
Cristina Nita-Rotaru

7680: Distributed Systems

Quorums. Paxos. Viewstamped replication. BFT. Raft

Required reading for this topic…

} Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. F. B. Schneider

} Quorums
} Quorum Systems. Chapter in The Encyclopedia

of Distributed Computing, D. Malkhi

} Paxos
} Paxos Made Simple, L. Lamport
} Paxos for System Builders, J. Kirsch and Y.

Amir (the technical report) – need for
project

} The Part-time Parliament, L. Lamport

} Viewstamped Replication Revisited, B. Liskov and J.
Cowling

} From Viewstamped replication to Byzantine
replication. B Liskov.

Quorums. Paxos.VR. BFT2

1: The State Machine Approach

The State Machine Approach

} The system consists of clients that invoke commands
on deterministic state machines

} The state of a state machine depends only on its
initial state and the sequence of (deterministic)
commands it has been given

} All non-faulty state machines, being deterministic, will
give the same response to a command

Quorums. Paxos.VR. BFT4

} Replicated log => replicated state machine
} All servers execute same commands in same order

} Consensus module ensures proper log replication

} System makes progress as long as any majority of servers are up

} Failure model: fail-stop (not Byzantine), delayed/lost messages

How it works

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine Servers

Clients
shl

Quorums. Paxos.VR. BFT5

How it works …

} All replicas start in the same initial state
} Every replica apply operations in the same order
} All operations must be deterministic
} All replicas end up in the same state

Quorums. Paxos.VR. BFT6

At the core: Consensus

• Each process sends its value
(proposal) to all the other
processes, all processes have the
same set they can make a
decision

• Each process sends its value
(proposal) to a leader which
makes the decision and informs
the other processes

Quorums. Paxos.VR. BFT7

Challenges

} Can nodes trust each other
} Can a node crash and/or recover
} Can a network partition occur
} Can messages be delayed or lost
} How to detect that

} processes crashed
} network partitions
} messages are lost

Quorums. Paxos.VR. BFT8

Crash, Recovery, and Network Partition

} Process crashes: the leader may not have enough values
to reach a decision

} Network partition: leader may not have enough values,
some components will have no leaders and have to select
one

} Leader crashes: if it crashes after deciding but before
announcing results everybody is blocked

} Process or leader recovers: they will not know what they
were doing (unless they write some information on the
disk)

Quorums. Paxos.VR. BFT9

Process Groups Approach

} One way of building distributed
fault-tolerant systems by
organizing them in a group:
} Ensure group membership
} Ensure group multicast, with

different ordering properties.

} Easier to work with when
providing in the form of a toolkit

Quorums. Paxos.VR. BFT10

Limitations of Process Groups Approach

} Need to respond to leader failure
} Costly agreement on membership

} Virtual synchrony: simplify recovery from partitioned
views

} Servers need to monitor for failures (correct but slow
participants may be excluded)

} Reconfiguration

Quorums. Paxos.VR. BFT11

2: Quorums

A different approach: Quorum Systems

} In law, a quorum is the minimum number of members of a
deliberative body necessary to conduct the business of
that group

} When quorum is not met, a legislative body cannot hold a
vote, and cannot change the status quo

Quorums. Paxos.VR. BFT13

Quorum Systems

} Increase availability and efficiency of replicated services
} Availability: Operations succeed in spite of failures;

quorum systems can be defined to tolerate both benign
and arbitrary/malicious failures

} Efficiency: Can significantly reduce communication
complexity, do not require all servers in order to perform
an operation, requires a subset of them for each
operation

Quorums. Paxos.VR. BFT14

Write(7) Read

The set of processors from which a variable is read must
intersect the set of processors to which a variable was written.

Using Quorums to Read and Write

Quorums. Paxos.VR. BFT15

Shared Variable with Quorums

} Use a quorum system to implement a multi-reader multi-
writer shared variable, replicated across n servers

Write:
} Client queries each server in some quorum (writing

quorum) to obtain a set A of value/timestamp pairs
} Client chooses a timestamp greater than the highest value

in the set A and updates the value and the timestamp at
each server in the writing quorum

Quorums. Paxos.VR. BFT16

Shared Variable with Quorums (II)

Read:
} Client queries each server in a quorum to obtain a set A

of value/timestamp
} Then chooses the pair with the highest timestamp

} For both read and write each server updates its local
variable and timestamp to the received values, only if
received timestamp is greater than the one they had for
that value

Quorums. Paxos.VR. BFT17

Replication with Quorums

} Replicated data items have “versions”, and these are
numbered
} I.e. can’t just say “Xp=3”. Instead say that Xp has timestamp

[7,q] and value 3
} Timestamp must increase monotonically and includes a

process id to break ties

Quorums. Paxos.VR. BFT18

Read Operation

} Send request and wait until Qr (read quorum) processes
reply

} Then use the value with the largest timestamp
} Break ties by looking at the process id
} For example

} [6,x] < [9,a] (first look at the “time”)
} [7,p] < [7,q] (but use process id as a tie-breaker)

Quorums. Paxos.VR. BFT19

Write Operation

} When a process initiates a write, it does not know if it
will succeed in updating a quorum (writing quorum) of
processes
} Need to use a commit protocol

} Moreover, must implement a mechanism to determine the
version number as part of the protocol.

