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What is network security 

Summary 2 

``Network Security is the process of taking physical 
and software preventative measures to protect the 
underlying networking infrastructure from 
unauthorized access, misuse, malfunction, 
modification, destruction, or improper disclosure, 
thereby creating a secure platform for computers, 
users and programs to perform their permitted critical 
functions within a secure environment.’’ 
 
SANS Institute 



}  Goals for protocols 
}  Attackers trying to disrupt those goals 
}  Attackers have resources and means – attacker model 

}  Security means – something being possible/impossible 
under certain assumptions about the attacker and its 
resources and means, and about the boundary of 
interaction of the target-system with ``the rest of the 
world’’.  
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The learning does not end here 

}  Some stacks not likely to change anytime soon – the 
Internet. But new services will bring even more complex 
interactions 

}  Stay skeptical and pay attention to foundations: if 
something sounds too good to be true, it probably is not 
as good 

}  Keep up to date with more attacks and new crypto 
developments and bounds 

}  Focus also on design not only attacks 
}  Try to go to the root/essence of problem or solutions 

Summary 4 



2: DHT - Chord 



CHORD 

}  Efficient lookup of a node which stores data items for a 
particular search key. 

}  Provides only one operation: given a key, it maps the key 
onto a node. 

}  Example applications: 
}  Co-operative mirroring 
}  Time-shared storage 
}  Distributed indexes 
}  Large-scale combinatorial search 
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Design Goals 

}  Load balance: distributed hash function, spreading keys 
evenly over nodes 

}  Decentralization: CHORD is fully distributed, nodes have 
symmetric functionality, improves robustness 

}  Scalability: logarithmic growth of lookup costs with 
number of nodes in network 

}  Availability: CHORD guarantees correctness, it 
automatically adjusts its internal tables to ensure that the 
node responsible for a key can always be found 
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 Assumptions 

}  Communication in underlying network is both symmetric 
and transitive 

}  Assigns keys to nodes with consistent hashing 
}  Hash function balances the load 
}  Participants are correct, nodes can join and leave at any 

time 
}  Nodes can fail 

DHTs 8 



Chord Rings 

}  Key identifier = SHA-1(key) 
}  Node identifier = SHA-1(IP address) 
}  Consistent hashing function assigns each node and key an 

m-bit identifier using SHA-1  
}  Mapping key identifiers to node identifiers: 

}  Identifiers are ordered on a circle modulo 2m called a chord 
ring. 

}  The circle is split into contiguous segments whose endpoints 
are the node identifiers. If i1 and i2 are two adjacent IDs, then 
the node with ID greater identifier i2 owns all the keys that fall 
between i1 and i2. 
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Example of Key Partitioning in Chord 
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10 nodes 

N14 

N1 

N56 

N51 

N48 

N42 

N21 

N32 N38 

K10 K54 

K24 

K30 K38 

N8 

DHTs 10 



How to Perform Key Lookup 

}  Assume that each node knows only how to contact its 
current successor node on the identifier circle, then all 
node can be visited in linear order. 

}  When performing a search, the query for a given 
identifier could be passed around the circle via these 
successor pointers until they encounter the node that 
contains the key corresponding to the search. 
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Example of Key Lookup Scheme 
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succesor(k) = first node whose ID is >= ID of k in identifier space 
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Scalable Key Location 

}  To accelerate lookups, Chord maintains additional routing 
information (m entries): finger table  

}  The ith entry in the table at node n contains the identity 
of the first node s that succeeds n by at least 2i-1 on the 
identifier circle. 

