
Cristina Nita -Rotaru

7680 : Distributed Systems

Quorums. Paxos. Viewstamped replication. BFT.

Required reading for this topicÉ

! Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. F. B. Schneider

! Quorums

! Quorum Systems. Chapter in The Encyclopedia
of Distributed Computing, D. Malkhi

! Paxos

! PaxosMade Simple, L. Lamport
! Paxosfor System Builders, J. Kirsch and Y. Amir

(the technical report) Ðneed for project

! The Part-time Parliament, L. Lamport

! ViewstampedReplication Revisited, B. Liskovand J.
Cowling

! From Viewstampedreplication to Byzantine
replication. B Liskov.

!"#$"%&'()*+#&',-'(./01

1: Quorums

The State Machine Approach

! The system consists of clients that invoke commands
on deterministic state machines

! The state of a state machine depends only on its
initial state and the sequence of (deterministic)
commands it has been given

! All non-faulty state machines, being deterministic, will
give the same response to a command

!"#$"%&'()*+#&',-'(./02

How it works É

! All replicas start in the same initial state
! Every replica apply operations in the same order
! All operations must be deterministic
! All replicas end up in the same state

!"#$"%&'()*+#&',-'(./03

Consensus

4Each process sends its value
(proposal) to all the other
processes, all processes have the
same set they can make a
decision

4Each process sends its value
(proposal) to a leader which
makes the decision and informs
the other processes

!"#$"%&'()*+#&',-'(./05

Challenges

! Can nodes trust each other
! Can a node crash and/or recover
! Can a network partition occur
! Can messages be delayed or lost
! How to detect that

! processes crashed
! network partitions
! messages are lost

!"#$"%&'()*+#&',-'(./06

Crash, Recovery, and Network Partition

! Process crashes: the leader may not have enough values
to reach a decision

! Network partition: leader may not have enough values,
some components will have no leaders and have to select
one

! Leader crashes: if it crashes after deciding but before
announcing results everybody is blocked

! Process or leader recovers: they will not know what they
were doing (unless they write some information on the
disk)

!"#$"%&'()*+#&',-'(./07

Asynchronous Communication

! We know we can not guarantee both safety and liveness
! Since we can not accurately detect failures, we can

proceed with only a sufficient number of values collected
! What if a process proposes values after a decision was

already made
! We can have more than one leader active for some time

!"#$"%&'()*+#&',-'(./08

Process Groups Approach

! One way of building distributed
fault-tolerant systems by
organizing them in a group:
! Ensure group membership
! Ensure group multicast, with

different ordering properties.

! Easier to work with when
providing in the form of a toolkit

!"#$"%&'()*+#&',-'(./09:

Limitations of Process Groups Approach

! Need to respond to leader failure
! Costly agreement on membership

! Virtual synchrony: simplify recovery from partitioned
views

! Servers need to monitor for failures (correct but slow
participants may be excluded)

! Reconfiguration

!"#$"%&'()*+#&',-'(./099

Quorum Systems

! In law, a quorum is the minimum number of members of a
deliberative body necessary to conduct the business of
that group

! When quorum is not met, a legislative body cannot hold a
vote, and cannot change the status quo

!"#$"%&'()*+#&',-'(./091

Quorum Systems

! Increase availability and efficiency of replicated services
! Availability : Operations succeed in spite of failures;

quorum systems can be defined to tolerate both benign
and arbitrary/malicious failures

! Efficiency : Can significantly reduce communication
complexity, do not require all servers in order to perform
an operation, requires a subset of them for each
operation

!"#$"%&'()*+#&',-'(./09;

<$=>?@6A -?*B

0C?(&?>(#D(E$#F?&&#$&(D$#%(GC=FC(*(H*$=*IJ?((=&(!"#$ %"&>(
=K>?$&?F>(>C?(&?>(#D(E$#F?&&#$&(>#(GC=FC(*(H*$=*IJ?(G*&(%!&''"('

Using Quorums to Read and Write

!"#$"%&'()*+#&',-'(./092

Shared Variable with Quorums

! Use a quorum system to implement a multi-reader multi-
writer shared variable, replicated across n servers

