles
}  Roles ≈ permission sets

40 Introduction

Security principles

}  Principle of weakest link
}  A system is as secure as its weakest link

}  Principle of adequate protection
}  Maximize utility while limiting risk to an acceptable level within

reasonable cost

}  Principle of effectiveness
}  Controls must be efficient, easy to use, appropriate, and

psychological acceptable

}  Kerkoff’s principle
}  System design should be known, security relies on secrecy of

secret key

41 Introduction

}  WHAT DOES ANONYMITY MEAN?

}  WHAT DOES IT MEAN FOR A NETWORK
PROTOCOL TO PROVIDE ANONYMOUS
COMMUNICATION?

Introduction 42

Anonymity

}  Unlinkability of action and identity
}  For example, sender and his email are no more related after

adversary’s observations than they were before
}  Who talks to whom

}  Unobservability
}  Adversary cannot tell whether someone is using a particular

system and/or protocol

Introduction 43

Anonymity (``without name’’) means that a person
is not identifiable within a set of subjects

Lack of privacy on public networks

}  Internet is designed as a public network
}  Wi-Fi access points, network routers see all traffic that passes

through them

}  Routing information is public
}  IP packet headers identify source and destination
}  Even a passive observer can easily figure out who is talking to

whom

}  Encryption does not hide identities
}  Encryption hides payload, but not routing information

Introduction 44

Anonymity goals

}  Basic metrics:
}  Sender anonymity - who sends what
}  Receiver anonymity - who receives what
}  Unlinkability (relationship anonymity) - who talks to whom

}  Providing sender anonymity and unlinkability are desirable
enough for common Internet activities

}  Goals:
}  The identities of the communicating parties should stay

anonymous to the outside community
}  Even the parties in communication may not know each other’s

real identity

Introduction 45

Types of adversary

}  Passive/Active
}  Passive: eavesdrop traffic
}  Active: able to observe, delay, alter and drop messages

}  Local/Global
}  Local: able to observe traffic to/form user’s network link, within

LAN
}  Global: able to observe effectively large amount or all network

links, across LAN boundaries

}  Internal/External
}  Internal: does participate in the anonymity system
}  External: does not participate in the system

Introduction 46

Take home lessons

}  Security and anonymity are relative
}  Goals are provided under specific adversarial models

}  Goals
}  What the system/protocol promises

}  Attacker model
}  How the attacker interacts with the system
}  What resources has available

}  Boundaries
}  What is assumed about the context
}  Defines the boundaries of the secure system

Introduction 47

3: Background: Security models.

Abstract security models

}  Access control lists
}  Capabilities
}  Bell-LaPadula
}  Biba Integrity
}  Clark-Wilson
}  Brewer-Nash
}  Non-interference
}  Information flow

49 Introduction

Practical security models

}  UNIX permissions
}  Windows access control
}  Java permissions
}  Web (same-origin policy)
}  Android permissions
}  iOS (MAC model)

50 Introduction

Access Control List (ACL)

}  ⟨object, subject, operation⟩

}  Authorization verified for each request by checking list of
tuples

}  Instantiation of access control matrices with update
}  Used pervasively in filesystems and networks

}  "Users a, b, and c and read file x."
}  "Hosts a and b can listen on port x."

}  Drawbacks?

51 Introduction

Capabilities

}  In this model, authorization is synonymous with
possession of a capability
}  Capabilities represented as transferable, unforgeable tokens

}  Many implementations
}  Hardware
}  Systems (EROS, Capsicum)
}  Languages (E, Caja, Joe-E)

}  Drawbacks?

