
Cristina Nita-Rotaru

7680: Distributed Systems

Physical and logical clocks. Global states. Failure detection.

Ordering events in distributed systems

} Time is essential for ordering events in a distributed
system
} Physical time: local clock; global clock
} Logical time: Lamport clocks, vector clocks

Ordering. Global states. Failures.2

1: Physical Clocks

} Humans used a variety of devices to
measure time
} Sundials
} Astronomical clocks
} Candle clocks
} Hourglasses

} Mechanical clocks developed in
medieval ages
} Typically maintained by monks (church bell

tower)

Historical clocks

Ordering. Global states. Failures.4

} First developed in 1920s
} Uses carefully shaped quartz crystal
} Pass current, counts oscillations

} Most oscillate at 32,768/sec
} Easy to count in hardware
} Small enough to fit (~4mm)

} Typical quartz clock quite accurate
} Within 15 sec/30 days (6e-6)
} Can achieve 1e-7 accuracy in

controlled conditions
} Not good enough for today’s

applications

5

Electrical clocks

Ordering. Global states. Failures.

} Based on atomic physics
} Cool atoms to near absolute zero
} Bombard them with microwaves
} Count transitions between energy levels

} Most accurate timekeeping devices
} Accurate to within 10-9 seconds per day
} E.g., loses 1 second in 30 million years

} Standard International second defined
in terms of atomic oscillations
} 9,192,631,770 transitions of cesium-133

atom

6

Atomic clocks

Ordering. Global states. Failures.

GMT, UT1, and UTC

7
} GMT: Greenwich Mean Time

} Originally, mean solar time at 0º longitude
} This isn’t really “noon” due to Earth’s axial tilt

} UT1: Universal Time
} Modernized version of GMT
} Based on rotation of Earth, ~86,400 seconds/day

} UTC: Universal Coordinated Time
} UT1 + leap seconds
} Minutes can have 59-61 seconds
} Since 1972, 25 leap seconds have been introduced

Ordering. Global states. Failures.8

International Atomic Time

8
} Atomic clocks used to define a number of time standards
} TAI: International Atomic Time

} Avg. of 200 atomic clocks, corrected for time dilation

} Essentially, a count of the number of seconds passed

} Count was 0 on Jan. 1, 1958
} UTC: since January 1, 1972, it has been defined to follow

TAI with an exact offset of an integer number of seconds,
changing only when a leap second is added to keep clock
time synchronized with the rotation of the Earth.

Ordering. Global states. Failures.9

Using real clocks to order events

} Each event will carry a timestamp
} Global clock: processes have access to a central global

clock
} The global clock gives global ordering of events

} Local clock: each process has its own clock
} What if the clocks are not synchronized
} What if events happened at the same time?

Ordering. Global states. Failures.9

Clocks in computers

} Real-time clock: CMOS clock (counter) circuit driven
by a quartz oscillator with battery backup to continue
measuring time when power is off

} OS generally programs a timer circuit to generate an
interrupt periodically
} e.g., 60, 100, 250, 1000 interrupts per second

(Linux 2.6+ adjustable up to 1000 Hz)
} Programmable Interval Timer (PIT) – Intel 8253, 8254
} Interrupt service procedure adds 1 to a counter in memory

} Quartz oscillators oscillate at slightly different
frequencies, clocks do not agree in general

Ordering. Global states. Failures.10

What does it mean for a clock to be correct?

} Relative to an “ideal” clock
} Clock skew is magnitude
} Clock drift is difference in rates

} Say clock is correct within p if

(1-p)(t’-t) ≤ H(t’) - H(t) ≤ (1+p)(t’-t)

} (t’-t) True length of interval
} H(t’) - H(t) Measured length of interval
} (1-p)(t’-t) Smallest acceptable measurement
} (1+p)(t’-t) Largest acceptable measurement

} Monotonic property: t < t’ ⇒ H(t) < H(t’)

11 Ordering. Global states. Failures.

Monotonicity

} If a clock is running “slow” relative to real time
} Can simply re-set the clock to real time
} Doesn’t break monotonicity

} But, if a clock is running “fast”, what to do?
} Re-setting the clock back breaks monotonicity
} Imagine programming with the same time occurring twice

} Instead, “slow down” clock
} Maintains monotonicity

12 Ordering. Global states. Failures.

Cristian’s Algorithm

} Assumes a time server has
the accurate time and a
client synchronizes with
} Client asks the time server

for time
} Server sends its time Tserver

} Client estimates how long it
takes to receive answer from
server as RTT/2 where:

