
Cristina Nita-Rotaru

CS6740: Network security

DHT; SDN.

What is network security

Summary 2

``Network Security is the process of taking physical
and software preventative measures to protect the
underlying networking infrastructure from
unauthorized access, misuse, malfunction,
modification, destruction, or improper disclosure,
thereby creating a secure platform for computers,
users and programs to perform their permitted critical
functions within a secure environment.’’

SANS Institute

}  Goals for protocols
}  Attackers trying to disrupt those goals
}  Attackers have resources and means – attacker model

}  Security means – something being possible/impossible
under certain assumptions about the attacker and its
resources and means, and about the boundary of
interaction of the target-system with ``the rest of the
world’’.

Summary 3

The learning does not end here

}  Some stacks not likely to change anytime soon – the
Internet. But new services will bring even more complex
interactions

}  Stay skeptical and pay attention to foundations: if
something sounds too good to be true, it probably is not
as good

}  Keep up to date with more attacks and new crypto
developments and bounds

}  Focus also on design not only attacks
}  Try to go to the root/essence of problem or solutions

Summary 4

2: DHT - Chord

CHORD

}  Efficient lookup of a node which stores data items for a
particular search key.

}  Provides only one operation: given a key, it maps the key
onto a node.

}  Example applications:
}  Co-operative mirroring
}  Time-shared storage
}  Distributed indexes
}  Large-scale combinatorial search

DHTs 6

Design Goals

}  Load balance: distributed hash function, spreading keys
evenly over nodes

}  Decentralization: CHORD is fully distributed, nodes have
symmetric functionality, improves robustness

}  Scalability: logarithmic growth of lookup costs with
number of nodes in network

}  Availability: CHORD guarantees correctness, it
automatically adjusts its internal tables to ensure that the
node responsible for a key can always be found

DHTs 7

 Assumptions

}  Communication in underlying network is both symmetric
and transitive

}  Assigns keys to nodes with consistent hashing
}  Hash function balances the load
}  Participants are correct, nodes can join and leave at any

time
}  Nodes can fail

DHTs 8

Chord Rings

}  Key identifier = SHA-1(key)
}  Node identifier = SHA-1(IP address)
}  Consistent hashing function assigns each node and key an

m-bit identifier using SHA-1
}  Mapping key identifiers to node identifiers:

}  Identifiers are ordered on a circle modulo 2m called a chord
ring.

}  The circle is split into contiguous segments whose endpoints
are the node identifiers. If i1 and i2 are two adjacent IDs, then
the node with ID greater identifier i2 owns all the keys that fall
between i1 and i2.

DHTs 9

Example of Key Partitioning in Chord

m = 6
10 nodes

N14

N1

N56

N51

N48

N42

N21

N32 N38

K10 K54

K24

K30 K38

N8

DHTs 10

How to Perform Key Lookup

}  Assume that each node knows only how to contact its
current successor node on the identifier circle, then all
node can be visited in linear order.

}  When performing a search, the query for a given
identifier could be passed around the circle via these
successor pointers until they encounter the node that
contains the key corresponding to the search.

DHTs 11

Example of Key Lookup Scheme

N1

N8

N14

N21 N32

N38

N42

N48

K45

succesor(k) = first node whose ID is >= ID of k in identifier space

DHTs 12

Scalable Key Location

}  To accelerate lookups, Chord maintains additional routing
information (m entries): finger table

}  The ith entry in the table at node n contains the identity
of the first node s that succeeds n by at least 2i-1 on the
identifier circle.

}  s = successor(n+2i-1).
}  s is called the ith finger of node n

DHTs 13

Scalable Lookup Scheme

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

N1

N8

N14

N21
N32

N38

N42

N48

N51

N56 Finger Table for N8

finger 1,2,3

finger 4

finger 6

finger [i] = first node that succeeds (n+2i-1)mod2m

finger 5

m = 6

DHTs 14

Scalable Lookup

}  Each node has finger entries at power of two intervals
around the identifier circle

}  Each node can forward a query at least halfway along the
remaining distance between the node and the target
identifier.

DHTs 15

Lookup Using Finger Table

N1

N8

N14

N21 N32

N38

N42

N51

N56

N48

K54

DHTs 16

Node Joins and Failures/Leaves

}  When a node N joins the network, some of the keys
previously assigned to N’s successor should become
assigned to N.

}  When node N leaves the network, all of its assigned keys
should be reassigned to N’s successor.

}  How to deal with these cases?

DHTs 17

Node Joins and Stabilizations

}  Everything relies on successor pointer.
}  Up to date successor pointer is sufficient to guarantee

correctness of lookups
}  Idea: run a “stabilization” protocol periodically in the

background to update successor pointer and finger table.

