
Cristina Nita-Rotaru

CY2550: Foundations of Cybersecurity
Section 03

Crypto Module: Public-key cryptography, Diffie Hellman, RSA, hash functions, integrity and
authenticated encryption, digital signatures, authenticity of public keys, TLS

Outline

} Public-key cryptography
} Diffie Hellman Key Exchange
} RSA Encryption
} Cryptographic hash functions
} Integrity and authenticated encryption
} Digital signatures
} Authenticity of public keys
} TLS

Crypto2

Public Key Cryptography

Limitation of symmetric key crypto

} How do you securely exchange keys with someone?
} Easy(ish) to do if you can meet them in person
} However, the Internet is untrusted

} You can’t exchange shared secrets over an untrusted medium

Alice
Bob

Eve

KAES KAESKAES

4 Crypto

Public Key Cryptography

} Public key cryptography, a.k.a. asymmetric cryptography
} Each principal has two keys: private (secret) and public
} A message encrypted with one key must be decrypted by the other
} Thus, the public key can be sent in-the-clear over the Internet

} Security is based on Very Hard Math Problems
} Fast to verify a given solution for a given instance
} Hard to finds solutions for a given instance in polynomial time

} Many different algorithms that offer different security
properties
} Diffie-Hellman, RSA, Goldwasser-Micali, ElGamal

} Forms the basis for most modern secure communication
protocols
} IPsec, SSL, TLS, S/MIME, PGP/GPG, etc.

5 Crypto

Public Key Encryption

Alice Bob

k k

m c := Enc(k,m) Dec(k,c)

c := Enc(pk,m) Dec(sk,c)

pk sk

Instead of using one key k,
use 2 keys (pk,sk), where

pk is used for encryption,
sk is used for decryption.

pk can be public, and
only sk has to be kept

secret!

That’s why it’s called:
public-key

cryptography

6 Crypto

anyone can lock it

Analogy

Examples padlocks:

the key is needed to unlock

7 Crypto

Use of Public-Key Cryptography

} Public-Key Encryption
} Examples: RSA, ElGamal

} Digital Signatures:
} Authenticate messages

} Examples: RSA, DSA

} Key Exchange
} Protocols to establish a secret key between two parties
} Examples: Diffie-Hellman

} Intuition for all these
} Computation in one direction is “easy”, but “hard” in the reverse
} Hardness assumptions imply that adversary cannot reverse

computation

8 Crypto

A little bit of history
} Diffie and Hellman were the first to publish a paper containing the idea of the

public-key cryptography:

W.Diffie and M.E.Hellman, New directions in cryptography IEEE Trans. Inform. Theory, IT-22, 6, 1976,
pp.644-654.

} A similar idea was described by Ralph Merkle:
} in 1974 he described it in a project proposal for a Computer Security course at UC Berkeley

(it was rejected)
} in 1975 he submitted it to the CACM journal (it was rejected)
(see http://www.merkle.com/1974/)

} 1977: R. Rivest, A. Shamir and L. Adelman published the first construction of public-
key encryption (RSA)

} It 1997 the GCHQ (the British equivalent of the NSA) revealed that they knew it
already in 1973.

9 Crypto

http://www.merkle.com/1974/

Diffie Hellman Key Exchange

Diffie-Hellman Key Exchange (Turing Award 2015)

} Goal
} Share a secret key over a public channel in presence of

eavesdropping adversary

} Really should be called Diffie-Hellman-Merkle
} Ralph Merkle developed the mathematical theories
} Whitfield Diffie and Martin Hellman developed the protocol

} Security is based on the discrete logarithm problem
} Compute k such that 𝑏! = 𝑔 mod p, where b, g, and k are all

integers and p is a large prime
} Possible that no solution exists given arbitrary b and g
} Best known algorithms are exponential time

11 Crypto

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits)
Fix an integer g in {1, …, p}

Alice Bob
choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p)= (ga)b = Ab (mod p)Ba (mod p) = (gb)a =

𝑝, 𝑔, 𝐴 ← 𝑔! 𝑚𝑜𝑑 𝑝

B ← 𝑔" 𝑚𝑜𝑑 𝑝

12 Crypto

Diffie-Hellman Example
Knows Doesn’t Know

p = 23, g = 5

a = 6 b = ?

𝐴 = 𝑔!mod 𝑝
A = 5"mod 23 = 8

B = 19

𝑠 = 𝐵! mod 𝑝
= 19" mod 23 = 2

Knows Doesn’t
Know

p = 23, g = 5

b = 15 a = ?