} RTT = (Tclient_receive – Tclient_send)

} Client adjusts its clock
Tclient = Tserver + (RTT / 2)

Ordering. Global states. Failures.13

RTT
Sample

Client Server

Cristian’s Algorithm accuracy

} Assumes that it takes the same amount of time to send
the request and receive the answer

} Minimum time to transmit a message one-way: min
} Time to receive the server’s message is [min, RTT – min]
} Time at client [Tserver + min, Tserver + RTT – min]

accuracy is ±(RTT /2 - min)

Ordering. Global states. Failures.14

Berkeley Algorithm

} Assumes no machine has an accurate time source; uses an
elected master to synchronize

} Master coordinates:
} Queries all clients for their local time
} Estimates the clients’ local time (similar to Cristian’s

Algorithm)
} Averages all times including its own, excluding the ones that

are too drifted
} Tells each client the offset with each they need to adjust

} Some systems use multiple time servers
} Time is more accurate, but still drifts

Ordering. Global states. Failures.15

Network Time Protocol (NTP)

} NTP is a distributed service that
} Keeps machines synchronized to UTC
} Deals with lengthy losses of connectivity
} Enables clients to synchronized frequently (scalable)
} Avoids security attacks

} NTP deployed widely today
} Uses 64-bit value, epoch is 1/1/1900 (rollover in 2036)
} LANs: Precision to 1ms
} Internet: Precision to 10s of ms
} NTP pool is a dynamic collection of computers that

volunteer to provide time via the NTP, about 4000 servers

16 Ordering. Global states. Failures.

NTP Hierarchy

} Based on hierarchy of accuracy, called
strata
} Stratum 0: High-precision atomic clocks
} Stratum 1: Hosts directly connected to

atomic clocks
} Stratum 2: Hosts that run NTP with

stratum 1 hosts
} Stratum 3: Hosts that run NTP with

stratum 2 hosts
} …

} Stratum x hosts often synch with other
stratum x hosts
} Provides redundancy

17 Ordering. Global states. Failures.

Reference clocks

} Many NTP servers synchronize directly to UTC using
specialized equipment
} Atomic clocks: Ultimately are the root source of time in

NTP
} Global Positioning System (GPS): can synchronize with a

satellite’s atomic clock
} Code Division Multiple Access (CDMA): can synchronize

with a local wireless provider (who in turn most likely
synchronizes using GPS)

} Radio signals: similar to CDMA, can synchronize with
time/frequency radio stations

Ordering. Global states. Failures.18

NTP
server

client
T1

T2 T3

T4

On-the-wire protocol

} Client initiates request by recording timestamp T1, placing in
packet, then sending to NTP server

} NTP Server records timestamp T2 when receiving request
packet (and can do other processing if needed)

} When ready to send a reply, the NTP server records
timestamp T3, places T1, T2, T3 in reply and sends back to
client

} Client receives reply and records timestamp T4

T
1

T
1
T
2
T
3

Ordering. Global states. Failures.19

Updating the clock

} Client calculates offset between his clock and server’s
clock, and updates his clock by that amount

} To synchronize exactly, client needs to know one-way
delay between server and client
} This is difficult in practice to ascertain, so NTP assumes path is

symmetrical and one-way delay is half of round trip time
} Offset is calculated to be: ½ [(T2 - T1) + (T3 - T4)]

Ordering. Global states. Failures.20

NTP in practice

21
} Run on UDP port 123

} Most Internet hosts support NTP

} Accuracy on general Internet is ~10ms
} Up to 1ms on local networks, ideal conditions

} Many networks run local NTP servers
} E.g., time.ccs.neu.edu

} NTP has recently been a vector for DDoS attacks
} Best practice is for servers to filter requests outside local

network

21 Ordering. Global states. Failures.

2: Logical Clocks

From physical clocks to logical clocks

} Synchronized clocks are great if we have them
} Why do we need the time anyway?
} In distributed systems we care about ‘what happened

before what’

} Two type of events
} Send a message
} Receive a message

Ordering. Global states. Failures.23

``HAPPENED BEFORE’’ ®

} If events a and b take place at the same process and a
occurs before b then we have a ® b

} If a is a send event of message m at p1 and b is a deliver
event of the same m at p2, p1 ≠ p2 then a ® b

} If a ® b and b ® c then a ® c

p2

p3

p1

p4

Ordering. Global states. Failures.24

Reminder: Partial and Total Order

} Definition: A relation R over a set S is a partial order iff
for each a, b, and c in S:
} aRa (reflexive).
} aRb Ù bRa Þ a = b (antisymmetric).
} aRb Ù bRc Þ aRc (transitive).