DHTs 18

Stabilization Protocol

}  Guarantees to add nodes in a fashion to preserve
reachability

}  Does not address the cases when a Chord system thas
split into multiple disjoint cycles, or a single cycle that
loops multiple times around the identifier space

DHTs 19

Stabilization Protocol (cont.)

}  Each time node N runs stabilize protocol, it asks its
successor for its predecessor p, and decides whether p
should be N’s successor instead.

}  Stabilize protocol notifies node N’s successor of N’s
existence, giving the successor the chance to change its
predecessor to N.

}  The successor does this only if it knows of no closer
predecessor than N.

DHTs 20

Impact of Node Joins on Lookups

}  If finger table entries are current then lookup finds the
correct successor in O(log N) steps

}  If successor pointers are correct but finger tables are
incorrect, correct lookup but slower

}  If incorrect successor pointers, then lookup may fail

DHTs 21

Voluntary Node Departures

}  Leaving node may transfers all its keys to its successor
}  Leaving node may notify its predecessor and successor

about each other so that they can update their links

DHTs 22

Node Failures

}  Stabilize successor lists:
}  Node N reconciles its list with its successor S by copying S’s

successor list, removing its last entry, and prepending S to it.
}  If node N notices that its successor has failed, it replaces it

with the first live entry in its successor list and reconciles its
successor list with its new successor.

DHTs 23

CHORD Summary

}  Efficient location of the node that stores a desired data
item is a fundamental problem in P2P networks

}  Separates correctness (successor) from performance
(finger table)

}  Chord protocol solves it in a efficient decentralized
manner
}  Routing information: O(log N) nodes
}  Lookup: O(log N) nodes
}  Update: O(log2 N) messages

}  It also adapts dynamically to the topology changes
introduced during the run

DHTs 24

Node ID Assignment Implications

}  Node ID
determines where
will the node be
placed in the
structured overlay

}  Determines who
the neighbors are
going to be

}  Determines what
objects a node will
hold

m = 6
10 nodes

N14

N1
N56

N51

N48

N42
N21

N32 N38

K10 K54

K24

K30 K38

N8

DHTs 25

Attacks Based on Node ID Assignment

}  What if attacker can choose the ID of a node?
}  Surround a victim node
}  Partition a p2p network
}  Can control what object will be a replica for
}  Holding objects allow an attacker to delete, corrupt or deny

access to objects

}  Can an attacker choose the ID of a node?
}  In some systems ID is randomly generated
}  In some systems ID is the hash of the IP address

DHTs 26

Sybil Attack

}  Attack particular to peer networks, a malicious attacker takes/
forges multiple identities

}  Result: attacker controls a significant part of the system while
correct nodes are not aware of this, they see different
identities
}  destroy cohesion of the overlay
}  observe network status
}  slow down, destroy overlay
}  DoS

}  How to ensure/validate distinct identities refer to distinct
entities?

DHTs 27

Evaluating Identity

}  Straightforward form of identity: secure hash of a public
key

}  How to evaluate/learn the identity of other entities
}  Use a trusted agency (learn from trusted source)
}  A node has a direct way of validating other nodes - direct

validation (learn directly)
}  Using other untrusted agencies - indirect validation (learn from

others)

}  Which one is best?

DHTs 28

}  Utilize computational tasks to validate distinctness;
}  validate distinctness of two entities by getting them to

perform some task (for example a computational puzzle) that
a single entity could not

}  can not assume homogeneous resources, only minimum;
faulty entity could have more than minimum

}  The goal is to make it practical impossible for an adversary
to have challenges issued simultaneously, limit the number of
identities he can forge

Direct and Indirect Validation
(Untrusted Sources)

DHTs 29

Direct Validation Limitations

}  Even with severely resource constrains, a faulty entity can
counterfeit a constant number of identities

}  Each correct entity must simultaneously validate all the
identities it is presented otherwise a faulty entity can
counterfeit an unbounded number of identities

DHTs 30

Indirect Validation

}  A sufficiently large set of faulty entities can counterfeit an
unbounded number of identities

}  All entities in the system must perform their identity
validations concurrently, otherwise a faulty identity can
counterfeit a constant number of multiple identities

DHTs 31

Certified (Secure) NodeID Assignment

}  Delegate ID generation to trusted CAs
}  Bind IPs with nodeIds such that colluding attackers can not

exchange certificates
}  Nodes must pay for certificates to prevent attackers from

buying many "correct" certificates

}  Works for static IP addresses
}  Does not solve all problems: what happens if the IP

changes?
}  What happens if the trusted CA is not available or can

not be reached?