}  s = successor(n+2i-1). 
}  s is called the ith finger of node n 
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Scalable Lookup Scheme 

N8+1 N14 

N8+2 N14 
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finger 1,2,3 

finger 4 

finger 6 

finger [i] = first node that succeeds (n+2i-1)mod2m 

finger 5 

m = 6 
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Scalable Lookup 

}  Each node has finger entries at power of two intervals 
around the identifier circle 

}  Each node can forward a query at least halfway along the 
remaining distance between the node and the target 
identifier. 
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Lookup Using Finger Table 
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Node Joins and Failures/Leaves 

}  When a node N joins the network, some of the keys 
previously assigned to N’s successor should become 
assigned to N.  

}  When node N leaves the network, all of its assigned keys 
should be reassigned to N’s successor. 

}  How to deal with these cases?  
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Node Joins and Stabilizations 

}  Everything relies on successor pointer. 
}  Up to date successor pointer is sufficient to guarantee 

correctness of lookups 
}  Idea: run a “stabilization” protocol periodically in the 

background to update successor pointer and finger table. 
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Stabilization Protocol 

}  Guarantees to add nodes in a fashion to preserve 
reachability 

}  Does not address the cases when a Chord system thas 
split into multiple disjoint cycles, or a single cycle that 
loops multiple times around the identifier space 
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Stabilization Protocol (cont.) 

}  Each time node N runs stabilize protocol, it asks its 
successor for its predecessor p, and decides whether p 
should be N’s successor instead. 

}  Stabilize protocol notifies node N’s successor of N’s 
existence, giving the successor the chance to change its 
predecessor to N. 

}  The successor does this only if it knows of no closer 
predecessor than N. 
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Impact of Node Joins on Lookups 

}  If finger table entries are current then lookup finds the 
correct successor in O(log N) steps 

}  If successor pointers are correct but finger tables are 
incorrect, correct lookup but slower 

}  If incorrect successor pointers, then lookup may fail 
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Voluntary Node Departures 

}  Leaving node may transfers all its keys to its successor 
}  Leaving node may notify its predecessor and successor 

about each other so that they can update their links 
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Node Failures 

}  Stabilize successor lists:  
}  Node N reconciles its list with its successor S by copying S’s 

successor list, removing its last entry, and prepending S to it.  
}  If node N notices that its successor has failed, it replaces it 

with the first live entry in its successor list and reconciles its 
successor list with its new successor. 
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CHORD Summary 

}  Efficient location of the node that stores a desired data 
item is a fundamental problem in P2P networks 

}  Separates correctness (successor) from performance 
(finger table) 

}  Chord protocol solves it  in a efficient decentralized 
manner 
}  Routing information: O(log N) nodes 
}  Lookup: O(log N) nodes 
}  Update: O(log2 N) messages 

}  It also adapts dynamically to the topology changes 
introduced during the run 
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Node ID Assignment Implications 

}  Node ID 
determines where 
will the node be 
placed in the 
structured overlay 

}  Determines who 
the neighbors are 
going to be 

}  Determines what 
objects a node will 
hold 

m = 6 
10 nodes 
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Attacks Based on Node ID Assignment  

}  What if attacker can choose the ID of a node?  
}  Surround a victim node 
}  Partition a p2p network 
}  Can control what object will be a replica for 
}  Holding objects allow an attacker to delete, corrupt or deny 

access to objects 

}  Can an attacker choose the ID of a node? 
}  In some systems ID is randomly generated 
}  In some systems ID is the hash of the IP address 
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Sybil Attack 

}  Attack particular to peer networks, a malicious attacker takes/
forges multiple identities 

}  Result: attacker controls a significant part of the system while 
correct nodes are not aware of this, they see different 
identities 
}  destroy cohesion of the overlay 
}  observe network status 
}  slow down, destroy overlay 
}  DoS 

}  How to ensure/validate distinct identities refer to distinct 
entities? 
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Evaluating Identity 

}  Straightforward form of identity: secure hash of a public 
key 

}  How to evaluate/learn the identity of other entities 
}  Use a trusted agency (learn from trusted source) 
}  A node has a direct way of validating other nodes - direct 

validation (learn directly) 
}  Using other untrusted agencies - indirect validation (learn from 

others) 