Write:
! Client queries each server in some quorum (writing

quorum) to obtain a set A of value/timestamp pairs
! Client chooses a timestamp greater than the highest value

in the set A and updates the value and the timestamp at
each server in the writing quorum

!"#$"%&'()*+#&',-'(./093

Shared Variable with Quorums (II)

Read:
! Client queries each server in a quorum to obtain a set A

of value/timestamp
! Then chooses the pair with the highest timestamp

! For both read and write each server updates its local
variable and timestamp to the received values, only if
received timestamp is greater than the one they had for
that value

!"#$"%&'()*+#&',-'(./095

Replication with Quorums

! Replicated data items have AþversionsAÿ, and these are
numbered
! I.e. canAût just say AþXp=3Aÿ. Instead say that Xp has timestamp

[7,q] and value 3
! Timestamp must increase monotonically and includes a

process id to break ties

!"#$"%&'()*+#&',-'(./096

Read Operation

! Send request and wait until Qr (read quorum) processes
reply

! Then use the value with the largest timestamp
! Break ties by looking at the process id
! For example

! [6,x] < [9,a] (first look at the AþtimeAÿ)
! [7,p] < [7,q] (but use process id as a tie-breaker)

!"#$"%&'()*+#&',-'(./097

Write Operation

! When a process initiates a write, it does not know if it
will succeed in updating a quorum (writing quorum) of
processes
! Need to use a commit protocol

! Moreover, must implement a mechanism to determine the
version number as part of the protocol.

!"#$"%&'()*+#&',-'(./098

Write Operation: Details

!" #$%&%'()*+(),$-*(.)Aþ/),%012)1-3()*%)'(*)456Aÿ

7" 8(9:($') Aþ1%;3Aÿ*+()<=$-=:1()=>=-?'*)$(=2'@)&0*)*+()$(A0('*)
-?*%)=)A0(0()%B)&(?2-?>),$-*('@)=?2)'(?2):=;3.

AþCD"))/)&$%&%'()*-9()E*@&-2FAÿ

G($(@)*-9()-')=)1%>-;=1);1%;3"))#-2)-')*+()9(9:($Aû')%,?)&-2

6" /?-*-=*%$);%11(;*')$(&1-('@)+%&-?>)*%)$(;(-<()H, I%$)9%$(J)

! H, CD'

K%9&0*()9=L-909)%B)
&$%&%'(2)E*@&-2F)&=-$'"

K%99-*)=*)*+=*)*-9(

M:%$*

N)H, CD'

!"#$"%&'()*+#&',-'(./01:

Quorum constructions: Weighted
Majorities

! Assume that every server s in the universe U is assigned a
number of votes ws.
Then, the set system

!)*+,* " -.* #/ $, %/ 0*123#/ $ - %/ 4
is a quorum system called Weighted Majorities.

! When all the weights are the same, simply call this the system
of Majorities

!"#$"%&'()*+#&',-'(./019

Quorum constructions: Grid

! Previous example was not
very efficient, requiring more
than half of the servers to be
contacted

! Arrange servers into a logical
grid, and use rows/columns for
writes/reads, respectively

! Can cut the number of servers
contacted in an operation

! Can change row/column sizes
to optimize for write-
heavy/read-heavy scenarios

n n+

$?*B

G$=>?

!"#$"%&'()*+#&',-'(./011

2: Paxos

Goals of Paxos

! Provides a solution to consensus (agreement)
! Safety

! Only a value that has been proposed may be chosen
! Only a single value is chosen
! A node never learns that a value has been chosen unless it

actually has been

! Liveness
! Some proposed value is eventually chosen
! If a value has been chosen, a node can eventually learn the

value

!"#$"%&'()*+#&',-'(./012

The Model

! Messages:
! Can take arbitrarily long to be delivered (Asynchronous

communication)
! Can be duplicated
! Can be lost

! Nodes:
! Operate at arbitrary speed
! May fail by stopping, and may restart
! Must remember what they were doing (in case they fail and

restart, they have to know what to do next)

!"#$"%&'()*+#&',-'(./013

Paxos: Main Idea

! One node decides to be the leader
! Leader proposes a value and asks the other nodes to

accept it
! Leader announces result to the rest of the nodes or tries

again if he could not have reached a decision

!"#$"%&'()*+#&',-'(./015

C

0

1

2

request prepare accept reply

)*+#&(LK(*(M">&C?JJ

D(&?$H?$&(F*K(F$*&CN(DO9(=K(>C=&(?+*%EJ?