52 Introduction

Bell-LaPadula (BLP)

}  Concerned with enforcing confidentiality
}  Subjects have clearances

}  e.g., Confidential, Secret, Top-Secret, TS/SCI

}  Objects have classifications
}  State-transition model specifies system evolution

53 Introduction

Bell-LaPadula

}  "No read up, no write down"

}  Simple security property
}  A subject at a given level cannot read an object at a higher level

}  ★-property (confinement)
}  A subject at a higher level cannot write to an object at a lower

level

}  Discretionary security property
}  Additional DAC – e.g., ACLs

54 Introduction

Biba Integrity

}  "No read down, no write up"

}  Simple integrity axiom
}  Subjects at a higher level cannot read objects at a lower level

}  ★-integrity axiom
}  Subjects at a lower level cannot write to objects at a higher

level

55 Introduction

Covert channels

}  Access control is defined over "legitimate" channels
}  e.g., shared memory, pipes, sockets, files

}  However, isolation in real systems is imperfect
}  External observations can be used to create covert

channels
}  Requires collusion with an insider

}  Can be extremely difficult to detect
}  Difficulty is proportionate to channel bandwidth

56 Introduction

Non-interference

}  Any sequence of low inputs produces the same low
outputs regardless of high inputs

}  System modeled as machine with low (unprivileged) and
high (privileged) inputs and outputs

}  Property guarantees that regardless of high inputs, no
externally observable effects occur in the low outputs
}  Guarantees no covert channels
}  Very strict and virtually unrealizable property

57 Introduction

Information flow

}  Traditional access control is coarse-grained
}  Access control specifies how information is released

}  Information flow policies specify how information is
propagated
}  Objects classified by levels
}  Policies denote allowable flows between subjects

}  Distinction between explicit flows and implicit flows

58 Introduction

Explicit/implicit flows

}  Explicit information flows involve a direct transfer of
information from high to low objects

Introduction 59

Given program variables h: high, l: low,

l = h;!! !!// Explicit flow of all bits of h "
l = h % 2; !!// Explicit flow of LSB of h "
l ^= h >> 3; !!// Explicit flow of high bits of h "

}  Implicit flows leak information from high to low objects
via an indirect mechanism (e.g., control flow)
l = 0; "
h = h % 2; "
if (h == 1) { "

!l = 1;!"
} "

Information flow control

}  Information flow control (IFC) makes it theoretically
possible to verify non-interference
}  Within a given model of a system...

}  However, realistic programs require declassification
}  i.e., most systems require flows from high to low

}  Numerous implementations of IFC
}  Systems – e.g., Asbestos, Hi-Star
}  Languages – e.g., Jif, Sif

60 Introduction

Side channels

}  Side channels result from inadvertent information leakage
}  Timing – e.g., password recovery by timing keystrokes
}  Power – e.g., crypto key recovery by power fluctuations
}  RF emissions – e.g., video signal recovery from video cable EM

leakage
}  Virtually any shared resource can be used

}  Countermeasures?
}  Remove access to shared resource
}  Introduce noise (chaff) or blind the resource

61 Introduction

Take home lessons

}  Different theoretical and practical
models for security

}  Discretionary Access Control vs
Mandatory Access Control

}  In practice it is impossible to eliminate
}  Covert channels
}  Side-channels

Introduction 62

4: Background: Cryptographic building blocks

Readings for this section

}  Required readings:
}  Cryptography on Wikipedia

}  Interesting reading
}  The Code Book by Simon Singh

Introduction 64

Symmetric-key encryption

}  A symmetric-key encryption scheme consists of three
algorithms
}  Gen: the key generation algorithm

}  The algorithm must be probabilistic/randomized
}  Output: a key k

}  Enc: the encryption algorithm
}  Input: key k, plaintext m
}  Output: ciphertext c := Enck(m)

}  Dec: the decryption algorithm
}  Input: key k, ciphertext c
}  Output: plaintext m := Deck(m)

Introduction 65

Requirement: ∀k ∀m [Deck(Enck(m)) = m]

Secret key (symmetric) building blocks

}  Confidentiality
}  Stream ciphers (uses PRNG)
}  Block ciphers with encryption modes

}  Integrity
}  Cryptographic hash functions
}  Message authentication code (keyed hash functions)

}  Limitation: sender and receiver must share the same key
}  Needs secure channel for key distribution
}  Impossible for two parties having no prior relationship
}  Needs many keys for n parties to communicate

Introduction 66

Block ciphers

}  An n-bit plaintext is encrypted to an n-bit ciphertext
}  P : {0,1}n
}  C : {0,1}n
}  K : {0,1}s
}  E: K ×P → C : Ek: a permutation on {0,1} n
}  D: K ×C → P : Dk is Ek-1