}  Which one is best? 
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}  Utilize computational tasks to validate distinctness; 
}  validate distinctness of two entities by getting them to  

perform some task (for example a computational puzzle) that 
a single entity could not 

}  can not assume homogeneous resources, only minimum; 
faulty entity could have more than minimum 

}  The goal is to make it practical impossible for an adversary 
to have challenges issued simultaneously, limit the number of 
identities he can forge 

Direct and Indirect Validation 
(Untrusted Sources) 
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Direct Validation Limitations 

}  Even with severely resource constrains, a faulty entity can 
counterfeit a constant number of identities 

}  Each correct entity must simultaneously validate all the 
identities it is presented otherwise a faulty entity can 
counterfeit an unbounded number of identities  
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Indirect Validation 

}  A sufficiently large set of faulty entities can counterfeit an 
unbounded number of identities 

}  All entities in the system must perform their identity 
validations concurrently, otherwise a faulty identity can 
counterfeit a constant number of multiple identities 
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Certified (Secure) NodeID Assignment 

}  Delegate ID generation to trusted CAs 
}  Bind IPs with nodeIds such that colluding attackers can not 

exchange certificates  
}  Nodes must pay for certificates to prevent attackers from 

buying many "correct" certificates  

}  Works for static IP addresses 
}  Does not solve all problems: what happens if the IP 

changes? 
}  What happens if the trusted CA is not available or can 

not be reached? 
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Certified (Secure) NodeID Assignment 

}  How about distributed ID generation with periodic 
renewal of distributed IDs  
}  Addresses single point of failure 
}  Requires techniques to moderate the rate at which attackers 

can acquire node IDs 
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Routing Table Maintenance 

}  Routing table contains 
information about where 
to ‘look next’ 

}  Table is updated based 
on information from 
other nodes 

N8+1 N14 

N8+2 N14 

N8+4 N14 

N8+8 N21 

N8+16 N32 

N8+32 N42 

Finger Table for N8 

finger [k] = first node that succeeds (n+2k-1)mod2m 

m = 6 
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Attack Against Maintaining Routing Table 

}  Attackers can easily supply ‘malicious’ updates or can 
return incorrect lookup 
}  point to faulty or non-existent nodes 
}  fake the closest node 
}  lie about next hop  

}  Result: lookup will fail (denial of information to a node) or 
the lookup algorithm will have sub-optimal performance 
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Secure Routing Table Maintenance 

}  Constrained Routing Tables: Identify invariants in the system 
and look for violations of the invariants 

}  Maintain two routing tables - one that uses proximity 
information and one that constrains entries to "specific" values 
}  Proximity routing used in normal operation 
}  Constrained routing used when failures occur: 

}  Other proposed solutions involve anonymous auditing 
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Secure Bootstrapping 

}  How to securely bootstrap the routing table? 
}  A new node, n, picks a subset of bootstrap nodes to query 

and join the network 
}  n uses the bootstrap information to initialize its constrained 

routing table  
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Attacks on Forwarding 

}  Simply ignore forwarding messages, route to the wrong 
node  
}  Failed if ANY one in routing is faulty 
}  Probability of routing successfully to a replica root is (1-f)h-1 
}  h is the number of average hops for delivering a message 
}  h depends on the overlay 
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Secure Message Forwarding 

}  Ensure that with high probability, at least on copy of a 
message reaches every correct replica root 

}  Collect the prospective set of replica roots from the 
prospective root node 

}  Apply routing failure test to determine if routing 
worked correctly, If no, use redundant and/or iterative 
routing. 
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Testing Routing 

}  Route Failure Test:  
}  Average density of nodeIds per unit of “volume” in the id space is 

greater than the average density of faulty nodes 
}  Compares density of nodeIds in the neighbor set of the sender with the density 

of nodeIds close to the replica roots of the destination key  
}  Have sender contact all prospective roots 
}  Timeout to detect ignoring routing msgs, selecting the appropriate 

threshold not easy 
}  Use redundant routing when test fails 

}  Neighbor set anycast - sends copies of message towards destination until they 
reach a node with the key in its neighbor set.  