Quorums. Paxos.VR. BFT20

Write Operation: Details

1. Propose the write: “I would like to set X=3”

2. Members “lock” the variable against reads, put the request
into a queue of pending writes, and send back:

“OK. I propose time [t,pid]”
Here, time is a logical clock. Pid is the member’s own pid

3. Initiator collects replies, hoping to receive Qw (or more)

³ Qw OKs

Compute maximum of
proposed [t,pid] pairs.

Commit at that time

Abort

< Qw OKs

Quorums. Paxos.VR. BFT21

Quorum constructions: Weighted
Majorities

} Assume that every server s in the universe U is assigned a
number of votes ws.
Then, the set system

Q = {Q Í U: SqÎQwq > 1/2SqÎUwq}
is a quorum system called Weighted Majorities.

} When all the weights are the same, simply call this the system
of Majorities

Quorums. Paxos.VR. BFT22

Quorum constructions: Grid

} Previous example was not
very efficient, requiring more
than half of the servers to be
contacted

} Arrange servers into a logical
grid, and use rows/columns for
writes/reads, respectively

} Can cut the number of servers
contacted in an operation

} Can change row/column sizes
to optimize for write-
heavy/read-heavy scenarios

n nx

read

write

Quorums. Paxos.VR. BFT23

2: Paxos

Based on slides from, John, Diego Ongaro,
Lorenzo Alvisi, Ali Ghodsi, and David Mazières

Paxos

} More robust that process groups approach
} Safety does not require synchronous communication
} Liveness requires that we are able to detect failures

within a certain timeout
} Requires a stable-enough network to elect a leader that will

stay stable for a while
} Requires a (potentially changing) majority of members to

support the leader (in order to make progress)

Quorums. Paxos.VR. BFT25

Decompose the problem:
} Basic Paxos (aka Paxos) (“single decree”):

} One or more servers propose values
} System must agree on a single value as chosen
} Only one value is ever chosen

} Multi-Paxos:
} Combine several instances of Basic Paxos to agree on a series

of values forming the log

The Paxos Approach

Quorums. Paxos.VR. BFT26

Paxos: Goals

} Provides a solution to consensus (agreement) in an
asynchronous model

} Safety
} Only a value that has been proposed may be chosen
} Only a single value is chosen
} A node never learns that a value has been chosen unless it

actually has been

} Liveness (as long as majority of servers up and communicating
with reasonable timeliness)
} Some proposed value is eventually chosen
} If a value has been chosen, a node can eventually learn the

value
Quorums. Paxos.VR. BFT27

The Model

} N servers, uniquely identified
} Messages:

} Can take arbitrarily long to be delivered
(Asynchronous communication)

} Can be duplicated
} Can be lost

} Nodes:
} Operate at arbitrary speed
} May fail by stopping, and may restart
} Must remember what they were doing (in case they fail and

restart, they have to know what to do next)

Quorums. Paxos.VR. BFT28

Paxos: Main Idea

} One node is chosen as the leader (we will see later how
this is done)

} Leader proposes a value (to be chosen by all) and asks
the other nodes to accept it

} Leader announces result to the rest of the nodes or tries
again if he could not have reached a decision

} Why this algorithm?

Quorums. Paxos.VR. BFT29

Types of nodes
from the Lamport paper, Paxos made simple

} Observes nodes perform three different types of actions:
} (1) Propose values, (2) Accept values, (3) Learn values

} Classifies nodes as:
} Proposer:

} Proposes a value and solicits acceptance from acceptors

} Acceptor:
} Responds to messages from proposers, responses represent votes

that form consensus
} Stores chosen value, state of the decision process
} Wants to know which value was chosen

} Learner: finds out the outcome

} A node can have all three roles
Quorums. Paxos.VR. BFT30

Need for Multiple Acceptors

} Assume a single node A acts as acceptor
} Each proposer sends its value to A
} A decides on one of the values
} A announces its decision to all learners

} What can go wrong?
} If the acceptor fails, the protocol will block since nobody will

decide

} Solution: We need multiple acceptors, quorum
} Multiple acceptors (3, 5, ...)
} Value v is chosen if accepted by majority of acceptors
} If one acceptor crashes, chosen value still available

Quorums. Paxos.VR. BFT31

Solution with Multiple Acceptors

} Each proposer proposes to all acceptors
} Each acceptor accepts the first proposal it receives and

rejects the rest
} If the proposer receives positive replies from a majority

of acceptors, it chooses its own value (that’s what he
proposed)

} Proposer sends chosen value to all learners
} What if multiple proposers propose simultaneously so

there is no majority accepting?