!"#$"%&'()*+#&',-'(./016

Terminology

! In any consensus nodes perform three different types of
actions:
! Propose values
! Accept values
! Learn values

! We can classify nodes as:
! Proposer: proposes a value and solicits acceptance from

acceptors
! Acceptor: accepts a value
! Learner: finds out the outcome

! A node can have all three roles

!"#$"%&'()*+#&',-'(./017

Need for Multiple Acceptors

! Assume a single node A acts as acceptor
! Each proposer sends its value to A
! A decides on one of the values
! A announces its decision to all learners

! What can go wrong?
! If the acceptor fails, the protocol will block since nobody will

decide

! Solution: Use multiple acceptors

!"#$"%&'()*+#&',-'(./018

Solution with Multiple Acceptors

! Each proposer proposes to all acceptors
! Each acceptor accepts the first proposal it receives and

rejects the rest
! If the proposer receives positive replies from a majority

of acceptors, it chooses its own value (thatAûs what he
proposed)

! Proposer sends chosen value to all learners
! What if multiple proposers propose simultaneously so

there is no majority accepting?

!"#$"%&'()*+#&',-'(./0;:

Dealing with Multiple Proposals

! Proposals are ordered by proposal number
! We can allow multiple proposals but we must guarantee

that all chosen proposals have the same value
! Each acceptor may accept multiple proposals

! If a proposal with value v is chosen, all higher-numbered
proposals have value v

!"#$"%&'()*+#&',-'(./0;9

Invariant

! For any v and n, if a proposal with value v and number n is
issued then there is a set S consisting of a majority of
acceptors such that:
! No acceptor in S has accepted any proposal numbered less

than n, or
! v is the value of the highest-numbered proposal among all

proposals numbered less than n accepted by the acceptors in S

!"#$"%&'()*+#&',-'(./0;1

How to Ensure the Invariant

! Can not predict the future, what acceptor will accept
! Can obtain promise from acceptors with respect to what

they will accept:

! AþThe proposer requests that the acceptors not accept
any more proposals numbered less than nAÿ

!"#$"%&'()*+#&',-'(./0;;

Issuing Proposals

! A proposer chooses a new proposal number n and sends
a request to a set of acceptors, asking them:
! Promise to never accept a proposal numbered less than n
! Send the proposal with the highest number less than n that it

has accepted, if any.

! If the proposer receives the requested responses from a
majority of acceptors it can issue a proposal with number
n and value v, where v is:
! the value of the highest-numbered proposal among the

responses, or
! any value selected by the proposer if the responders reported

no proposals.
!"#$"%&'()*+#&',-'(./0;2

Optimization

! Given that an acceptor receives a request numbered n,
but it has already responded to a request numbered
greater than n, thereby promising not to accept any new
proposal numbered n.

! Acceptor can ignore
! such a request
! a request for a proposal it has already accepted

!"#$"%&'()*+#&',-'(./0;3

Accepting Proposals

! Phase 1 (Prepare)
! A proposer selects a proposal number n and sends a Prepare_Request<n> to a

majority of acceptors.

! If an acceptor receives a Prepare_Request<n> with n greater than that of any
Prepare_Requestto which it has already responded, then it responds to the
request with an ACK which promises not to accept any more proposals
numbered less than n and includes the highest-numbered proposal (if any) that it
has accepted.

! Phase 2 (Accept)
! If the proposer receives an ACK to its Prepare_Request<n> from a majority of

acceptors, then it sends an Accept_Request<, n, v> to each of those acceptors,
where v is the value of the highest-numbered proposal among the responses, or
is any value if the responses reported no proposals.