B = 𝑔# mod 𝑝
= 5$% mod 23
=19
A = 8

𝑠 = A&mod 𝑝
= 8$% mod 23
= 2

Knows Doesn’t
Know

p = 23, g = 5

a = ?, b = ?

A = 8, B = 19

Alice Bob

Calculating s requires solving for a or b,
which is the discrete logarithm problem

Eavesdropper

13 Crypto

Man-in-the-middle attack

As described, the protocol is insecure against active
attacks

Alice BobMiTM

𝐴 ← 𝑔! 𝑚𝑜𝑑 𝑝 𝐴′ ← 𝑔!
!
𝑚𝑜𝑑 𝑝

B ← 𝑔" 𝑚𝑜𝑑 𝑝

a
’

b’
B′ ← 𝑔"

!
𝑚𝑜𝑑 𝑝

𝑔!"
!

𝑔!"
! 𝑔!

!" 𝑔!
!"

Attacker relays traffic from Alice to Bob and reads it in clear

We will see later in the class how to fix this

Crypto

RSA

Public-key Encryption

} Encryption algorithm: Enc(pk, m); decryption Dec(sk, c)
} RSA algorithm invented by Rivest, Shamir, and Adleman

in 1978
} Equivalent system invented by Clifford Cox in 1973, but

GCHQ classified it
} RSA is the dominant public key cryptosystem today

} Algorithm was commercialized by RSA Security
} RSA Security created a certificate authority that eventually

became Verisign

16 Crypto

RSA Algorithm

} Security is based on the difficulty of factoring the product
of primes
} Alice chooses two secret primes p and q, n = pq, 𝜙 𝑛 = (𝑝 −
1)(𝑞 − 1)

} Choose e such that 1 < e < 𝜙(𝑛) , and gcd(e, 𝜙(𝑛)) = 1
} <n, e> is Alice’s public key
} Private key 𝑑 = 𝑒"# mod 𝜙(𝑛); 𝑑 ⋅ 𝑒 = 1 mod 𝜙(𝑛)

} Encryption and decryption
} Given a message M, 0 < M < n
} Compute ciphertext C = Me mod n
} To decipher, compute Cd mod n = (Me mod n)d mod n = Med mod

n = M
} Use Euler’s theorem: x$(&) = 1 mod n17 Crypto

RSA Example

p = 11, q = 7, n = pq = 77, 𝜙(𝑛) = 60
e = 37, d = 13 (ed = 481, ed mod 60 = 1)
If M = 15 then C = Me mod n = 1537 mod 77 = 71
Cd mod n = 7113 mod 77 = 15 = M

18 Crypto

IND-CPA security for Public-Key
Encryption

} In public-key encryption, everyone knows the public key
} That means everyone (including the adversary) can

encrypt any message
} IND-CPA and IND-EAV are equivalent notions of

security!
} Another reason why we demand IND-CPA at a minimum

for symmetric-key encryption

19 Crypto

Plain RSA Encryption

Plain (textbook) RSA encryption:

} public key: <n, e> Encrypt: c ⟵ Memod n

} secret key: < 𝑝, 𝑞, 𝑑 >Decrypt: cd⟶ M mod n

Insecure cryptosystem !! !
} Is not IND-CPA secure and many attacks exist

} Deterministic (public key) encryption is never IND-CPA secure

20 Crypto

Attacks Against RSA

} The length of n=pq reflects the strength
} 700-bit n factored in 2007
} 768 bit factored in 2009

} 1024 bit for minimal level of security today
} Likely to be breakable in near future
} Recommended use of 2048 or 4096 bits

} RSA encryption/decryption speed is quadratic in key
length

Crypto

Computationally Hard Problems

} RSA problem:
} Given public RSA key, decrypt 𝑚(𝑚𝑜𝑑 𝑛 for a random

message m

} RSA assumption:
} Solving the RSA problem is difficult

} Factoring assumption
} If n=pq with p and q primes, cannot factor for large n
} If factoring can be done in polynomial time, then RSA problem

can be solved in polynomial time

22 Crypto

RSA encryption in practice

Never use plain RSA.