Quorums. Paxos.VR. BFT32

} Acceptor accepts only first value it receives?
} If simultaneous proposals, no value might be chosen

How to fix it:Acceptors must sometimes accept multiple
(different) values

Problem: Split Votes

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accept?(green)

accepted(red)

accepted(blue)

accepted(green)

accepted(red)

accepted(blue)

Quorums. Paxos.VR. BFT33

} Acceptor accepts every value it receives?
} Could choose multiple values

How to fix it: Once a value has been chosen, future
proposals must propose/choose that same value (2-phase
protocol)

Problem: Conflicting Choices

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen

Blue Chosen

Quorums. Paxos.VR. BFT34

} s5 doesn’t need to propose red (it hasn’t been chosen yet)
} s1’s proposal must be aborted (s3 must reject it)

How to fix it: Must order proposals, reject old ones
Quorums. Paxos.VR. BFT

Conflicting Choices (2)

time

s1
s2
s3
s4
s5

accept?(red)

prop(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen??

Blue Chosen

35

Solution with Multiple Proposals

} Proposals are ordered by proposal number
} We can allow multiple proposals but we must guarantee

that all chosen proposals have the same value
} Each acceptor may accept multiple proposals

} If a proposal with value v is chosen, all higher-numbered
proposals have value v

Quorums. Paxos.VR. BFT36

Invariant

} For any v and n, if a proposal with value v and number n is
issued then there is a set S consisting of a majority of
acceptors such that:
} No acceptor in S has accepted any proposal numbered less

than n, or
} v is the value of the highest-numbered proposal among all

proposals numbered less than n accepted by the acceptors in S

Quorums. Paxos.VR. BFT37

How to Ensure the Invariant

} Can not predict the future, what acceptor will accept
} Can obtain promise from acceptors with respect to what

they will accept:
} “The proposer requests that the acceptors not accept

any more proposals numbered less than n”

Quorums. Paxos.VR. BFT38

Issuing Proposals

} A proposer chooses a new proposal number n and sends
a request to a set of acceptors, asking them:
} Promise to never accept a proposal numbered less than n
} Send the proposal with the highest number less than n that it

has accepted, if any.

} If the proposer receives the requested responses from a
majority of acceptors it can issue a proposal with number
n and value v, where v is:
} the value of the highest-numbered proposal among the

responses, or
} any value selected by the proposer if the responders reported

no proposals.
Quorums. Paxos.VR. BFT39

Optimization

} Given that an acceptor receives a request numbered n,
but it has already responded to a request numbered
greater than n, thereby promising not to accept any new
proposal numbered n.

} Acceptor can ignore
} such a request
} a request for a proposal it has already accepted

Quorums. Paxos.VR. BFT40

Accepting Proposals

} Phase 1 (Prepare)
} A proposer selects a proposal number n and sends a Prepare_Request<n> to a

majority of acceptors.

} If an acceptor receives a Prepare_Request<n> with n greater than that of any
Prepare_Request to which it has already responded, then it responds to the
request with an ACK which promises not to accept any more proposals
numbered less than n and includes the highest-numbered proposal (if any) that it
has accepted.

} Phase 2 (Accept)
} If the proposer receives an ACK to its Prepare_Request<n> from a majority of

acceptors, then it sends an Accept_Request<, n, v> to each of those acceptors,
where v is the value of the highest-numbered proposal among the responses, or
is any value if the responses reported no proposals.

} If an acceptor receives an accept request for a proposal numbered n, it accepts
the proposal unless it has already responded to a prepare request having a
number greater than n.

Quorums. Paxos.VR. BFT41

Learning about Accepted Proposals

} Lower cost by using a leader for learners
} Acceptors send their accepts to the leader for the

learners
} It is possible that a value has been accepted and some

learners did not learn it
} They will learn it when a new proposal is issued

Quorums. Paxos.VR. BFT42

} Each proposal has a unique number
} Higher numbers take priority over lower numbers
} It must be possible for a proposer to choose a new proposal number

higher than anything it has seen/used before

} One simple approach:

} Each server stores maxRound: the largest Round Number it has seen so far
} To generate a new proposal number:

} Increment maxRound
} Concatenate with Server Id

} Proposers must persist maxRound on disk: must not reuse proposal
numbers after crash/restart

Proposal Numbers

Server IdRound Number

Proposal Number

Quorums. Paxos.VR. BFT43

Two-phase approach:
} Phase 1: broadcast Prepare

} Find out about any chosen values
} Block older proposals that have not yet completed

} Phase 2: broadcast Accept
} Ask acceptors to accept a specific value

Paxos

Quorums. Paxos.VR. BFT44

Acceptors

3) Respond to Prepare(n):
} If n > minProposal then minProposal = n

} Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n, value):
} If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

} Return(minProposal)

Acceptors must record minProposal, acceptedProposal,
and acceptedValue on stable storage (disk)

Proposers
1) Choose new proposal number n

2) Broadcast Prepare(n) to all servers

4) When responses received from majority:
} If any acceptedValues returned, replace value

with acceptedValue for highest acceptedProposal

5) Broadcast Accept(n, value) to all servers

7) When responses received from majority:
} Any rejections (result > n)? goto (1)

} Otherwise, value is chosen

Paxos: Putting it All Together

Quorums. Paxos.VR. BFT45

1. Previous value already chosen:
} New proposer will find it and use it

Examples: later proposal prepares

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Prepare proposal 3.1
(from s1)”

“Accept
proposal 4.5
with value X
(from s5)”

X

Y

values

Quorums. Paxos.VR. BFT46

2. Previous value not chosen, but new proposer sees it:
} New proposer will use existing value
} Both proposers can succeed

