
Cristina Nita-Rotaru

7680: Distributed Systems

Introduction. Class Policy. Examples.

1: Introduction

Introduction.3

Introduction.4

Introduction.5

} Air Traffic Control
} Space Shuttle
} Banking Systems
} Grid Power Systems
} Cloud Computing

Cloud computing

} Management infrastructure tools
} Chubby, Group Membership, Distributed Registries, PBFT

} Scalable data sharing and event notification
} Pub-Sub, multicast, gossip, Group Communication, Sinfonia

} Network-Level and other resource-managed technologies
} Load balancing

} Shared global file system, or in-memory store services.
} GFS, HDFS, S3, Memcached, Dynamo

} Scalable database systems and transactional subsystems
} BigTable, Spanner, Casandra

} Large-scale distributed data processing
} MapReduce, DryadLINQ, Storm, Spark

Introduction.6

What do these services have in common?

} They rely on many resources (i.e. computers, servers, data
centers)
} Scalability
} Availability
} Performance

} They are located in different places
} They require coordination
} They depend on different services

Introduction.7

What is a distributed system?

A distributed computing system is a set of computer
programs executing on one ore more computers and
coordinating actions by exchanging messages.

Introduction.8

A distributed system is one in which the failure
of a computer you didn't even know existed can
render your own computer unusable.

Attributed to Leslie Lamport

Distributed systems requirements

} Reliability: provide continuous service
} Availability: ready to use
} Safety: systems do what they are supposed to do,

avoiding catastrophic consequences
} Security: withstands passive/active attacks from

outsiders or insiders

Introduction.9

…not easy to achieve because

} Computers and networks fail in many (often
unpredictable) ways

} Computers get compromised
} Real-time constraints
} Performance requirements
} Complexity

Introduction.10

Why Do Computer Systems Fail?

} Why Do Computers Stop and What can be done about it?
Jim Gray, 1985
} System administration (operator actions, system configuration and

maintenance)
} Software faults, environmental failures
} Hardware failures (disks and communication controllers)
} Power outages

} Why do Internet services fail, and what can be done about
it? D. Oppenheimer, A.Ganapathi and D. A. Patterson, 2003.
} Operator error (particularly configuration errors) is the leading cause of

failures
} Failures in custom-written front-end software
} Not enough on-line testing

Introduction.11

Why Do Computers Get Compromised?

} Software bugs
} Administration errors
} Lack of diversity, same vulnerability is exploited
} The explosion of the Internet facilitates the

spread of malware

Introduction.12

..how do computer system fail…

} Halting failures: no way to detect except by using timeout
} Fail-stop failures: accurately detectable halting failures
} Send-omission failures
} Receive-omission failures
} Network failures
} Network partitioning failures
} Timing failures: temporal property of the system is

violated
} Byzantine failures: arbitrary failures, include both benign

and malicious failures

Introduction.13

What is this class about

THEORY + SYSTEM IMPLEMENTATION
} Theory

} Fundamental algorithms and services
} Impossibility results
} Trade-offs between different characteristics designing

distributed systems

} Implementation
} What can go wrong when designing, implementing, testing and

deploying a distributed service
} Design of existing and popular software
} Dependencies between different services
} Interoperability issues

Introduction.14

2: Syllabus and class policy

Course Information

} Meetings
} MW 2:50-4:30pm Jan.9 – Apr. 30

} Professor contact info:
} Office: WVH 258
} Email: c.nitarotaru@neu.edu
} Office hours: from 2 pm before each class or by appointment

} Class webpage
http://cnitarot.github.io/courses/ds_Spring_2017/index.html

} Piazza for class communication
} Use Piazza for questions and postings
} Hw and projects posted on piazza

Introduction.16

Prerequisites

} Strong systems and networking background
} Socket programming
} Fluency in many languages

} C/C++
} Java
} Python or some other scripting language

} Linux command line proficiency
} Some computer security and cryptography fundamentals

Introduction17

Course overview

} Time in distributed systems. Clock synchronization. Global states
and distributed snapshots.