}  Block size: n
}  Key size: s

Introduction 67

Data Encryption Standard (DES)

}  Designed by IBM, with modifications proposed by the National
Security Agency

}  US national standard from 1977 to 2001
}  Block size is 64 bits;
}  Key size is 56 bits
}  Has 16 rounds
}  Designed mostly for hardware implementations

}  Software implementation is somewhat slow
}  Considered insecure now

}  vulnerable to brute-force attacks
}  2DES insecure too, 3DES still used

Introduction 68

AES

}  Designed to be efficient in both hardware and software
across a variety of platforms

}  Block size: 128 bits
}  Variable key size: 128, 192, or 256 bits.
}  No known weaknesses
}  De facto standard

Introduction 69

Block Cipher Encryption Modes: ECB

}  Message is broken into independent blocks;

}  Electronic Code Book (ECB): each block encrypted
separately.

}  Encryption: ci = Ek(xi)
}  Decrytion: xi = Dk(ci)

Introduction 70

Properties of ECB

}  Deterministic:
}  the same data block gets encrypted the same way,

}  reveals patterns of data when a data block repeats
}  when the same key is used, the same message is

encrypted the same way
}  Usage: not recommended to encrypt more than one

block of data

Introduction 71

Encryption Modes: CBC

}  Cipher Block Chaining (CBC):
}  Uses a random Initial Vector (IV)
}  Next input depends upon previous output

Encryption: Ci= Ek (Mi⊕Ci-1), with C0=IV
Decryption: Mi= Ci-1⊕Dk(Ci), with C0=IV

M1 M2 M3

IV ⊕ ⊕
Ek

C1

Ek

C2

Ek

⊕

C3 C0

Introduction 72

Properties of CBC

}  Randomized encryption: repeated text gets mapped to
different encrypted data.
}  can be proven to provide IND-CPA assuming that the block cipher is

secure (i.e., it is a Pseudo Random Permutation (PRP)) and that
IV’s are randomly chosen and the IV space is large enough (at least
64 bits)

}  Each ciphertext block depends on all preceding plaintext
blocks.

}  Usage: chooses random IV and protects the integrity of
IV
}  The IV is not secret (it is part of ciphertext)
}  The adversary cannot control the IV

Introduction 73

Encryption modes: CTR

}  Counter Mode (CTR): Defines a stream cipher using a block
cipher
}  Uses a random IV, known as the counter
}  Encryption: C0=IV, Ci =Mi ⊕ Ek[IV+i]
}  Decryption: IV=C0, Mi =Ci ⊕ Ek[IV+i]

M2

IV

Ek ⊕
C2 C0

IV+2

M3

Ek ⊕
C3

IV+3

M1

Ek ⊕
C1

IV+1

Introduction 74

Properties of CTR

}  Gives a stream cipher from a block cipher

}  Randomized encryption:
}  when starting counter is chosen randomly

}  Random Access: encryption and decryption of a block
can be done in random order, very useful for hard-disk
encryption.
}  E.g., when one block changes, re-encryption only needs to

encrypt that block. In CBC, all later blocks also need to
change

Introduction 75

Hash Functions

}  A hash function maps a message of an arbitrary length to
a m-bit output
}  output known as the fingerprint or the message digest

}  What is an example of hash functions?
}  Give a hash function that maps Strings to integers in

[0,2^{32}-1]

}  Cryptographic hash functions are hash functions with
additional security requirements

Introduction 76

Security requirements for cryptographic
hash functions

Given a function h:X →Y, then we say that h is
}  preimage resistant (one-way):

if given y ∈Y it is computationally infeasible to find a value x ∈X
s.t. h(x) = y

}  2-nd preimage resistant (weak collision resistant):
if given x ∈ X it is computationally infeasible to find a value x’ ∈
X, s.t. x’≠x and h(x’) = h(x)

}  collision resistant (strong collision resistant):
if it is computationally infeasible to find two distinct values x’,x ∈
X, s.t. h(x’) = h(x)

Introduction 77

Using hash functions for message
integrity

}  Method 1: Uses a hash function h, assuming an authentic
(adversary cannot modify) channel for short messages
}  Transmit a message M over the normal (insecure) channel
}  Transmit the message digest h(M) over the secure channel
}  When receiver receives both M’ and h, how does the receiver

check to make sure the message has not been modified?