Slide 47

Examples: later proposal prepares:

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Quorums. Paxos.VR. BFT47

3. Previous value not chosen, new proposer doesn’t see it:
} New proposer chooses its own value
} Older proposal blocked

Slide 48

Examples: later proposal prepares

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

Quorums. Paxos.VR. BFT48

Need for one Leader for Proposers

} Scenario where there will be no progress with two proposers
} Proposer p completes phase 1 for a proposal number n1
} Proposer q then completes phase 1 for a proposal number n2

> n1
} Proposer p’s phase 2 accept requests for a proposal

numbered n1 are ignored because the acceptors have all
promised not to accept any new proposal numbered less than
n2

} Proposer p then begins and completes phase 1 for a new
proposal number n3 > n2, causing the second phase 2 accept
requests of proposer q to be ignored

Quorums. Paxos.VR. BFT49

Leader

} One leader, it’s the leader for the proposers and for the
learners: issues proposals and informs all learners of the
outcome

} How to select leader: FLP implies that to select a leader
we need to use timeouts or randomization

} A new leader must not violate previously established
ordering!
} The new leader must know about all updates that may have

been ordered.
} If a new leader gets information from any majority of

acceptors, it can determine what may have been ordered!

Quorums. Paxos.VR. BFT50

} Competing proposers can livelock:

} One solution: randomized delay before restarting
} Give other proposers a chance to finish choosing

} Multi-Paxos will use leader election instead

Liveness

time

s1
s2
s3
s4
s5

A 3.1 XP 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

51 Quorums. Paxos.VR. BFT

Implementation: Node states

} Acceptor:
} na, va: highest accepted proposal number and its corresponding

accepted value
} np: highest proposal number seen

} Proposer:
} myn: the current proposal number

Quorums. Paxos.VR. BFT52

Proposer Algorithm for Value v

select myn > np
send PREPARE(myn) to all nodes

if received PREPARE_OK(na, va) from majority then

va = va with highest na, or choose own v

otherwise

send ACCEPT (na, va) to all

if received ACCEPT_OK(na) from majority then

send DECIDED(va) to all

Quorums. Paxos.VR. BFT53

If received PREPARE(n)

If n > np

np= n

send PREPARE_OK (na,va)

If received ACCEPT(n, v)
If n >= np
na = n
va = v
send ACCEPT_OK

Acceptor Algorithm

Quorums. Paxos.VR. BFT54

Decompose the problem:
} Basic Paxos (aka Paxos) (“single decree”):

} One or more servers propose values
} System must agree on a single value as chosen
} Only one value is ever chosen

} Multi-Paxos:
} Combine several instances of Basic Paxos to agree on a series

of values forming the log

The Paxos Approach

Quorums. Paxos.VR. BFT55

Recovery Case

} If leader fails, new leader is elected, known as view change
} The new leader cannot propose updates until it collects

information from a majority of servers!
} New leader must learn the outcome of all pending requests
} For all pending requests, the leader sends accept messages
} New leader sends a sequence n
} Every nodes sends a higher ni representing proposals it has

ordered or ackd
} Leader collects f+1 responses, eliminates duplicates, selects

proposals with highest number and broadcasts it to everybody,
computes also the list of missed messages

Quorums. Paxos.VR. BFT56

Questions

} What if more than one leader is active and issues two
different proposal numbers, can both leaders see a
majority of Prepare_Ok?

} What if leader fails while sending accept?
} What if a node fails after receiving Accept?
} What if a node fails after sending Prepare_Ok?

Quorums. Paxos.VR. BFT57

Liveness

} A leader can get conflicting Proposal messages!
} Why? Some nodes might think somebody else is the

leader
} How to fix? Add view numbers, each proposal is made

within a view, view number is attached to each proposal
} Leader selects the proposal with the highest view id

Quorums. Paxos.VR. BFT58

View Change

} A set of 2f+1 replicas, replica id: 0,1,…,2f
} Each view: one and only one leader
} Initially replica 0 assumes the leader role for view=0
} Subsequently, replicas take the primary role in a round-

robin fashion
} To ensure liveness

} A replica starts a view change timer on the initiation of each
instance of Paxos

} If the replica does not learn the request chosen before timer
expires => suspect the primary

Quorums. Paxos.VR. BFT59

View Change: Start

} On suspecting the leader, a replica broadcasts a View
Change message to all

} Current leader, if it is wrongly suspected, joins the view
change anyway (i.e., it steps down from leader role)

} A replica joins the view change even if it’s view change
timer has not expired yet

} On joining view change, a replica stops accepting normal
control msgs and respond to only checkpointing and view
change msgs

Quorums. Paxos.VR. BFT60

View Change: Installing a new view

} New view # Seq# of last stable checkpoint
} A set of accepted records since last stable checkpoint
} Each record consists of view#, seq#, request msg
} On receiving f+1 View Change msgs, new leader sends

New View msg
} Include a set of accept msgs
} Include all accepted msgs as part of View Change msg
} When a gap in seq# is detected, create an accept request

with no op
} A replica accepts new view msg if it has not installed a

newer view
Quorums. Paxos.VR. BFT61

C

0

1

2

request prepare accept reply

Optimization

f servers can crash, f = 1 in this example

Quorums. Paxos.VR. BFT62

3: Viewstamped replication

Slides by B. Liskov

Viewstamped replication

} Problem it solves: replication protocol
} Model:

} Failstop failures
} Asynchronous communication

} Uses quorums and ideas from 2PC
} 2f+1 replicas to tolerate f failures
} Operations must intersect at at least one replica
} Availability for both reads and writes
} Read and write quorums of f+1 nodes

} Appeared in PODC 1988, SOSP 1991, independent
from Paxos.