! If an acceptor receives an accept request for a proposal numbered n, it accepts
the proposal unless it has already responded to a prepare request having a
number greater than n.

!"#$"%&'()*+#&',-'(./0;5

Learning about Accepted Proposals

! Lower cost by using a leader for learners
! Acceptors send their accepts to the leader for the

learners
! It is possible that a value has been accepted and some

learners did not learn it
! They will learn it when a new proposal is issued

!"#$"%&'()*+#&',-'(./0;6

Need for one Leader for Proposers

! Scenario where there will be no progress with two
proposers

! Proposer p completes phase 1 for a proposal number n1
! Proposer q then completes phase 1 for a proposal

number n2 > n1

! Proposer pAûs phase 2 accept requests for a proposal
numbered n1 are ignored because the acceptors have all
promised not to accept any new proposal numbered less
than n2

! Proposer p then begins and completes phase 1 for a new
proposal number n3 > n2, causing the second phase 2
accept requests of proposer q to be ignored!"#$"%&'()*+#&',-'(./0;7

Leader

! One leader, itAûs the leader for the proposers and for the
learners: issues proposals and informs all learners of the
outcome

! How to select leader: FLP implies that to select a leader
we need to use timeouts or randomization

!"#$"%&'()*+#&',-'(./0;8

Implementation: Node states

! Acceptor:
! na, va: highest accepted proposal number and its corresponding

accepted value
! np: highest proposal number seen

! Proposer:
! myn: the current proposal number

!"#$"%&'()*+#&',-'(./02:

Proposer Algorithm for Value v

select my n > n p

send PREPARE(myn) to all nodes

if received PREPARE_OK(n a, v a) from majority then

va = v a with highest n a, or choose own v

otherwise
send ACCEPT (n a, v a) to all

if received ACCEPT_OK(n a) from majority then
send DECIDED(v a) to all

!"#$"%&'()*+#&',-'(./029

If received PREPARE(n)

If n > np

np= n
send PREPARE_OK (n a,v a)

If received ACCEPT(n, v)
If n >= n p

na = n
va = v

send ACCEPT_OK

Acceptor Algorithm

!"#$"%&'()*+#&',-'(./021

C

0

1

2

request prepare accept reply

Optimization

D(&?$H?$&(F*K(F$*&CN(D(O(9(=K(>C=&(?+*%EJ?

!"#$"%&'()*+#&',-'(./02;

Recovery Case

! If leader fails, new leader is elected
! New leader must learn the outcome of all pending

requests
! For all pending requests, the leader sends accept

messages
! New leader sends a sequence n
! Every nodes sends a higher ni representing proposals it

has ordered or ackd
! Leader collects f+1 responses, eliminates duplicates,

selects proposals with highest number and broadcasts it
to everybody, computes also the list of missed messages

!"#$"%&'()*+#&',-'(./022

Questions

! What if more than one leader is active and issues two
different proposal numbers, can both leaders see a
majority of Prepare_Ok?

! What if leader fails while sending accept?
! What if a node fails after receiving Accept?
! What if a node fails after sending Prepare_Ok?

!"#$"%&'()*+#&',-'(./023

3: Viewstamped replication

PJ=B?&(IQ(.'(R=&S#H

Viewstamped replication

! Problem it solves: replication protocol
! Model:

! Failstopfailures
! Asynchronous communication

! Uses quorums and ideas from 2PC
! 2f+1 replicas to tolerate f failures
! Operations must intersect at at least one replica
! Availability for both reads and writes
! Read and write quorums of f+1 nodes

! Appeared in PODC 1988, SOSP 1991, independent
from Paxos.

!"#$"%&'()*+#&',-'(./026

H0%$09'

Servers

Clients

!")O*=*(. … 7")O*=*(. … 6")O*=*(. …

!"#$"%&'()*+#&',-'(./027

H0%$09'

Servers

Clients

… … …A A

4
!")O*=*(. 7")O*=*(. 6")O*=*(.

!"#$"%&'()*+#&',-'(./028

H0%$09'

Servers

Clients

… …A …A

4
!")O*=*(. 7")O*=*(. 6")O*=*(.