} Consensus: synchronous systems, asynchronous systems,
byzantine failures (including randomized solutions).

} Distributed commit (2PC and 3PC). Weak consistency models.
Weak and strong consistency in partitioned database systems.
Linearizability. CAP Theorem

} Process Groups: Leader election, membership, reliable multicast,
virtual synchrony. Gossip protocols.

} Quorums. Paxos. Viewstamped replication. BFT.
} Reliable distributed shared memory.
} Peer-to-peer file sharing, indexing, data fusion and data mining.
} Popular systems: GFS/HDFS; BigTable/Spanner/HBASE;

Chubby/Zookeeper; MapReduce/Spanner; Mesos/Yarn.

Introduction.18

Reference Material

} Textbooks
} Ken Birman: Reliable Distributed Systems

} Recommended reading
} Research papers that will be specified for each lecture

Introduction.19

Grading policy

} Written assignments 25%
} Programming projects 45%
} Final project 20
} Class participation 10%

} There is no curve for grades

Introduction20

Written assignments

} Purpose of the written assignments is to make
you understand the theoretical results discussed in
class
} Read the material before solving them and solve them

with closed books and notebooks
} 4-5 written theoretical assignments
} Homework is individual
} Homework must be typed – PDF submission format only
} For submission, follow the information in the homework

description

Introduction21

Programming projects

} Purpose of the programming projects is to help
you understand practical aspects of things
discussed in class
} Read all material in class and the description of the

project in details before starting
} 3 programming projects
} Programming projects are individual
} All the code must be from scratch
} Use the languages, tools, VMs, specified in the project

description

Introduction22

Final project

} Purpose of the final project is to help you
understand some existing software or
start a research project

} No extra days for the final project
} You must work in teams of 2

} Start shopping for a partner at the beginning of the
semester, don’t wait till the project is assigned/chosen

} You can choose the final project, or I can assign
one

} Project proposal presentation (1 page)
} Final presentation in class + report of 3 pages

submitted with the code and presentation
Introduction.23

Late policy

} Each of you gets 5 LATE DAYS that can be used any way
you want for homework and projects (but not the final
project); you do not need to let me know if you plan to
take any late day; just submit late
} Keep track of your late days used

} 20% off from grade obtained for that project or homework per day
late

} Follow the requirements from project description to see
how to submit

} Assignments are due at 9:59:59 pm, no exceptions
} 1 second late = 1 hour late = 1 day late

Introduction24

Regrading

} YOU HAVE 1 WEEK to ASK for REGRADING of a
homework or project from the moment solutions were
posted on piazza or discussed in class

} Make sure you read and understand the solution before
asking for a regrade

} Request for a regrade will result in the regrading of the
entire homework, project

Introduction25

Class attendance and notes

} Your are strongly recommended to attend and take notes
} If you miss class is your responsibility to go through the

covered material on your own
} Slides will be made available online after lecture
} There will be assigned reading from papers and other

online materials
} Class participation is 10% of your grade

} Be active on Piazza
} Ask questions in class
} Answer questions in class

Introduction26

Individual Meeting

} You are required to meet with me at least once per
semester

} I will send doodle links with available time slots that you
can sign up for, in the next few weeks

} You can always set up additional appointments by sending
me an email first

Introduction.26

Academy integrity

} It is allowed to discuss homework problems before
writing them down; however, WRITING IS INDIVIDUAL
} if you look at another student’s written or typed answers, or

let another student look at your written or typed answers, that
is considered cheating.

} Never have a copy of someone else's homework or
program in your possession and never give your
homework (or password) or program to someone else.

} NO CHEATHING WILL BE TOLERATED.
} ANY CHEATING WILL AUTOMATICALLY RESULT in F

grade and report to the university administration

Introduction28

How to ask on Piazza

} Read slides, notes, homework or project description
} Use #hashtags (#lecture2, #project3, #hw1, etc.)