Quorums. Paxos.VR. BFT64

Quorums

Servers

Clients

1. State: … 2. State: … 3. State: …

write A

write
 A

write
A

X

Quorums. Paxos.VR. BFT65

Quorums

Servers

Clients

… … …A A

X
1. State: 2. State: 3. State:

Quorums. Paxos.VR. BFT66

Quorums

Servers

Clients

… …A

write B

write B

wr
ite

 B
X

…A

X
1. State: 2. State: 3. State:

Quorums. Paxos.VR. BFT67

Concurrent Operations

Servers

…A …A B …B

write B

wr
ite

 B

write A

B A

write
 A

write Bwrite
 A

1. State: 2. State: 3. State:

Clients

Quorums. Paxos.VR. BFT68

Overview

} Replicas must execute operations in the same order
} Implies replicas will have the same state, assuming

} replicas start in the same state
} operations are deterministic

} Uses a primary to order operations
} Uses views to address primary failures, system moves

through a sequence of views
} Primary runs the protocol
} Replicas watch the primary and do a view change if it

fails

Quorums. Paxos.VR. BFT69

Replica State

} A replica id i (between 0 and N-1)
} Replica 0, replica 1, …

} A view number v#, initially 0
} Primary is the replica with id

i = v# mod N

} A log of <op, op#, status> entries
} Status = prepared or committed

Quorums. Paxos.VR. BFT70

replica 2

replica 1

replica 0

Normal Case

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

write A,3

client 1

client 2

Q committed7

Q committed7

Q committed7

Quorums. Paxos.VR. BFT71

replica 2

replica 1

replica 0

Normal Case

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2

pre
par

e A
,8,3

X

A prepared8
Q committed7

Q committed7

Q committed7

Quorums. Paxos.VR. BFT72

replica 2

replica 1

replica 0

Normal Case

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2 ok A,8,3

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

Quorums. Paxos.VR. BFT73

replica 2

replica 1

replica 0

Normal Case

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2

com
mit A

,8,3

X

result

A committed8
Q committed7

A prepared8
Q committed7

Q committed7

Quorums. Paxos.VR. BFT74

View Changes

} Used to mask primary failures
} Replicas monitor the primary

} Client sends request to all

} Replica requests next primary to do a view change

Quorums. Paxos.VR. BFT75

Correctness Requirement

} Operation order must be preserved by a view change

} For operations that are visible
} executed by server
} client received result

} An operation could be visible if it prepared at f+1 replicas
} this is the commit point

Quorums. Paxos.VR. BFT76

View Change

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2

pre
par

e A
,8,3

X

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

Quorums. Paxos.VR. BFT77

View Change

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

X

Quorums. Paxos.VR. BFT78

View Change

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

View: 3
Primary: 0
Log:

client 1

client 2

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

X
do viewchange 4

Quorums. Paxos.VR. BFT79

View Change

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 4
Primary: 1
Log:

View: 3
Primary: 0
Log:

client 1

client 2

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

X
viewchange 4

X

Quorums. Paxos.VR. BFT80

View Change

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 4
Primary: 1
Log:

View: 4
Primary: 1
Log:

client 1

client 2

A prepared8
Q committed7

A prepared8
Q committed7

Q committed7

X
vc-o

k 4,log

Quorums. Paxos.VR. BFT81

Double booking

} Sometimes more than one operation is assigned the same
number
} In view 3, operation A is assigned 8
} In view 4, operation B is assigned 8

} Viewstamps
} op number is <v#, seq#>

Quorums. Paxos.VR. BFT82

Example

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 4
Primary: 1
Log:

View: 4
Primary: 1
Log:

client 1

client 2

Q committed7

Q committed7

Q committed7

A prepared8X

Quorums. Paxos.VR. BFT83

Example

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 4
Primary: 1
Log:

View: 4
Primary: 1
Log:

client 1

client 2

Q committed7

Q committed7

Q committed7

A prepared8

write B,4 B prepared8

Quorums. Paxos.VR. BFT84

Example

replica 2

replica 1

replica 0

View: 3
Primary: 0
Log:

View: 4
Primary: 1
Log:

View: 4
Primary: 1
Log:

client 1

client 2

Q committed7

Q committed7

Q committed7

A prepared8

B prepared8

prepare B,8,4

B prepared8

Quorums. Paxos.VR. BFT85

Additional Issues

} State transfer
} Garbage collection of the log
} Selecting the primary

Quorums. Paxos.VR. BFT86

Improved Performance

} Lower latency for writes (3 messages)
} Replicas respond at prepare
} client waits for f+1