}  This is insecure. How to attack it?
}  A hash function is a many-to-one function, so collisions

can happen.

Introduction 78

Choosing the length of Hash outputs

}  The Weakest Link Principle:
}  A system is only as secure as its weakest link.

}  Hence all links in a system should have similar levels of
security.

}  Because of the birthday attack, the length of hash outputs
in general should double the key length of block ciphers
}  SHA-224 matches the 112-bit strength of triple-DES

(encryption 3 times using DES)
}  SHA-256, SHA-384, SHA-512 match the new key lengths

(128,192,256) in AES

Introduction 79

HMAC: Constructing MAC from
cryptographic hash functions

}  K+ is the key padded (with 0) to B bytes, the input block
size of the hash function

}  ipad = the byte 0x36 repeated B times
}  opad = the byte 0x5C repeated B times.

Introduction 80

HMACK[M] = Hash[(K+ ⊕ opad) || Hash[(K+ ⊕ ipad)||M)]]

 HMAC Security: If used with a secure hash function
and according to the specification (key size, and use
correct output), no known practical attacks

SHA-1

}  Hash function used for a long time and subjected to
numerous attacks

}  Brute force attack is harder (160 vs 128 bits for MD5)
}  Wang, Yin, and Yu (2005) found ways to find collisions

using no more than 269 hash evaluations
}  Wang, Yao and Yao (2005) found collisions using no more

than 263 hash evaluations
}  NIST made a request for the design of a new hash

function; Replaced by SHA-3

Introduction 81

SHA-3

}  NIST had an ongoing competition for SHA-3, the next generation of
standard hash algorithms
}  2007: Request for submissions of new hash functions
}  2008: Submissions deadline. Received 64 entries. Announced first-round

selections of 51 candidates.
}  2009: After First SHA-3 candidate conference in Feb, announced 14 Second

Round Candidates in July.
}  2010: After one year public review of the algorithms, hold second SHA-3

candidate conference in Aug. Announced 5 Third-round candidates in Dec.
}  2011: Public comment for final round

}  2012: October 2, NIST selected SHA3
}  Keccak (pronounced “catch-ack”) created by Guido Bertoni, Joan Daemen and

Gilles Van Assche, Michaël Peeters

Introduction 82

Public key encryption

}  Each party has a pair (K, K-1) of keys:
}  K is the public key, and used for encryption
}  K-1 is the private key, and used for decryption
}  Satisfies DK-1[EK[M]] = M

}  Knowing the public-key K, it is computationally infeasible to
compute the private key K-1
}  How to check (K,K-1) is a pair?
}  Offers only computational security. Secure PK Encryption

impossible when P=NP, as deriving K-1 from K is in NP.
}  The public-key K may be made publicly available, e.g., in a

publicly available directory
}  Many can encrypt, only one can decrypt

Introduction 83

Public key building blocks

}  Confidentiality
}  ElGamal
}  RSA

}  Non-repudiation with/wo Integrity
}  Digital signatures

}  Limitation: sender and receiver must obtain the
public key in a ``secure way’’
}  Need for PKI and certificate distribution

Introduction 84

ElGamal encryption

•  Public key <g, p, h=ga mod p>
•  Private key is a
•  To encrypt: chooses random b, computes

 C=[gb mod p, gab * M mod p].
•  Idea: for each M, sender and receiver establish a shared secret

gab via the DH protocol. The value gab hides the message M by
multiplying it.