DHTs 32

Certified (Secure) NodeID Assignment

}  How about distributed ID generation with periodic
renewal of distributed IDs
}  Addresses single point of failure
}  Requires techniques to moderate the rate at which attackers

can acquire node IDs

DHTs 33

Routing Table Maintenance

}  Routing table contains
information about where
to ‘look next’

}  Table is updated based
on information from
other nodes

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

Finger Table for N8

finger [k] = first node that succeeds (n+2k-1)mod2m

m = 6

DHTs 34

Attack Against Maintaining Routing Table

}  Attackers can easily supply ‘malicious’ updates or can
return incorrect lookup
}  point to faulty or non-existent nodes
}  fake the closest node
}  lie about next hop

}  Result: lookup will fail (denial of information to a node) or
the lookup algorithm will have sub-optimal performance

DHTs 35

Secure Routing Table Maintenance

}  Constrained Routing Tables: Identify invariants in the system
and look for violations of the invariants

}  Maintain two routing tables - one that uses proximity
information and one that constrains entries to "specific" values
}  Proximity routing used in normal operation
}  Constrained routing used when failures occur:

}  Other proposed solutions involve anonymous auditing

DHTs 36

Secure Bootstrapping

}  How to securely bootstrap the routing table?
}  A new node, n, picks a subset of bootstrap nodes to query

and join the network
}  n uses the bootstrap information to initialize its constrained

routing table

DHTs 37

Attacks on Forwarding

}  Simply ignore forwarding messages, route to the wrong
node
}  Failed if ANY one in routing is faulty
}  Probability of routing successfully to a replica root is (1-f)h-1
}  h is the number of average hops for delivering a message
}  h depends on the overlay

DHTs 38

Secure Message Forwarding

}  Ensure that with high probability, at least on copy of a
message reaches every correct replica root

}  Collect the prospective set of replica roots from the
prospective root node

}  Apply routing failure test to determine if routing
worked correctly, If no, use redundant and/or iterative
routing.

DHTs 39

Testing Routing

}  Route Failure Test:
}  Average density of nodeIds per unit of “volume” in the id space is

greater than the average density of faulty nodes
}  Compares density of nodeIds in the neighbor set of the sender with the density

of nodeIds close to the replica roots of the destination key
}  Have sender contact all prospective roots
}  Timeout to detect ignoring routing msgs, selecting the appropriate

threshold not easy
}  Use redundant routing when test fails

}  Neighbor set anycast - sends copies of message towards destination until they
reach a node with the key in its neighbor set.

}  How about false positives and false negatives when performing the routing
failure test?

}  Redundant routing has high overhead?

DHTs 40

Iterative Routing

}  Alternative to redundant routing
}  Every lookup answer goes back to the requester that can

verify that the next hop gets him closer (using the
distance function) to the node hosting the object
associated with the requested key

}  Iterative routing is more secure, but more expensive

DHTs 41

What Does Secure Routing Buy Us?

}  Prevents attacks at join time: secure nodeID assignment
and bootstrapping

}  Ensure that when a correct node sends a message for a
particular key, the message reaches all correct replica
roots for the key with very high probability.

}  What about the data? We need other mechanisms, for
example self-certifying data

DHTs 42

Self-Certifying Data

}  Client can check data and only needs to rely on routing when
certification check fails.

}  Reduces the reliance on the redundant, secure routing
primitive (you still need secure forwarding otherwise there is
no data to verify in the first place)

}  Uses concepts like proactive signature sharing or group keys/
signatures.

}  Self-certifying data can eliminate the overhead of secure
routing in common cases

DHTs 43

3: SDN;OpenFlow

Slides for overview of SDN by Jennifer Rexford
Slide for challenges in SDN Theophilus Benson

Tradi&onal	 Computer	 Networks	

Track topology changes, compute
routes, install forwarding rules

Control plane:!
Distributed algorithms!

SDN 45

Tradi&onal	 Computer	 Networks	

Collect measurements and configure
the equipment"

Management plane:!
 Human time scale!

SDN 46

Death	 to	 the	 Control	 Plane! 	

}  Simpler	 management	
}  No	 need	 to	 “invert”	 control-‐plane	 opera&ons	

}  Faster	 pace	 of	 innova&on	
}  Less	 dependence	 on	 vendors	 and	 standards	

}  Easier	 interoperability	
}  Compa&bility	 only	 in	 “wire”	 protocols 	

}  Simpler,	 cheaper	 equipment	
}  Minimal	 soGware	

SDN 47

SoGware	 Defined	 Networking	 (SDN)	

API to the data plane!
(e.g., OpenFlow)!

Logically-centralized control!

Switches!

Smart,!
slow!

Dumb,!
fast!