} Fast reads (one round trip)
} Client communicates just with primary
} Leases

} Witnesses (preferred quorums)
} Use f+1 replicas in the normal case

Quorums. Paxos.VR. BFT87

Summary so far …

} State machine replication: approach
to implementing fault-tolerant
services

} Process groups: membership and VS
} Quorums: no membership, but

leaders (or view), each operation
requires a quorum,

} Paxos and VR
} Approaches that rely on quorums for

consensus and replication
} One can use Paxos to further build a

state machine replication
Quorums. Paxos.VR. BFT88

4: Byzantine replication

Byzantine-Resilient Replication

} How to design replication protocols that do not block
and can tolerate malicious participants

} Use ideas from both Byzantine agreement and replication
protocols (Viewstamped Replication)

} Ensure safety and liveness

Quorums. Paxos.VR. BFT90

BFT: Assumptions

} Provides safety without synchrony: ensures correct
replies in spite of malicious servers

} Assumes eventual time bounds for liveness: messages will
make it when network is stable

Quorums. Paxos.VR. BFT91

Assumes asynchronous communication
for safety

BFT: Assumptions

} Servers can be malicious, arbitrary behavior, f malicious
servers

} Failures are independent.
} Crypto options

} Digital signatures
} HMACs, requires n2 symmetric keys

Quorums. Paxos.VR. BFT92

BFT: Overview

} Deterministic replicas start in same state
} Replicas execute same requests in same order
} Correct replicas produce identical replies
} Uses a leader to coordinate the protocol; each leader

associated with a view
} Ensure ordering is not easy!
} What to do when the leader fails?

Quorums. Paxos.VR. BFT93

Dealing with Malicious Behavior

} Require 2f+1 out of 3f+1 participants to agree at each
step

} This ensures that any 2 sets of 2f+1 will intersect in a
correct replica

} Require at each step a proof that the 2f+1 agreed on the
issue to ensure safety

} When leader (primary) fails, new leader (view) elected

Quorums. Paxos.VR. BFT94

Client-Server Interaction

} Client submits a request to the primary
} If timeout occurs, suspects the primary and sends to

every server
} Servers order the request
} Client waits for answers from servers. How many

identical answers should a client wait for?

Quorums. Paxos.VR. BFT95

f+1 identical responses to be guaranteed
that at least one correct server returned
the correct value.

BFT: Components

} Normal case operation:
} primary is not faulty (does not fail and it is not

malicious)
} View changes:

} how to deal with view changes
} Garbage collection:

} when it is time to garbage collect information
maintained by each server

Quorums. Paxos.VR. BFT96

Safety and Liveness

} Safety:
} ensure ordering of requests within a view and

across view
} Liveness:

} there is progress at each step, including selecting a
new leader

Quorums. Paxos.VR. BFT97

BFT: Normal Case

} Primary goal of normal case is to ensure ordering of
requests within a view; also has a phase that works in
combination with the view change protocol

} Three phases:
} pre-prepare assigns order to requests
} prepare ensures servers agree on order within views
} commit ensures servers agree on order across views

} Messages are logged and authenticated

} Matching means: same view, sequence numbers, and
message digest

Quorums. Paxos.VR. BFT98

Normal Case Details

Quorums. Paxos.VR. BFT99

} Client c sends m = <REQUEST,o,t,c>c to the primary.
(o=operation,t=timestamp)

} Primary p assigns sequence n to m and sends
<PRE-PREPARE,v,n,m>p to other replicas, v is the current view;
unique identifier is given by n and v

} If server i accepts the message, it sends <PREPARE,v,n,d,i>i to
other replicas. (d is hash of the request). Signals that i agrees to
assign n to m in v.

} Once server i has a pre-prepare and 2f matching prepare
messages, it sends <COMMIT,v,n,d,i>i to other replicas. At this
point, correct replicas agree on an order of requests within view v.

} Once server i has 2f+1 matching prepare and commit messages
(2f+1 prepare and 2f+1 commit), it executes m, then sends
<REPLY,v,t,c,i,r>i to the client.

BFT: How Does It Work?

Quorums. Paxos.VR. BFT100

More Details

} Servers accept pre-prepare <PRE-PREPARE,v,n,m> if
} Their current view is view v
} They did not accept pre-prepare for v,n with different request

} All collected pre-prepare and 2f matching prepares serve
as a certificate for the next step: P-certificate(m,v,n)

} Request m executed after:
} having C-certificate(m,v,n)
} executing requests with sequence number less than n

Quorums. Paxos.VR. BFT101

BFT: View Change

} Provide liveness when primary fails:
} Timeouts used to trigger view changes
} Mapping between primary and view number
} Increase current view number and select new primary (º view

number mod 3f+1)

} Preserve safety
} ensure replicas are in the same view long enough
} prevent denial-of-service attacks

Quorums. Paxos.VR. BFT102

BFT: View Change Details

} When servers suspect the primary, they start a view
change
} A backup starts timer when it is waiting for executing a

request and stops it when it is no longer waiting
} If timer times out something is wrong with Primary
} Change view so that Primary gets changed