!"#$"%&'()*+#&',-'(./03:

Concurrent Operations

Servers

…A …A B …BB A

!")O*=*(. 7")O*=*(. 6")O*=*(.

Clients

!"#$"%&'()*+#&',-'(./039

Overview

! Replicas must execute operations in the same order
! Implies replicas will have the same state, assuming

! replicas start in the same state
! operations are deterministic

! Uses a primary to order operations
! Uses views to address primary failures, system moves

through a sequence of views
! Primary runs the protocol
! Replicas watch the primary and do a view change if it

fails

!"#$"%&'()*+#&',-'(./031

Replica State

! A replica id i (between 0 and N-1)
! Replica 0, replica 1, É

! A view number v#, initially 0
! Primary is the replica with id

i = v# mod N

! A log of <op, op#, status> entries
! Status = prepared or committed

!"#$"%&'()*+#&',-'(./03;

replica 2

replica 1

replica 0

Normal Case

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

Q F#%%=>>?B7

Q F#%%=>>?B7

Q F#%%=>>?B7

!"#$"%&'()*+#&',-'(./032

replica 2

replica 1

replica 0

Normal Case

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

Q F#%%=>>?B7

!"#$"%&'()*+#&',-'(./033

replica 2

replica 1

replica 0

Normal Case

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

!"#$"%&'()*+#&',-'(./035

replica 2

replica 1

replica 0

Normal Case

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A F#%%=>>?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

!"#$"%&'()*+#&',-'(./036

View Changes

! Used to mask primary failures
! Replicas monitor the primary

! Client sends request to all

! Replica requests next primary to do a view change

!"#$"%&'()*+#&',-'(./037

Correctness Requirement

! Operation order must be preserved by a view change

! For operations that are visible
! executed by server
! client received result

! An operation could be visible if it prepared at f+1 replicas
! this is the commit point

!"#$"%&'()*+#&',-'(./038

View Change

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

!"#$"%&'()*+#&',-'(./05:

View Change

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

4

!"#$"%&'()*+#&',-'(./059

View Change

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

4

!"#$"%&'()*+#&',-'(./051

View Change

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. T
#$-9=$Q. !
S%>.

P-(,. 6
#$-9=$Q. R
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

4
<-(,;+=?>()T

!"#$"%&'()*+#&',-'(./05;

View Change

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. T
#$-9=$Q. !
S%>.

P-(,. T
#$-9=$Q. !
S%>.

client 1

client 2

A E$?E*$?B8

Q F#%%=>>?B7

A E$?E*$?B8

Q F#%%=>>?B7

Q F#%%=>>?B7

4

!"#$"%&'()*+#&',-'(./052

Double booking

! Sometimes more than one operation is assigned the same
number
! In view 3, operation A is assigned 8
! In view 4, operation B is assigned 8

! Viewstamps
! op number is <v#, seq#>

!"#$"%&'()*+#&',-'(./053

Example

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. T
#$-9=$Q. !
S%>.

P-(,. T
#$-9=$Q. !
S%>.

client 1

client 2

Q F#%%=>>?B7

Q F#%%=>>?B7

Q F#%%=>>?B7

A E$?E*$?B84

!"#$"%&'()*+#&',-'(./055

Example

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. T
#$-9=$Q. !
S%>.

P-(,. T
#$-9=$Q. !
S%>.

client 1

client 2

Q F#%%=>>?B7

Q F#%%=>>?B7

Q F#%%=>>?B7

A E$?E*$?B8

B E$?E*$?B8

!"#$"%&'()*+#&',-'(./056

Example

replica 2

replica 1

replica 0

P-(,. 6
#$-9=$Q. R
S%>.

P-(,. T
#$-9=$Q. !
S%>.