SDN 48

Data-‐Plane:	 Simple	 Packet	 Handling	

}  Simple	 packet-‐handling	 rules	
}  PaMern:	 match	 packet	 header	 bits	
}  Ac&ons:	 drop,	 forward,	 modify,	 send	 to	 controller	 	
}  Priority:	 disambiguate	 overlapping	 paMerns	
}  Counters:	 #bytes	 and	 #packets	

1.  src=1.2.*.*,	 dest=3.4.5.*	 à	 drop	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2.  src	 =	 *.*.*.*,	 dest=3.4.*.*	 à	 forward(2)	
3.	 	 src=10.1.2.3,	 dest=*.*.*.*	 à	 send	 to	 controller	

SDN 49

Unifies	 Different	 Kinds	 of	 Boxes	

}  Router	
}  Match:	 longest	
des&na&on	 IP	 prefix	

}  Ac&on:	 forward	 out	 a	 link	
}  Switch	
}  Match:	 des&na&on	 MAC	
address	

}  Ac&on:	 forward	 or	 flood	

}  Firewall	
}  Match:	 IP	 addresses	 and	
TCP/UDP	 port	 numbers	

}  Ac&on:	 permit	 or	 deny	 	
} NAT	
}  Match:	 IP	 address	 and	
port	

}  Ac&on:	 rewrite	 address	
and	 port	

50!

SDN 50

Controller:	 Programmability	

51!

Network OS

Controller Application!

Events from switches!
Topology changes,!
Traffic statistics,!
Arriving packets!

Commands to switches!
(Un)install rules,!
Query statistics,!
Send packets!

SDN 51

Example	 OpenFlow	 Applica&ons	

}  Dynamic	 access	 control	
}  Seamless	 mobility/migra3on	
}  Server	 load	 balancing	
}  Network	 virtualiza3on	
}  Using	 mul&ple	 wireless	 access	 points	
}  Energy-‐efficient	 networking	
}  Adap&ve	 traffic	 monitoring	
}  Denial-‐of-‐Service	 aMack	 detec&on	

SDN 52

E.g.:	 Dynamic	 Access	 Control	

}  Inspect	 first	 packet	 of	 a	 connec&on	
}  Consult	 the	 access	 control	 policy	
}  Install	 rules	 to	 block	 or	 route	 traffic	

SDN 53

E.g.:	 Seamless	 Mobility/Migra&on	

}  See	 host	 send	 traffic	 at	 new	 loca&on	
}  Modify	 rules	 to	 reroute	 the	 traffic	

SDN 54

E.g.:	 Server	 Load	 Balancing	

}  Pre-‐install	 load-‐balancing	 policy	
}  Split	 traffic	 based	 on	 source	 IP	

55!

src=0*!

src=1*!

SDN 55

E.g.:	 Network	 Virtualiza&on	
56!

Partition the space of packet headers!

Controller #1! Controller #2! Controller #3!

SDN 56

OpenFlow	 in	 the	 Wild	

}  Open	 Networking	 Founda&on	
}  Google,	 Facebook,	 MicrosoG,	 Yahoo,	 Verizon,	 Deutsche	 Telekom,	 and	
many	 other	 companies	

}  Commercial	 OpenFlow	 switches	
}  HP,	 NEC,	 Quanta,	 Dell,	 IBM,	 Juniper,	 …	

}  Network	 opera&ng	 systems	
}  NOX,	 Beacon,	 Floodlight,	 NeMle,	 ONIX,	 POX,	 Frene&c	

}  Network	 deployments	
}  Eight	 campuses,	 and	 two	 research	 backbone	 networks	
}  Commercial	 deployments	 (e.g.,	 Google	 backbone)	

SDN 57

Controller Availability

Controller (N. O.S.)

Applications Applications Applications

SDN 58

Controller Availability

Controller (N. O.S.)

Applications Applications Applications

SDN 59

Controller Availability

“control a large force like a small force: divide and conquer”
 --Sun Tzu, Art of war

•  How many controllers?
•  How do you assign switches to controllers?
•  More importantly: which assignment reduces

processing time
•  How to ensure consistency between

controllers

Controller (N. O.S.)

Applications Applications Applications

Controller (N. O.S.)

Applications Applications Applications

Controller (N. O.S.)

Applications Applications Applications

SDN 60

SDN Reliability/Fault Tolerance

Controller (N. O.S.)

Applications Applications Applications

Controller: Single point of
control
•  Bug in controller takes

the whole network down

Existing network survives
failures or bugs in code
for any one devices

SDN 61

SDN Reliability/Fault Tolerance

Controller (N. O.S.)

Applications Applications Applications

Controller: Single point of
control
•  Bug in controller takes

the whole network down
•  Single point of failure

Existing network survives
failures or bugs in code
for any one devices

SDN 62

SDN Security

Controller (N. O.S.)

Applications Applications Applications

Controller: Single point of control
}  Compromise controller

If one device in the
current networks are
compromised the network
may still be safe

SDN 63

SDN Security

Controller (N. O.S.)

Applications Applications Applications

Controller: Single point of control
}  Compromise controller
}  Denial of Service attack the

control channel

SDN 64