} Definition: A relation R over a set S is total order if for
each distinct a and b in S, R is antisymmetric, transitive
and either aRb or bRa (completeness).

Ordering. Global states. Failures.25

Logical Clocks: Lamport Clocks

} Each process maintains his own clock Ci (a counter)
} Clock Condition: for any events a and b in process pi

if a ® b then Ci(a) < Ci(b)

} Implementation:
} each process pi increments Ci between any successive events
} on sending a message m, attach to the message local clock

Tm = Ci(a)

} on receiving of message m process pk sets Ck to
Ck = max(Ck ,Tm) + 1

Ordering. Global states. Failures.26

Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8
7

Ck = max(Ck ,Tm) + 1

Ordering. Global states. Failures.27

Lamport Clocks: Total Order

} Logical Clocks only provide partial order
} Create Total Order by breaking the ties
} Example to break ties, use process identifiers, have an

order on process identifiers:
} If a is event in pi and b is event in p then

a ® b iff
} Ci(a) < Cj(b) or
} Ci(a) = Cj(b) and pi < pj

Ordering. Global states. Failures.28

Concurrent Events

} Concurrent events:
If a ®b and b ®a then a and b are concurrent

} Logical clocks assign order to events that are causally
independent, in other words events that are causally
independent appear as if they happened in a certain order

} For some applications (e.g. debugging) it is important to
capture independence

Ordering. Global states. Failures.29

Vector Clocks

} Independently developed by Colin Fidge and Friedemann
Mattern in 1988.

} Each process pi maintains a vector Ci

Ci = [0, 0, ..., 0].
} When pi executes an event, it increments its own clock Ci[i]
} When pi sends a message m to pj, it attaches its vector Ci on m.
} When pi receives a message m, increments its own clock and

updates the clock for the other processes as follows
" j: 1 £ j £ n, j ¹ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.

Ordering. Global states. Failures.30

Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

M1[010]

M2[210]
M6[512]

M3[212] M4[213]

M5[412]

Ordering. Global states. Failures.31

How to Order with Vector Clocks

} Given two events a and b, a ® b if and only if

} V(a) is less than or equal to V(b) for all process indices,
and at least one of those relationships is strictly smaller.

} Otherwise, we say they are concurrent or independent ||

} a ® b º " i: 1 £ i £ n: V(a)[i] £V(b)[i]
Ù $ i: 1 £ i £ n: V(a)[i] < V(b)[i]

} a || b º $ i: 1 £ i £ n: V(a)[i] < V(b)[i]
Ù $ j: 1 £ j £ n: V(b)[j] < V(a)[j]

Ordering. Global states. Failures.32

What Events Are Independent?

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

m1

m2
m6

m3
m4

m5

Ordering. Global states. Failures.33

3: Global states and Chandi-Lamport Snapshot
Algorithm.

Why do we need global snapshots?

} Global snaphot gives you the “global view” of the system
(we will see more formal definition shortly)

} Examples of applications where global snapshots are
useful:
} Checkpointing: save the state and restart the distributed

application after a failure
} Garbage collection of objects: objects at servers that don’t

have any other objects (at any servers) with pointers to
them

} Deadlock detection: debugging for database transaction
systems

} Termination of computation: useful for batch computing
systems35 Ordering. Global states. Failures.

Recording global snapshots

} If synchronized clocks are available, each
process records its state at a known time t
} How to obtain the state of the messages that

transit the channels?

} If synchronized clocks are not available?
} How to determine when a process takes its

snapshot?
} How to distinguish between the messages to

be recorded in the snapshot from those not to
be recorded?

Ordering. Global states. Failures.36

Chandy-Lamport Algorithm: Model

} Records a consistent global state of an asynchronous
system.

} System model:
} No failures and all messages arrive intact and only once
} Communication channels are unidirectional and FIFO ordered
} There is a communication path between any two processes

} Other assumptions
} Any process may initiate the snapshot algorithm
} The snapshot algorithm does not interfere with the normal

execution of the processes
} Each process in the system records its local state and the state

of its incoming channels
Ordering. Global states. Failures.37

Chandy-Lamport Algorithm

} Uses a control message, marker, to separate messages in
the channels between those to be included in the
snapshot from those not to be recorded in the snapshot.