}  How about false positives and false negatives when performing the routing 
failure test?  

}  Redundant routing has high overhead? 
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Iterative Routing 

}  Alternative to redundant routing 
}  Every lookup answer goes back to the requester that can 

verify that the next hop gets him closer (using the 
distance function) to the node hosting the object 
associated with the requested key 

}  Iterative routing is more secure, but more expensive  
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What Does Secure Routing Buy Us? 

}  Prevents attacks at join time: secure nodeID assignment 
and bootstrapping 

}  Ensure that when a correct node sends a message for a 
particular key, the message reaches all correct replica 
roots for the key with very high probability. 

}  What about the data? We need other mechanisms, for 
example self-certifying data 
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Self-Certifying Data 

}  Client can check data and only needs to rely on routing when 
certification check fails. 

}  Reduces the reliance on the redundant, secure routing 
primitive (you still need secure forwarding otherwise there is 
no data to verify in the first place) 

}  Uses concepts like proactive signature sharing or group keys/
signatures. 

}  Self-certifying data can eliminate the overhead of secure 
routing in common cases 
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3: SDN;OpenFlow  

Slides for overview of SDN by Jennifer Rexford 
Slide for challenges in SDN Theophilus Benson 
 



Tradi&onal	  Computer	  Networks	  

Track topology changes, compute 
routes, install forwarding rules 

Control plane:!
Distributed algorithms!
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Tradi&onal	  Computer	  Networks	  

Collect measurements and configure 
the equipment"

Management plane:!
     Human time scale!
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Death	  to	  the	  Control	  Plane! 	  

}  Simpler	  management	  
}  No	  need	  to	  “invert”	  control-‐plane	  opera&ons	  

}  Faster	  pace	  of	  innova&on	  
}  Less	  dependence	  on	  vendors	  and	  standards	  

}  Easier	  interoperability	  
}  Compa&bility	  only	  in	  “wire”	  protocols 	  

}  Simpler,	  cheaper	  equipment	  
}  Minimal	  soGware	  
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SoGware	  Defined	  Networking	  (SDN)	  

API to the data plane!
(e.g., OpenFlow)!

Logically-centralized control!

Switches!

Smart,!
slow!

Dumb,!
fast!
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Data-‐Plane:	  Simple	  Packet	  Handling	  

}  Simple	  packet-‐handling	  rules	  
}  PaMern:	  match	  packet	  header	  bits	  
}  Ac&ons:	  drop,	  forward,	  modify,	  send	  to	  controller	  	  
}  Priority:	  disambiguate	  overlapping	  paMerns	  
}  Counters:	  #bytes	  and	  #packets	  

1.  src=1.2.*.*,	  dest=3.4.5.*	  à	  drop	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2.  src	  =	  *.*.*.*,	  dest=3.4.*.*	  à	  forward(2)	  
3.	  	  src=10.1.2.3,	  dest=*.*.*.*	  à	  send	  to	  controller	  
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Unifies	  Different	  Kinds	  of	  Boxes	  

}  Router	  
}  Match:	  longest	  
des&na&on	  IP	  prefix	  

}  Ac&on:	  forward	  out	  a	  link	  
}  Switch	  
}  Match:	  des&na&on	  MAC	  
address	  

}  Ac&on:	  forward	  or	  flood	  

}  Firewall	  
}  Match:	  IP	  addresses	  and	  
TCP/UDP	  port	  numbers	  

}  Ac&on:	  permit	  or	  deny	  	  
} NAT	  
}  Match:	  IP	  address	  and	  
port	  

}  Ac&on:	  rewrite	  address	  
and	  port	  

50!
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Controller:	  Programmability	  

51!