P-(,. T
#$-9=$Q. !
S%>.

client 1

client 2

Q F#%%=>>?B7

Q F#%%=>>?B7

Q F#%%=>>?B7

A E$?E*$?B8

B E$?E*$?B8

&$(&=$()U@V@T

B E$?E*$?B8

!"#$"%&'()*+#&',-'(./057

Additional Issues

! State transfer
! Garbage collection of the log
! Selecting the primary

!"#$"%&'()*+#&',-'(./058

Improved Performance

! Lower latency for writes (3 messages)
! Replicas respond at prepare
! client waits for f+1

! Fast reads (one round trip)
! Client communicates just with primary
! Leases

! Witnesses (preferred quorums)
! Use f+1 replicas in the normal case

!"#$"%&'()*+#&',-'(./06:

Summary so far É

! State machine replication: approach
to implementing fault-tolerant
services

! Process groups: membership and VS
! Quorums: no membership, but

leaders (or view), each operation
requires a quorum,

! Paxosand VR
! Approaches that rely on quorums for

consensus and replication
! One can use Paxosto further build a

state machine replication

!"#$"%&'()*+#&',-'(./069

4: Byzantine replication

Byzantine -Resilient Replication

! How to design replication protocols that do not block
and can tolerate malicious participants

! Use ideas from both Byzantine agreement and replication
protocols (ViewstampedReplication)

! Ensure safety and liveness

!"#$"%&'()*+#&',-'(./06;

BFT: Assumptions

! Provides safety without synchrony: ensures correct
replies in spite of malicious servers

! Assumes eventual time bounds for liveness: messages will
make it when network is stable

!"#$"%&'()*+#&',-'(./062

T&&"%?&(*&QKFC$#K#"&(F#%%"K=F*>=#K(
D#$(&*D?>Q

BFT: Assumptions

! Servers can be malicious, arbitrary behavior, f malicious
servers

! Failures are independent.
! Crypto options

! Digital signatures
! HMACs, requires n2 symmetric keys

!"#$"%&'()*+#&',-'(./063

BFT: Overview

! Deterministic replicas start in same state
! Replicas execute same requests in same order
! Correct replicas produce identical replies
! Uses a leader to coordinate the protocol; each leader

associated with a view
! Ensure ordering is not easy!
! What to do when the leader fails?

!"#$"%&'()*+#&',-'(./065

Dealing with Malicious Behavior

! Require 2f+1 out of 3f+1 participants to agree at each
step

! This ensures that any 2 sets of 2f+1 will intersect in a
correct replica

! Require at each step a proof that the 2f+1 agreed on the
issue to ensure safety

! When leader (primary) fails, new leader (view) elected

!"#$"%&'()*+#&',-'(./066

Client -Server Interaction

! Client submits a request to the primary
! If timeout occurs, suspects the primary and sends to

every server
! Servers order the request
! Client waits for answers from servers. How many

identical answers should a client wait for?

!"#$"%&'()*+#&',-'(./067

!"#$%&'()%*+,$-'./0(.'.$)0$1'$23+-+()''&$
)4+)$+)$,'+.)$0('$*0--'*)$.'-5'-$-')3-('&$
)4'$ *0--'*)$5+,3' 6

BFT: Components

! Normal case operation:
! primary is not faulty (does not fail and it is not

malicious)
! View changes:

! how to deal with view changes
! Garbage collection:

! when it is time to garbage collect information
maintained by each server

!"#$"%&'()*+#&',-'(./068

Safety and Liveness

! Safety:
! ensure ordering of requests within a view and

across view
! Liveness:

! there is progress at each step, including selecting a
new leader

!"#$"%&'()*+#&',-'(./07:

BFT: Normal Case

! Primary goal of normal case is to ensure ordering of
requests within a view; also has a phase that works in
combination with the view change protocol

! Three phases:
! pre -prepare assigns order to requests
! prepare ensures servers agree on order within views
! commit ensures servers agree on order across views

! Messages are logged and authenticated

! Matching means: same view, sequence numbers, and
message digest

!"#$"%&'()*+#&',-'(./079

Normal Case Details

!"#$"%&'()*+#&',-'(./071

! UJ=?K>(5 &?KB&("# 7$89:;<:=>?0?)?*@ F(>#(>C?(6!&7#!8'(
@#O#E?$*>=#KN>O>=%?&>*%EA

!)$=%*$Q(6 *&&=VK&(&?W"?KF?((>#(7* *KB(&?KB&(
8A9: BA9:AC9:?5?(?D@ E(>#(#>C?$($?EJ=F*&N(H(=&(>C?(F"$$?K>(H=?GX(
"K=W"?(=B?K>=D=?$(=&(V=H?K(IQ(($+(&$5