} A backup sends <VIEW-CHANGE, v+1, n, C, P, i >σi
} C is a proof of last stable check-point
} P is a proof of due requests after the check-point

Quorums. Paxos.VR. BFT103

BFT: View Change Details

} When a primary of new view gets 2f VIEW-CHANGE
messages, it declares new view

} The new Primary sends < NEW-VIEW, v+1, V, O >σi

} V is a proof containing valid VIEW-CHANGE messages
} O is a set containing PRE-PREPARE messages needed to

carry the incomplete messages from previous view into
new view

Quorums. Paxos.VR. BFT104

BFT: Garbage Collection

} The logs are cleaned periodically
} Before cleaning the logs a backup must be sure that all

requests whose messages it is going to clean have been
successfully executed

} After fixed number of requests replicas send check-point
signals < CHECKPOINT, n,d,i >σi

} When a replica receives 2f+1 check-point messages, it
clears all messages for requests up to n.

Quorums. Paxos.VR. BFT105

Summary

} BFT – requires a minimum of 3f+1
participant, 3 communication rounds
and f+1 identical answers to the
client

} Scaling beyond BFT, one can combine
fault-tolerant approaches (like Paxos)
with BFT to achieve better
performance on wide area networks.

Quorums. Paxos.VR. BFT106

5: Raft
Slides from Diego Ongaro and John Ousterhout

Raft’s Design Goals

} Alternative to Paxos; Paxos is too complex and
incomplete for real implementations

} Algorithm for building real systems
} Must be correct, complete, and perform well
} Must also be understandable

} “What would be easier to understand or explain?”
} Fundamentally different decomposition than Paxos
} Less complexity in state space
} Less mechanism

108 Quorums. Paxos.VR. BFT

Raft Overview

1. Leader election:
} Select one of the servers to act as leader
} Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes
4. Neutralizing old leaders
5. Client interactions

} Implementing linearizeable semantics

6. Configuration changes:
} Adding and removing servers

109 Quorums. Paxos.VR. BFT

Server States

} At any given time, each server is either:
} Leader: handles all client interactions, log replication
} Follower: completely passive
} Candidate: used to elect a new leader

} Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

start
timeout,

start election

receive votes from

majority of servers

timeout,

new election

discover server with higher term

discover current server or higher term

“step
down”

110 Quorums. Paxos.VR. BFT

Terms

} Time divided into terms:
} Election
} Normal operation under a single leader

} At most 1 leader per term
} Some terms have no leader (failed election)
} Each server maintains current term value
} Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Quorums. Paxos.VR. BFT111

Heartbeats and Timeouts

} Servers start up as followers
} Followers expect to receive RPCs from leaders or

candidates
} Leaders must send heartbeats to maintain authority
} If electionTimeout elapses with no RPCs:

} Follower assumes leader has crashed
} Follower starts new election
} Timeouts typically 100-500ms

112 Quorums. Paxos.VR. BFT

Election Basics

} Increment current term
} Change to Candidate state
} Vote for self
} Send RequestVote RPCs to all other servers, retry until

either:
1. Receive votes from majority of servers:

} Become leader
} Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
} Return to follower state

3. No-one wins election (election timeout elapses):
} Increment term, start new election

113 Quorums. Paxos.VR. BFT

Elections, cont’d

} Safety: allow at most one winner per term
} Each server gives out only one vote per term (persist on disk)
} Two different candidates can’t accumulate majorities in same

term

} Liveness: some candidate must eventually win
} Choose election timeouts randomly in [T, 2T]
} One server usually times out and wins election before others

wake up
} Works well if T >> broadcast time

Servers

Voted for
candidate A

B can’t also
get majority

114 Quorums. Paxos.VR. BFT

Log Structure

} Log entry = index, term, command

} Log stored on stable storage (disk); survives crashes

} Entry committed if known to be stored on majority of servers
} Durable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

115 Quorums. Paxos.VR. BFT

Normal Operation

} Client sends command to leader
} Leader appends command to its log
} Leader sends AppendEntries RPCs to followers
} Once new entry committed:

} Leader passes command to its state machine, returns result to client
} Leader notifies followers of committed entries in subsequent

AppendEntries RPCs
} Followers pass committed commands to their state machines

} Crashed/slow followers?
} Leader retries RPCs until they succeed

} Performance is optimal in common case:
} One successful RPC to any majority of servers

116 Quorums. Paxos.VR. BFT

Log Consistency

High level of coherency between logs:
} If log entries on different servers have same index and

term:
} They store the same command
} The logs are identical in all preceding entries

} If a given entry is committed, all preceding entries are also
committed

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

117 Quorums. Paxos.VR. BFT

AppendEntries Consistency Check

} Each AppendEntries RPC contains index, term of entry
preceding new ones

} Follower must contain matching entry; otherwise it
rejects request

} Implements an induction step, ensures coherency

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

118 Quorums. Paxos.VR. BFT

Leader Changes

} At beginning of new leader’s term:
} Old leader may have left entries partially replicated
} No special steps by new leader: just start normal operation
} Leader’s log is “the truth”
} Will eventually make follower’s logs identical to leader’s
} Multiple crashes can leave many extraneous log entries:

1 2 3 4 5 6 7 8log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5
119 Quorums. Paxos.VR. BFT

Safety Requirement

Once a log entry has been applied to a state machine, no other
state machine must apply a different value for that log entry

} Raft safety property:
} If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders

} This guarantees the safety requirement
} Leaders never overwrite entries in their logs
} Only entries in the leader’s log can be committed
} Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on
commitment

Restrictions on
leader election

120 Quorums. Paxos.VR. BFT

Picking the Best Leader

} Can’t tell which entries are committed!