RSA in practice

Main questions:
} How should the preprocessing be done?
} Can we argue about security of resulting system?
} How can we randomize it to be IND-CPA secure?

msg
key

Preprocessing

ciphertext

RSA

23 Crypto

PKCS1 mode 2: (encryption)

} Add random pad before the message

} Resulting value is RSA encrypted

} Widely deployed, e.g. in HTTPS, but it is not IND-CPA secure!

} There are newer versions that are secure (e.g., OAEP)

PKCS1 v1.5

02 random pad FF msg

RSA modulus size (e.g. 2048 bits)

16 bits

Crypto

Public Key Crypto Example

} Why bother with the symmetric key?
} Why not just encrypt M with Pa?

} Performance
} Asymmetric crypto is slow, symmetric is

fast
} Use asymmetric for K (which is small)
} Use symmetric for M (which is large)

Alice BobEavesdropper

PaSa PaPa M

M

KAES

Brand new AES
symmetric key

KAESE KAES(M)

E KAES(M) E Pa(KAES)E KAES(M) E Pa(KAES)

Key sharing can be done with a Key
Exchange protocol (e.g., Diffie-

Hellman)

25 Crypto

Cryptographic hash functions

Cryptographic Hash Functions

} Cryptographic hash function transform input data into
scrambled output data
} Arbitrary length input à fixed length output
} Deterministic: H(A) is always the same
} High entropy:

} md5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
} md5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
} md5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

} Collision resistant
} Locating A’ such that H(A) = H(A’) takes a long time
} Example: 221 tries for md5

27 Crypto

Collision-resistant hash functions

28

a hash function
H with output n bits

short H(m)

long m

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

a “collision”collision-resistance

Crypto

Collisions always exist

Crypto 29

domain
range

m

m’

Since the domain is
larger than the range
the collisions have to

exist.

If the range is large
enough, it is

computationally hard to
find collisions.

Examples

Are these hash functions collision resistant?
} H:{0,1}2n -> {0,1}n

} H(x||y) = x XOR y

} H:{0,1}2n -> {0,1}n

} Let p be an n-bit prime
} H(x||y) = x + y mod p

} H: N -> {0,1}n

} Let p be an n-bit prime
} H(x) = ax + b mod p, p prime

30 Crypto

History of hash functions

Crypto31

H is a collision-resistant hash function if it is
“practically impossible to find collisions in H”.

• 1991: MD5
• 1995: SHA1
• 2001: SHA2 -- SHA-256 and SHA-512
• 2004: Team of Chinese researchers found collisions in

MD5
• 2007: NIST competition for new SHA3 standard
• 2012: Winner of SHA3 is Keccak

Well known hash functions

} MD5
} Outputs 128 bits
} Collision resistance totally broken in 2004

} SHA1
} Outputs 160 bits
} Partially broken: method exists to find collisions in 280 tries
} Deprecated

} SHA2 family (SHA-224, SHA-256, SHA-384, SHA-512)
} SHA-224 matches the 112 bit key length of 3DES
} SHA-256, SHA-384, SHA-512 match the key lengths of AES

(128, 192, 256 bits)
} Considered safe

Crypto32 32

SHA3

} 2007: NIST opens competition for new hash functions
} 2008: Submission deadline, 64 entries, 51 make the cut
} 2009: 14 candidates move to round 2
} 2010: 5 candidates move to round 3
} 2011: final round of public comments
} 2012: NIST selects keccak (pronounced “catch-ack”) as

SHA3
} Created by Guido Bertoni, Joan Daemen, Gilles Van Assche,

Michaël Peeters

33 Crypto

Birthday paradox

} If we choose q elements 𝑦!, … 𝑦" at random from
{1,…,N}, what is the probability that there exists i and j
such that 𝑦# = 𝑦$?

• What is the probability that two people
have the same birthday?

• When is this probability higher than
0.5?

N=365
possible

days

34 Crypto

N=106

samples n

Collision probability

Crypto35 35

• If 𝑞 = Θ 𝑁 items, then
probability of collision is
approx. ½

• Birthday paradox
• N = 365, q = 23

• Hash functions
• 𝑁 = 2#$%, 𝑞 = 2&#'

• Implies n/2 level of security
for n-bit hash function in
best case

Security of encryption vs hash functions

} Encryption:
} Size of key determines resilience to brute-force attacks
} A key size of n bits, means 2n work for the attacker to find the

key

} Hash functions:
} Size of the output of the hash function determines security to

finding collisions
} Birthday paradox tells us that for a hash function with on

output of n bits, the work that an attacker needs to do to find
a collision is 2n/2

For comparable security a block cipher of 128 bits must
be paired with a hash function of 256 bits!