! LD(&?$H?$(&*+**'/). >C?(%?&&*V?N(=>(&?KB&(8A9:AC9:?5?(?&?%@=(>#(
#>C?$($?EJ=F*&'(@B(=&(C*&C(#D(>C?($?W"?&>A'(P=VK*J&(>C*>(&*V$??&(>#(
*&&=VK((>#(7 =K(9'

! YKF?(&?$H?$(&C*&(*(E$?ZE$?E*$?(*KB(1: %*>FC=KV(E$?E*$?(
%?&&*V?&N(=>(&?KB&(8EFGGH>?5?(?&?%@=(>#(#>C?$($?EJ=F*&'(T>(>C=&(
E#=K>N(F#$$?F>($?EJ=F*&(*V$??(#K(*K(#$B?$(#D($?W"?&>&(G=>C=K(H=?G(H'

! YKF?(&?$H?$(&C*&(1:[9(%*>FC=KV(E$?E*$?(*KB(F#%%=>(%?&&*V?&(
@1D[9(E$?E*$?(*KB(1D[9(F#%%=>AN(=>(?+?F">?&(%N(>C?K(&?KB&(
89:AIJ?5?)?*?%?-@=(>#(>C?(FJ=?K>'(

BFT: How Does It Work?

!"#$"%&'()*+#&',-'(./07;

More Details

! Servers accept pre-prepare <PRE-PREPARE,v,n,m>if
! Their current view is view v
! They did not accept pre-prepare for v,n with different request

! All collected pre-prepare and 2f matching prepares serve
as a certificate for the next step: P-certificate(m,v,n)

! Request m executed after:
! having C-certificate(m,v,n)
! executing requests with sequence number less than n

!"#$"%&'()*+#&',-'(./072

BFT: View Change

! Provide livenesswhen primary fails:
! Timeouts used to trigger view changes
! Mapping between primary and view number
! Increase current view number and select new primary (%view

number mod 3f+1)

! Preserve safety
! ensure replicas are in the same view long enough
! prevent denial-of-service attacks

!"#$"%&'()*+#&',-'(./073

BFT: View Change Details

! When servers suspect the primary, they start a view
change
! A backup starts timer when it is waiting for executing a

request and stops it when it is no longer waiting
! If timer times out something is wrong with Primary
! Change view so that Primary gets changed

! M):=;30&)'(?2')NP/WX YKGMZ[W@)<\!@)?@)K@)#@)-] ! -

! K -')=)&$%%B)%B)1='*)'*=:1();+(;3Y&%-?*
! # -')=)&$%%B)%B)20()$(A0('*')=B*($)*+();+(;3Y&%-?*

!"#$"%&'()*+#&',-'(./075

BFT: View Change Details

! When a primary of new view gets 2f VIEW-CHANGE
messages, it declares new view

! The new Primary sends < NEW-VIEW, v+1, V, O >! i

! V is a proof containing valid VIEW-CHANGE messages
! O is a set containing PRE-PREPARE messages needed to

carry the incomplete messages from previous view into
new view

!"#$"%&'()*+#&',-'(./076

BFT: Garbage Collection

! The logs are cleaned periodically
! Before cleaning the logs a backup must be sure that all

requests whose messages it is going to clean have been
successfully executed

! After fixed number of requests replicas send check-point
signals < CHECKPOINT, n,d,i>! i

! When a replica receives 2f+1 check-point messages, it
clears all messages for requests up to n.

!"#$"%&'()*+#&',-'(./077

Summary

! BFT Ðrequires a minimum of 3f+1
participant, 3 communication rounds
and f+1 identical answers to the
client

! Scaling beyond BFT, one can combine
fault-tolerant approaches (like Paxos)
with BFT to achieve better
performance on wide area networks.

!"#$"%&'()*+#&',-'(./078