} During elections, choose candidate with log most likely to
contain all committed entries
} Candidates include log info in RequestVote RPCs

(index & term of last log entry)
} Voting server V denies vote if its log is “more complete”:

(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

} Leader will have “most complete” log among electing majority

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2
unavailable during
leader transition

Committed ?

121 Quorums. Paxos.VR. BFT

Committing Entry from Current Term

} Case #1/2: Leader decides entry in current term is
committed

} Safe: leader for term 3 must contain entry 4

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries
just
succeeded
Can’t be elected
as
leader for term 3

Leader
for
term 2

122 Quorums. Paxos.VR. BFT

Committing Entry from Earlier Term

} Case #2/2: Leader is trying to finish committing entry
from an earlier term

} Entry 3 not safely committed:
} s5 can be elected as leader for term 5
} If elected, it will overwrite entry 3 on s1, s2, and s3!

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2
AppendEntries
just
succeeded

3

4

3

Leader
for
term 4

3

123 Quorums. Paxos.VR. BFT

New Commitment Rules

} For a leader to decide an entry is committed:
} Must be stored on a majority of servers
} At least one new entry from leader’s term must also be stored

on majority of servers

} Once entry 4 committed:
} s5 cannot be elected leader

for term 5
} Entries 3 and 4 both safe

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for
term 4

4

4

Combination of election rules and commitment rules
makes Raft safe

3

124 Quorums. Paxos.VR. BFT

Log Inconsistencies

Leader changes can result in log inconsistencies:

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index
leader for
term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

125 Quorums. Paxos.VR. BFT

Repairing Follower Logs

} New leader must make follower logs consistent with its own
} Delete extraneous entries
} Fill in missing entries

} Leader keeps nextIndex for each follower:
} Index of next log entry to send to that follower
} Initialized to (1 + leader’s last index)

} When AppendEntries consistency check fails, decrement nextIndex and try
again:

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index
leader for
term 7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

126 Quorums. Paxos.VR. BFT

Repairing Logs, cont’d

} When follower overwrites inconsistent entry, it deletes
all subsequent entries:

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log index
leader for
term 7

1 1 1follower (before) 2 2 33 3 3 32

nextIndex

1 1 1follower (after) 4

127 Quorums. Paxos.VR. BFT

Neutralizing Old Leaders

} Deposed leader may not be dead:
} Temporarily disconnected from network
} Other servers elect a new leader
} Old leader becomes reconnected, attempts to commit log entries

} Terms used to detect stale leaders (and candidates)
} Every RPC contains term of sender
} If sender’s term is older, RPC is rejected, sender reverts to follower and

updates its term
} If receiver’s term is older, it reverts to follower, updates its term, then

processes RPC normally

} Election updates terms of majority of servers
} Deposed server cannot commit new log entries

128 Quorums. Paxos.VR. BFT

Client Protocol

} Send commands to leader
} If leader unknown, contact any server
} If contacted server not leader, it will redirect to leader

} Leader does not respond until command has been logged,
committed, and executed by leader’s state machine

} If request times out (e.g., leader crash):
} Client reissues command to some other server
} Eventually redirected to new leader
} Retry request with new leader

129 Quorums. Paxos.VR. BFT

Client Protocol, cont’d

} What if leader crashes after executing command, but
before responding?
} Must not execute command twice

} Solution: client embeds a unique id in each command
} Server includes id in log entry
} Before accepting command, leader checks its log for entry with

that id
} If id found in log, ignore new command, return response from

old command

} Result: exactly-once semantics as long as client doesn’t
crash

130 Quorums. Paxos.VR. BFT

Configuration Changes

} System configuration:
} ID, address for each server
} Determines what constitutes a majority

} Consensus mechanism must support changes in the
configuration:
} Replace failed machine
} Change degree of replication

131 Quorums. Paxos.VR. BFT

Configuration Changes, cont’d

Cannot switch directly from one configuration to another:
conflicting majorities could arise

Cold Cnew

Server 1
Server 2
Server 3
Server 4
Server 5

Majority of Cold

Majority of Cnew

time

132 Quorums. Paxos.VR. BFT

Joint Consensus

} Raft uses a 2-phase approach:
} Intermediate phase uses joint consensus (need majority of

both old and new configurations for elections, commitment)
} Configuration change is just a log entry; applied immediately on

receipt (committed or not)
} Once joint consensus is committed, begin replicating log entry

for final configuration

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

133 Quorums. Paxos.VR. BFT

Joint Consensus, cont’d

} Additional details:
} Any server from either configuration can serve as leader
} If current leader is not in Cnew, must step down once Cnew is

committed.

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

leader not in Cnew
steps down here

134 Quorums. Paxos.VR. BFT