Crypto36

Applications of hash functions

} Password authentication, store a hash of the password
} We will see more about this in about 2 weeks when we will

talk about authentication and passwords

} Integrity
} Communication
} Storage

Crypto37

Integrity and authenticated encryption

Integrity

} Active adversaries
} Can modify messages/ciphertexts in transit
} Encryption alone (even IND-CPA secure) does not guarantee

integrity!

} Protect message integrity
} Message received by Bob is the original one sent by Alice
} Message was not modified by adversary

} Scenarios
} Secure communication on network
} Protect files stored on disk

} Can be achieved in symmetric-key or public-key settings

Crypto

Message authentication

} MAC = message authentication code

Crypto 40

Alice B
ob

(m, t=MACk(m))

Adversary can see (m, t=MACk(m))

She should not be able to compute a
valid MAC t’ on any other message
m’.

k k

m
verifies if
t=MACk(m)

- Message was
sent by Alice

- Message was not
modified

Verk(m, t) = 1 if
MACk(m)=t

Integrity requires a secret key

} Attacker can easily modify message m and re-compute the
hash.

} Hash designed to detect random, not malicious errors.

Alice Bob
message m tag

Generate MAC:
t ¬ H(m)

Verify MAC:
Ver(m, t) = `yes’?

41 Crypto

Message authentication security

} Properties
} Correctness: If 𝑡 = 𝑀𝐴𝐶! 𝑚 , then 𝑉𝑒𝑟! 𝑚, 𝑡 = 1
} MAC		is a deterministic function
} The output of MAC	 is fixed size (n bits), independent of the

length of the input message

} Security (unforgeability)
} If an attacker has many pairs of messages and integrity tags, he

cannot compute a new tag on a message
} If A is given 𝑚#, 𝑡# , … (𝑚), 𝑡)) then A cannot output (𝑚*, 𝑡′)

such that: 𝑉𝑒𝑟! 𝑚′, 𝑡′ = 1 and		𝑚* ∉ {𝑚#, …𝑚+}

42 Crypto

Example: protecting system files

Later malware infects system and modifies system files

User reboots into clean OS and supplies his password
} Then: secure MAC ⇒ all modified files will be detected

Crypto43 43

Suppose at install time the system computes:

F1

t1 =
MAC(k,F1)

F2

t2 =
MAC(k,F2)

Fn

tn =
MAC(k,Fn)

⋯ k derived from
user’s password
(e.g., using a
hash)

filename filename filename

HMAC: Design a MAC from a hash function

Crypto 44

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h>
k⨁opadk1

k2

• Uses Merkle-Damgaard construction (chaining a collision-resistant hash
function)

• Output: last hashed block (no need to recover the message)
• Most widely used MAC on the Internet

Replay attacks

45 Crypto

Authenticated encryption

} Combines confidentiality and integrity
} Security properties

} Confidentiality: ciphertext does not leak any information about
the plaintext

} Integrity: attacker cannot create new ciphertexts that decrypt
properly

} Decryption returns either
} Valid messages
} Or invalid symbol (when ciphertext is not valid)

46 Crypto

Authenticated Encryption: combining
MAC and ENC

Encryption key k1. MAC key = k2

Option 1: (SSH)

Option 2: (SSL)

Option 3: (IPsec)

Crypto47 47

msg m

msg m

Enc(k1, m)
tag

MAC(k2, c)
msg m

Enc(k1 , m)
tag

MAC(k2, m)

Enc-then-MAC

Enc-and-MAC

msg m tag
MAC(k2, m) Enc(k1 , mlltag)

MAC-then-Enc

c

c
Always
Secure!

Homewo
rk

Padding
oracle
attacks

Digital signatures

Digital signature schemes

Crypto49

Alice

k k

Alice Bob

(m, t=Signsk(m))

sk pk

m message

(pk,sk)

Verpk(m) є
{yes,no}

Public key equivalent of MAC

Digital signatures and hash functions

} What can you infer about a signed message?
} The holder of Sa must have produced the signature
} The message was not modified, otherwise the hash would not match
} Assuming hash is collision resistant

50 50

Alice Bob

PaSa Pa

M

H(M)M’

H(M’) ?= H(M)

M, Sign Sa(H(M))

Crypto

Advantages of signature schemes

Digital signatures are equivalent of MACs in public-key
world

Provide message integrity
Additional properties (compared to MACs):

1. Publicly verifiable: anyone with PK can verify (not for MAC)

2. Transferable: can be transferred to another user and verified

3. Provide non-repudiation: cannot deny that you signed a message

Crypto51 51

RSA signature
Before computing the RSA function – apply hash function H.