Network OS 

Controller Application!

Events from switches!
Topology changes,!
Traffic statistics,!
Arriving packets!

Commands to switches!
(Un)install rules,!
Query statistics,!
Send packets!
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Example	  OpenFlow	  Applica&ons	  

}  Dynamic	  access	  control	  
}  Seamless	  mobility/migra3on	  
}  Server	  load	  balancing	  
}  Network	  virtualiza3on	  
}  Using	  mul&ple	  wireless	  access	  points	  
}  Energy-‐efficient	  networking	  
}  Adap&ve	  traffic	  monitoring	  
}  Denial-‐of-‐Service	  aMack	  detec&on	  
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E.g.:	  Dynamic	  Access	  Control	  

}  Inspect	  first	  packet	  of	  a	  connec&on	  
}  Consult	  the	  access	  control	  policy	  
}  Install	  rules	  to	  block	  or	  route	  traffic	  

SDN 53 



E.g.:	  Seamless	  Mobility/Migra&on	  

}  See	  host	  send	  traffic	  at	  new	  loca&on	  
}  Modify	  rules	  to	  reroute	  the	  traffic	  
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E.g.:	  Server	  Load	  Balancing	  

}  Pre-‐install	  load-‐balancing	  policy	  
}  Split	  traffic	  based	  on	  source	  IP	  

55!

src=0*!

src=1*!
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E.g.:	  Network	  Virtualiza&on	  
56!

Partition the space of packet headers!

Controller #1! Controller #2! Controller #3!
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OpenFlow	  in	  the	  Wild	  

}  Open	  Networking	  Founda&on	  
}  Google,	  Facebook,	  MicrosoG,	  Yahoo,	  Verizon,	  Deutsche	  Telekom,	  and	  
many	  other	  companies	  

}  Commercial	  OpenFlow	  switches	  
}  HP,	  NEC,	  Quanta,	  Dell,	  IBM,	  Juniper,	  …	  

}  Network	  opera&ng	  systems	  
}  NOX,	  Beacon,	  Floodlight,	  NeMle,	  ONIX,	  POX,	  Frene&c	  

}  Network	  deployments	  
}  Eight	  campuses,	  and	  two	  research	  backbone	  networks	  
}  Commercial	  deployments	  (e.g.,	  Google	  backbone)	  

SDN 57 



Controller Availability 

Controller (N. O.S.) 

Applications Applications Applications 
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Controller Availability 

Controller (N. O.S.) 

Applications Applications Applications 
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Controller Availability 

“control a large force like a small force: divide and conquer” 
     --Sun Tzu, Art of war 

•  How many controllers? 
•  How do you assign switches to controllers? 
•  More importantly: which assignment reduces 

processing time 
•  How to ensure consistency between 

controllers 

Controller (N. O.S.) 

Applications Applications Applications 

Controller (N. O.S.) 

Applications Applications Applications 

Controller (N. O.S.) 

Applications Applications Applications 
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SDN Reliability/Fault Tolerance 

Controller (N. O.S.) 

Applications Applications Applications 

Controller: Single point of 
control 
•  Bug in controller takes 

the whole network down 

Existing network survives 
failures or bugs in code 
for any one devices 
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SDN Reliability/Fault Tolerance 

Controller (N. O.S.) 

Applications Applications Applications 

Controller: Single point of 
control 
•  Bug in controller takes 

the whole network down 
•  Single point of failure 

Existing network survives 
failures or bugs in code 
for any one devices 
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SDN Security 

Controller (N. O.S.) 

Applications Applications Applications 

Controller: Single point of control 
}  Compromise controller 

If one device in the 
current networks are 
compromised the network 
may still be safe 
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SDN Security 

Controller (N. O.S.) 

Applications Applications Applications 

Controller: Single point of control 
}  Compromise controller 
}  Denial of Service attack the 

control channel 
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