} Describe the problem clearly, using the right terms
} Add code in attached files
} Add output from compiler or debugginng information
} Add any other relevant information
} Don’t post solutions on piazza
} Anything that relates to solution post PRIVATELY

Introduction29

Weather/Emergency

} In the event of a major campus emergency, course
requirements, deadlines and grading percentages are
subject to changes that may be necessitated by a revised
semester calendar or other circumstances beyond the
instructor’s control.

} Monitor weather and piazza particularly if you don’t live
close to school.

Introduction30

Debugging distributed protocols

} They are known to be difficult to debug
} Write proactively – print all the info you send/receive

over the network;
} Have state machine design before implementation and

make sure you understand what your state machine is
supposed to do before you implement your code

} Have message detailed description in design before
implementation

} Focus on testcases to understand specific behavior
} Delay, interleave, drop messages
} Crash participants

Introduction.31

One last word …

} No meetings will be accepted with the TA or
instructor the day homework or projects are due

} Start early, plan carefully
} Develop your solution gradually, test gradually so you

always have functionality for which you can receive a
grade; YOUR CODE MUST WORK

} Do not wait to submit your code last minute
} Don’t post solutions on piazza
} Don’t cheat

Introduction32

PIAZZA ACCOUNTS

} All communication is on piazza, make sure you get
notifications and you check piazza constantly

} If you have not received a piazza notification email
me c.nitarotaru@neu.edu

Introduction33

1: Examples of distributed systems: Google File
System (GFS)

Application Characteristics

} Hundreds of clients must perform concurrent
(atomic) appends with minimal synchronization

} Sustained bandwidth more important than latency
} Response time for individual read/write not

important
} Non-traditional access patterns
} Files are very big, several gigs

Introduction34

Design Choices

} Fault-tolerance is a must; Constant monitoring, error
detection, automatic recovery part of the design

} Designed for big files. I/O operations and block sizes have
to be revisited.

} Non-traditional access patterns:
} Most files are modified by appending rather than overwriting;
} Large repositories that must be scanned (archival, streams,

intermediate data)
} Result: appending is the focus of optimization

} Co-design applications and file system; looser
consistency

Introduction35

Interface Design

} Not standard API (such as POSIX)
} Supports file/directory hierarchy and the usual: {create,

delete, open, close, read, write}
} Additionally:

} snapshot: low cost file / directory tree copying
} record append: concurrent appends, no locks!

Introduction37

Architecture Overview

} No files, base unit is chunk:
} Fixed-part of a file, typically 64 MB
} Global ID: 64 bit, unique “chunk handle”, assigned by

master server upon chunk creation
} Read/Write: need chunk handle + byte range

} Servers:
} Single master
} Multiple backups (chunkservers)

} Multiple clients

Introduction37

Design Overview: Consistency Model

} File namespace modifications: atomic & handled only
by master server

} Chunks:
} “consistent” if all clients see same data, no matter which replica

they ask
} “defined” if it is consistent and known, i.e. some modification

done w/o interruption
} “undefined” if concurrent modifications are successful
} “inconsistent” on any failed modification
} Inconsistent regions may be padded or contain duplicates

Introduction38

Design Overview: Consistency Model

} File namespace modifications: atomic & handled only
by master server

} Chunks:
} “consistent” if all clients see same data, no matter which replica

they ask
} “defined” if it is consistent and known, i.e. some modification

done w/o interruption
} “undefined” if concurrent modifications are successful
} “inconsistent” on any failed modification
} Inconsistent regions may be padded or contain duplicates

Introduction39

New Google Storage System

} New requirements: highly interactive applications (for
example email)

} Available all the time
} Wide-area network
} One of the biggest changes was using active replication –

based on PAXOS, proven, optimal, fault-tolerant
consensus algorithm with no requirement for a
distinguished master

Introduction40

Required Reading

} Chapter 1 and 2 from Reliable Distributed Systems
} Why do Internet services fail, and what can be

done about it? D. Oppenheimer, A.Ganapathi and D.
A. Patterson, 2003.

} Why Do Computers Stop and What can be done
about it? Jim Gray, 1985.