Crypto

N = pq, such that p and q are large random
primes
e is public key such that gcd(e, φ(N)) = 1
d is secret key such that ed = 1 (mod φ(N))
Sign: ZN* → ZN* is defined as:

Sign(m) = σ = H(m)d mod N.

Ver is defined as:
Ver(m,σ) = yes iff σe = H(m) (mod N)

Hash-and-sign
paradigm

Encryption vs. signatures

Encryption

} What does encryption give you?
} Confidentiality – only the holder of

the private key can read the
message

} What does authenticated
encryption give you in addition?
} Integrity – if the ciphertext is

modified, it will no longer decrypt
properly

} What does encryption not give
you?
} Authentication – you have no idea

who used your public key to
encrypt the message

Digital Signatures

} What do signatures give you?
} (Weak) Authentication – only the

holder of the private key could
have signed the message

} Integrity – if the message is
modified, the signature will be
invalid

} What do signatures not give you?
} Confidentiality – the message is not

encrypted, it’s public

53 Crypto

Authenticity of public keys.

Authenticity of Public Keys

Crypto55 55

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private
key

Alice
Bob

public
key

Bob’s key

PKI: Public Key Infrastructure

} Public announcement or public directory
} Risks: forgery and tampering

} Public-key certificate
} Signed statement specifying the key and identity

} SigCharlie(“Bob”, PKBob)

} Could Bob sign his own certificate?
} Web of trust (PGP): users signing each other’s keys

} Common approach: certificate authority (CA)
} An agency responsible for certifying public keys
} It generates certificates for domain names (example.com) on

the web

56 Crypto

Trusted Certificate Authorities

57 57Crypto

Warning

Crypto

CA Hierarchy or PKI

} Browsers, operating systems, etc. have trusted root
certificate authorities
} Firefox 3 includes certificates of 135 trusted root CAs

} A Root CA signs certificates for intermediate CAs, they
sign certificates for lower-level CAs, etc.
} Certificate “chain of trust”

} SigVerisign(“neu.edu”, PKNEU), SigNEU(“ccs.neu.edu”, PKCCS)

} CA responsibilities
} Verify that someone buying a cert for a domain (e.g.,

example.com) actually controls the domain
} Verify that buyer knows the secret key associated with the

public key
} Protect its own secret key

59 Crypto

Comodo

Crypto 60

What if CA secret key is
compromised?

Certificate Hierarchy - PKI

Root
CA

Intermediat
e CA

Users

SigCA(“neu.edu”, PKNEU)

SigNEU(“ccs.neu.edu”, PKCCS)

PKCA ,SKCA

PKCA

.edu

neu.e
du

ccs.neu.ed
u

61 Crypto

Acquiring a Certificate

BofA

Verisign
PBofA

CSR
bofa.com
PBofA

1. Generate a new keypair

2. Generate a Certificate
Signing Request (CSR).

Contains BofA’s
details, the DNS
name for the cert,
and PBofA

3. Verify that the requestor
owns the domain in the
CSR

4. Generate a new certificate
using the data in the CSR,
sign it with the CA’s private
key

SBofA SVerisign

- Serial number
- Owner’s

domain
- Owner’s public

key
- CA public key
- Expiration date

Crypto

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

0c:00:93:10:d2:06:db:e3:37:55:35:80:11:8d:dc:87
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert SHA2 Extended Validation Server
CA

Validity
Not Before: Apr 8 00:00:00 2014 GMT
Not After : Apr 12 12:00:00 2016 GMT

Subject: businessCategory=Private
Organization/1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.2=Delaware/serialNumber=5157550/street=548
4th Street/postalCode=94107, C=US, ST=California, L=San Francisco, O=GitHub, Inc., CN=github.com

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus:

00:b1:d4:dc:3c:af:fd:f3:4e:ed:c1:67:ad:e6:cb:

X.509 Certificate

Issuer: who generated this
cert? (usually a CA)