} After a process has recorded its snapshot, it sends a
marker before sending out any more messages.

} A process must record its snapshot no later than when it
receives a marker on any of its incoming channels.

Ordering. Global states. Failures.38

Chandy-Lamport Algorithm

} Can be initiated by any process by executing the “Marker
Sending Rule”

} A process executes the “Marker Receiving Rule” on
receiving a marker.
} If the process has not yet recorded its local state, it records

the state of the channel on which the marker is received as
empty and executes the “Marker Sending Rule” to record its
local state.

} The algorithm terminates after each process has received
a marker on all of its incoming channels.

} All the local snapshots get disseminated to all other processes
and all the processes can determine the global state.

Ordering. Global states. Failures.39

Chandy/Lamport Snapshot Algorithm

} Marker-sending rule for a process p:
} Saves its own local state
} Sends a marker to all other processes on their corresponding

channels before sending any other message

} Marker-receiving rule for a process q on channel c
} If q has not recorded its state then

} q records records its state
} q record the state of incoming channel c as “empty”
} turn on recording of messages over other incoming channels
} for each outgoing channel c, send a marker on c

} else
} q records the state of incomming channel c as all the messages

received over c after q recorded its state and before q received the
marker along c Ordering. Global states. Failures.40

Example of Chandy-Lamport Algorithm

Ordering. Global states. Failures.41

} Three processes p, q and r. Communications chanels, c1
(p to q), c2 (q to p), c3 (q to r), and c4 (r to p).They all
start with state = $500 and the channels are empty. The
stable property is that the total amount of money is
$1500.

} Process p sends $10 to q and then starts the snapshot
algorithm: records its current state 490 and sends out a
marker on c1.

} Meanwhile q has sent $20 to p along c2 and 10 to r along
c3.

Ordering. Global states. Failures.42

Ordering. Global states. Failures.43

Ordering. Global states. Failures.44

Correctness for Chandi-Lamport

} How do we define correctness in this case?
} Records a consistent global state of an asynchronous

system.
} We need some definitions

Introduction45

History of events

} Given a process pi

} Event ei
j is the event j at process i

} History of process pi, hi is a sequence of events that
happened at pi

hi = <ei
0, ei

1, … >
} Prefix history at pi up to k, is the history of pi up to the

kth event
hi

k = <ei
0, ei

1, …,ei
k >

} State Si
k is the state of process pi immediately before the

kth event

Ordering. Global states. Failures.46

History of events: More definitions

} Given a set of processes
} Global history: the set of all processes’ histories

} H = Èi (hi)

} Global state: the set of states at each process
S = Èi (Si

ki)
} Cut: a set of prefix histories

C Í H = h1
c1 È h2

c2 È … È hn
cn

} Frontier of a cut: the set of last event that happened in
each prefix history

C = {ei
ci, i = 1,2, … n}

Ordering. Global states. Failures.47

Consistent Cuts

p2

p1
1

1 2

2

3

43

4

Consistent cut Inconsistent cut

Definition: A cut C is consistent if for any event e in the cut,
if an event f ‘happened before’ e, then f is also in the cut C

"e Î C (if f ® e then f Î C)

Ordering. Global states. Failures.48

How do we used global states?

} Need more definitions:

} Consistent global state: a global state that
corresponds to a consistent cut

} Run: a total ordering of events in history H that is
consistent with each process history hi’s ordering

} Linearization: a run consistent with happens-before
relation in H; Linearizations pass through consistent
global states

} Reachability: a global state Sk is reachable from global
state Si, if there is a linearization, L, that passes through Si
and then through Sk.

Ordering. Global states. Failures.49

Global state predicates

} How do we use global states to reason about distributed
systems?

} Global state predicate: a function from the set of global
states to {TRUE, FALSE}

} Stable global state predicate: one that once it becomes
true, it remains true in all future states reachable from
that state.