•  To decrypt C=[c1,c2], computes M where
•  ((c1

a mod p) * M) mod p = c2.
•  To find M for x * M mod p = c2, compute z s.t. x*z mod p =1, and

then M = C2*z mod p

Introduction 85

RSA

}  Invented in 1978 by Ron Rivest, Adi Shamir and Leonard
Adleman
}  Published as R L Rivest, A Shamir, L Adleman, "On Digital

Signatures and Public Key Cryptosystems", Communications of
the ACM, vol 21 no 2, pp120-126, Feb 1978

}  Security relies on the difficulty of factoring large
composite numbers

}  Essentially the same algorithm was discovered in 1973 by
Clifford Cocks, who works for the British intelligence

Introduction 86

RSA key generation

1. Select 2 large prime numbers of about the same size,
p and q
Typically each p, q has between 512 and 2048 bits

2. Compute n = pq, and Φ(n) = (q-1)(p-1)
3. Select e, 1<e< Φ(n), s.t. gcd(e, Φ(n)) = 1

Typically e=3 or e=65537
4. Compute d, 1< d< Φ(n) s.t. ed ≡ 1 mod Φ(n)

Knowing Φ(n), d easy to compute.

Public key: (e, n)
Private key: d

Introduction 87

RSA encryption/decryption

Encryption
Given a message M, 0 < M < n M ∈ Zn- {0}
use public key (e, n)
compute C = Me mod n C ∈ Zn- {0}

Decryption
Given a ciphertext C, use private key (d)
Compute Cd mod n = (Me mod n)d mod n = Med mod

n = M

Introduction 88

RSA example

}  p = 11, q = 7, n = 77, Φ(n) = 60
}  d = 13, e = 37 (ed = 481; ed mod 60 = 1)
}  Let M = 15. Then C ≡ Me mod n

}  C ≡ 1537 (mod 77) = 71
}  M ≡ Cd mod n

}  M ≡ 7113 (mod 77) = 15

Introduction 89

Non-repudiation

}  Nonrepudiation is the assurance that someone cannot
deny something. Typically, nonrepudiation refers to the
ability to ensure that a party to a contract or a
communication cannot deny the authenticity of their
signature on a document or the sending of a message
that they originated.

}  Can one deny a signature one has made?

}  Does email provide non-repudiation?

Introduction 90

•  Key agreement protocol, both A and B contribute
 to the key
•  Setup Zn

, n prime and g generator, n and g public.

K = (gb mod n)a = gab mod n

ga mod n

gb mod n

K = (ga mod n)b = gab mod n

Pick random, secret a
Compute and send ga mod n

Pick random, secret b
Compute and send gb mod n

Key Agreement: Diffie-Hellman Protocol

Introduction 91

Diffie-Hellman

}  Example: Let p=11, g=2, then

 A chooses 4, B chooses 3, then shared secret is
 (23)4 = (24)3 = 212 = 4 (mod 11)

 Adversaries sees 23=8 and 24=5, needs to solve one of
2x=8 and 2y=5 to figure out the shared secret.

 a 1 2 3 4 5 6 7 8 9 10 11

ga 2 4 8 16 32 64 128 256 512 1024 2048

ga mod p 2 4 8 5 10 9 7 3 6 1 2

Introduction 92

Man-in the Middle-Attack Against
Unauthenticated DH

ga mod n

gb mod n

gc mod n

gc mod n

Alice computes gac mod n and Bob computes gbc mod n !!!
Attacker can compute both keys.

Introduction 93

Station-to-Station (STS)

Provides mutual entity authentication

gx mod p

gy mod p, Ek(SignB(gy, gx))

Ek(SignA(gx, gy))

Introduction 94

Take home lessons

Secrecy /
Confidentiality

Stream ciphers
Block ciphers +
encryption modes

Public key
encryption: RSA,
El Gamal, etc.

Authenticity /
Integrity

Message
Authentication
Code

Digital Signatures:
RSA, DSA, etc.

Secret Key

Setting

Public Key

Setting

Introduction 95

Take home lessons

}  Symmetric key based crypto blocks
}  Primarily used for encryption and authentication
}  Require a shared secret key, require key establishment and

distribution

}  Asymmetric (Public-key) based crypto blocks
}  Primarily used for secret keys encryption and digital signatures

(non-repudiation)
}  Requires public key distribution in a ``secure way’’, generated

by somebody trusted

}  Diffie-Hellman is the foundation of most key agreement
protocols, requires authentication of messages to be
resilient to man-in-the-middle attacks

Introduction 96