Certificates expire Used for revocation

• Subject: who owns this cert?
• This is Github’s certificate
• Must be served from

github.com

Github’s public key

63 Crypto

Recover from secret key compromise

} Revocation is very important
} Many valid reasons to revoke a certificate

} Private key corresponding to the certified public key has been
compromised

} User stopped paying his certification fee to the CA and the CA
no longer wishes to certify him

} CA’s certificate has been compromised!
} Methods

} Certificate expiration
} Certificate revocation

} Certificate Revocation Lists (CRL)
} Online Certificate Status Protocol (OCSP)

64 Crypto

Expiration

} Certificate expiration is the simplest,
most fundamental defense against
secret key compromise
} All certificates have an expiration date
} A stolen key is only useful before it

expires
} Ideally, all certs should have a short

lifetime
} Months, weeks, or even days

} Problem: most certs have multi-year
lifetimes
} This gives an attacker plenty of time to

abuse a stolen key

Validity
Not Before: Apr 8

00:00:00 2014 GMT
Not After : Apr 12

12:00:00 2016 GMT

X.509 Certificate

Crypto

Revocation

} Certificate revocations are another fundamental mechanism
for mitigating secret key compromises
} After a secret key has been compromised, the owner is supposed to

revoke the certificate

} CA’s are responsible for hosting databases of revoked
certificates that they issued

} Clients are supposed to query the revocation status of all
certificates they encounter during validation
} If a certificate is revoked, the client should never accept it

} Two revocation protocols for TLS certificates
1. Certificate Revocation Lists (CRLs): download list of revoked

certificated
2. Online Certificate Status Protocol (OCSP): API to query status of

certificate

66 Crypto

TLS

What Is SSL / TLS?

} Secure Sockets Layer and
Transport Layer Security protocols
} Same protocol design, different crypto algorithms

} De facto standard for Internet security
} “The primary goal of the TLS protocol is to provide privacy

and data integrity between two communicating applications”

} Deployed in every Web browser; alsoVoIP, payment
systems, distributed systems, etc

Crypto68 68

SSL / TLS Guarantees

} End-to-end secure communications at transport layer in
the presence of a network attacker
} Attacker completely owns the network: controls Wi-Fi, DNS,

routers, his own websites, can listen to any packet, modify
packets in transit, inject his own packets into the network

} Properties
} Authentication of server (optionally, client authentication)
} Confidentiality of communication
} Integrity against active attacks

Crypto69 69

History of the Protocol

} SSL 1.0 – internal Netscape design, early 1994
} Lost in the mists of time

} SSL 2.0 – Netscape, Nov 1994
} Several weaknesses

} SSL 3.0 – Netscape and Paul Kocher, Nov 1996
} TLS 1.0 – Internet standard, Jan 1999

} Supersedes SSL: SSL is known to be insecure
} Based on SSL 3.0, but not interoperable (uses different

cryptographic algorithms)
} TLS 1.1 – Apr 2006
} TLS 1.2 – Aug 2008
} TLS 1.3 – Aug. 2018

Crypto70

TLS Basics

} TLS consists of two protocols
} Handshake protocol

} Session initiation by client
} Uses public-key cryptography to establish several shared secret

keys between the client and the server
} Server must have an asymmetric keypair

} X.509 certificates contain signed public keys rooted in PKI

} Record protocol
} Uses the secret keys established in the handshake protocol to

protect confidentiality and integrity of data exchange between
the client and the server

Crypto71

TLS Handshake Protocol

} Runs between a client and a server
} Client = Web browser
} Server = website

} Negotiate version of the protocol and the set of
cryptographic algorithms to be used
} Interoperability between different implementations

} Authenticate server
} Use digital certificates to learn server’s public keys and verify

the certificate
} Client authentication is optional

} Use public keys to establish a shared secret

Crypto72

Handshake Protocol Structure

Crypto73

ClientHello

ServerHello
ServerKeyExchange

CertificateVerify

ClientKeyExchange

Finished
Finished

Agree on crypto
algorithms
Server certificate

Send session key
encrypted under
server’s public key Extract

session keys
• Common

algorithms
• Session key

Record Protocol Structure

Crypto74

Encryption (m)
• Mac-then-Enc using

keys derived from the
session key

• MAC uses a counter to
prevent replay attacks

• Supports CBC-AES and
HMAC-SHA1

• Provides authenticated
encryption

Decryption(c)

First decrypt, then check
MAC

Encryption (m)

Similar algorithm, but
needs different keys (set of
keys for each
communication direction)

Decryption(c)

First decrypt, then check
MAC