} Examples:
} “the system is deadlocked”
} “all tokens in a token ring have disappeared”
} “the computation has finished”

Ordering. Global states. Failures.50

Safety and Liveness

} Safety: a condition that must hold in every finite prefix of
a sequence (from an execution)

“nothing bad happens”
} Liveness: a condition that must hold a certain number of

times
“something good happens”

Ordering. Global states. Failures.51

Stable Global States and Safety

} Look for undesirable properties, “bad things”
} Assume that a ‘bad thing’ BT (for example deadlock) is a

global state predicate and S0 is the initial state of the
system, then
“Safety with respect to BT” means

"S reachable from S0, BT(S) = FALSE

Ordering. Global states. Failures.52

Stable Global States and Liveness

} Look for desirable properties, “good things”
} Assume that a “good think” GT (for example reaching

termination) is a global-state-predicate and S0 is the initial
state of the system then
Liveness with respect to GT means:
For any linearization L starting at S0 $ state,SL reachable from S0
such that GT(SL) = TRUE

Ordering. Global states. Failures.53

4: Detecting Failures

Failure detectors as an abstraction

} Failure detector: distributed oracle that makes guesses
about process failures

} Accuracy: the failure detector makes no mistakes when
labeling processes as faulty

} Completeness: the failure detector “eventually” (after
some time) suspects every process that actually crashes

} Detectors classified based on their properties
} Used to solve different distributed systems problems

Ordering. Global states. Failures.55

Completeness

} Strong Completeness: There is a time after which every
process that crashes is suspected by EVERY correct
process.

} Weak Completeness: There is a time after which every
process that crashes is suspected by SOME correct
process.

Ordering. Global states. Failures.56

Accuracy

} Strong Accuracy: No process is suspected before it
crashes.

} Weak Accuracy: Some correct process is never
suspected. (at least one correct process is never
suspected)

} Eventual Strong Accuracy: There is a time after which
correct processes are not suspected by any correct
process.

} Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

Ordering. Global states. Failures.57

Perfect failure detector

} A perfect failure detector has strong accuracy and strong
completeness

} THIS IS AN ABSTRACTION
} IT IS IMPOSSIBLE TO HAVE A PERFECT FAILURE

DETECTOR
} We have to live with … unreliable failures detectors…

Ordering. Global states. Failures.58

Unreliable failure detectors

} Unreliable failure detectors can make mistakes !!!
} A process is suspected that it was faulty, that can be true

or false, if false the list of alive processes is modified.
} Failure detectors can add/remove processes from the list

of suspects; different processes have different lists.
} The assumptions are that:

} After a while the network becomes stable so the failure
detector does not make mistakes anymore.

} In the unstable period, the failure detector can make mistakes.

Ordering. Global states. Failures.59

Failure detection implementation

} Push: processes keep sending heartbeats “I am alive” to
the monitor. If no message is received for awhile from
some process, that process is suspected as being dead
(faulty).

} Pull: monitor asks the processes “Are you alive?”, and
process will respond “Yes, I am alive”. If no answer is
received from some process, the process is suspected as
being dead (faulty).

} What are advantages and disadvantages of these two
approaches?

Ordering. Global states. Failures.60

Failure detectors implementation (2)

} Every process must know about who failed
} How to disseminate the information
} How about if not every node can communicate directly

with another node?
} Centralized
} All-to-All
} Gossip based: provides probabilistic guarantees

Ordering. Global states. Failures.61

Metrics for failure detectors

} Detection time
} Mistake recurrence time
} Mistake duration
} Average mistake rate
} Query accuracy probability
} Good period duration
} Network load

Ordering. Global states. Failures.62

Summary

} Ordering events with logical clocks
} Lamport clocks uses a single clock per process,

} Vector clocks – each process maintains a clock for all the
other processes

} Determining global states
} Chandi-Lampprt algorithm for asynchronous systems, no

failures and communication FIFO unidirectional.

} Detecting failures
} There are no perfect failure detectors, both accurate and

complete; push or pull methods

Ordering. Global states. Failures.63

Reading for this lecture

} L. Lamport for "Time, Clocks, and the Ordering of Events in a
Distributed System," Communications of the ACM, July 1978,
21(7):558-565. E.W. Dijkstra Prize 2000, SIGOPS Hall of Fame.

} Mattern, F. "Virtual Time and Global States of Distributed
Systems", in Cosnard, M., Proc. Workshop on Parallel and
Distributed Algorithms, Chateau de Bonas, France: Elsevier,
pp. 215–226, 1988

} K. M. Chandy and L. Lamport, Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, Vol. 3, No. 1, February,
1985, pp. 63-75. SIGOPS Hall of Fame.

} T. Chandra and S. Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems, 1996.

Introduction64

