Cristina Nita-Rotaru

Slides based on material by Prof. Ken Birman, for CS5412, and authors of TensorFlow and authors of GraphLab

Required reading for this topic...

- Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, VLDB 2012
- Pregel: A System for Large-Scale Graph Processing, SIGMOD 2010
- TensorFlow: A System for Large-Scale Machine Learning OSDI 2016
- Scaling Distributed Machine Learning with the Parameter Server, OSDI 2014

Clouds and machine learning tools

- Early cloud just served web pages and embedded ads
- However, <u>individualized</u> advertising gives far better results... (and they increase revenue)
- Better selection of ads gave rise to an AI revolution
 - Individual actions
 - Social networking "graphs"
- Today, the whole cloud is a massive scalable system for machine learning and associated actions

Where does the AI live?

How to support ML algorithms at scale

• Old approach:

- threads, locks, messages
- Newer approach:
 - MapReduce, Spark
- When is MapReduce the right approach?
- When MapReduce does not work well?
- Design new abstractions and systems to support ML development and running at scale
 - GraphLab, created at CMU, eventually bought by Apple
 - TensorFlow, created by GoogleBrain

1:Why Map-Reduce is not the best approach for ML applications

MapReduce – Map Phase

Embarrassingly Parallel independent computation No Communication needed

MapReduce – Map Phase

Image Features

MapReduce – Map Phase

Embarrassingly Parallel independent computation No Communication needed

MapReduce – Reduce Phase

Class A Face Statistics

Class B Face Statistics

Image Features

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel

Map Reduce

Feature Cross Extraction Validation

Computing Sufficient Statistics

Is there more to Machine Learning

?

Label propagation algorithm

Social Arithmetic:

50% What I list on my profile 40% Sue Ann Likes 10% Carlos Like

- I Like: 60% Cameras, 40% Biking
- Recurrence Algorithm:

 $Likes[i] = \sum_{j \in Friends[i]} W_{ij} \times Likes[j]$

- iterate until convergence
- Parallelism:

Compute all Likes[i] in parallel

Properties of Graph Parallel Algorithms

Dependency Graph

Factored Computation

Iterative Computation

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-ParallelGraph-Parallel

Map Reduce

Feature Extraction Va

Cross Validation

Computing Sufficient Statistics

Map Reduce?

LassoLabel PropagationKernel
MethodsBelief
PropagationTensor
FactorizationPageRankDeep Belief
NetworksNeural
Networks

Limitations of MR: Data Dependencies

Map-Reduce does not efficiently express dependent data

- User must code substantial data transformations
- Costly data replication

AI

Limitations of MR: Iterative Algorithms

Map-Reduce does not efficiently express iterative algorithms:

Iterative MapReduce

Only a subset of data needs computation:

Iterative MapReduce

System is not optimized for iteration:

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-ParallelGraph-Parallel

Map Reduce

Feature Cross Extraction Validation

Computing Sufficient Statistics

Pregel (Giraph)?

Lasso	SVM		
	Kernel Method	Belief Propagatio s	'n
Tensor Factorization		PageRank	
Deep Netw	Belief ⁄orks	Neural Networks	AI

Pregel (Giraph)

Bulk Synchronous Parallel Model (Valiant 1990):

Loopy Belief Propagation (Loopy BP)

- Iteratively estimate the "beliefs" about vertices
 - Read in messages
 - Updates marginal estimate (belief)
 - Send updated out messages
- Repeat for all variables until convergence

Bulk Synchronous Loopy BP

Often considered embarrassingly parallel

- Associate processor with each vertex
- Receive all messages
- Update all beliefs
- Send all messages
- Proposed by:
 - Brunton et al. CRV'06
 - Mendiburu et al. GECC'07
 - Kang,et al. LDMTA'10

Sequential Computational Structure

Hidden Sequential Structure

24

Hidden Sequential Structure

• Running Time:

Optimal Sequential Algorithm

The Splash Operation

• Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- 3) Backward Pass computing all messages at each vertex

Data-Parallel algorithms can be inefficient

Residual Splash for Optimally Parallelizing Belief Propagation

The limitations of the Map-Reduce abstraction can lead to inefficient parallel algorithms.

Need a new abstraction

Map-Reduce is not well suited for Graph-Parallelism

Data-ParallelGraph-Parallel

Map Reduce

FeatureCrossExtractionValidation

Computing Sufficient Statistics

2:GraphLab

The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

Data Graph

A graph with arbitrary data (C++ Objects) associated with each vertex and edge.

Social Network

Vertex Data:

- •User profile text
- Current interests estimates

Edge Data:

• Similarity weights

Implementing the Data Graph

Multicore Setting

In Memory

- Relatively Straight Forward
 - ▶ vertex_data(vid) \rightarrow data
 - ▶ edge_data(vid,vid) \rightarrow data
 - neighbors(vid) \rightarrow vid_list
- Challenge:
 - Fast lookup, low overhead
- Solution:
 - Dense data-structures
 - Fixed Vdata&Edata types
 - Immutable graph structure

Cluster Setting

- In Memory
- Partition Graph:
 - ParMETIS or Random

Cached Ghosting

The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

Update Functions

An **update function** is a user defined program which when applied to a **vertex** transforms the data in the **scope** of the vertex

label_prop(i, scope){
// Get Neighborhood data
 (Likes[i], W_{ij}, Likes[j]) ←scope

// Update the vertex data

$$Likes[i] \leftarrow \sum W_{ij} \times Likes[j];$$

j∈Friends[i]
// Reschedule Neighbors if needed
if Likes[i] changes then
reschedule_neighbors_of(i);

The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

The Scheduler

The **scheduler** determines the order that vertices are updated.

The process repeats until the scheduler is empty.

Implementing the Schedulers

- Multicore Setting
 - Challenging!
 - Fine-grained locking
 - Atomic operations
 - Approximate FiFo/Priority
 - Random placement
 - Work stealing

- Cluster Setting
- Multicore scheduler on each node
 - Schedules only "local" vertices
 - Exchange update functions

The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

Ensuring Race-Free Code

• How much can computation overlap?

Importance of consistency

Many algorithms require strict consistency, or perform significantly better under strict consistency.

Alternating Least Squares

Importance of consistency

Machine learning algorithms require "model debugging"

GraphLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential execution of update functions which produces the same result.

Consistency Rules

Guaranteed sequential consistency for all update functions

Full Consistency

Obtaining More Parallelism

Edge Consistency

Safe

Consistency Through R/W Locks

- Read/Write locks:
 - Full Consistency

Consistency Through R/W Locks

Multicore Setting: Pthread R/W Locks

Distributed Setting: Distributed Locking
 Prefetch Locks and Data

Allow computation to proceed while locks/data are requested.

Consistency through scheduling

- Edge Consistency Model:
 - Two vertices can be Updated simultaneously if they do not share an edge.
- Graph Coloring:
 - Two vertices can be assigned the same color if they do not share an edge.

The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

Algorithms Implemented

- PageRank
- Loopy Belief Propagation
- Gibbs Sampling
- CoEM
- Graphical Model Parameter Learning
- Probabilistic Matrix/Tensor Factorization
- Alternating Least Squares
- Lasso with Sparse Features
- Support Vector Machines with Sparse Features
- Label-Propagation

Fault-tolerance: Checkpointing

1985: Chandy-Lamport invented an asynchronous snapshotting algorithm for distributed systems.

Checkpointing Fine Grained Chandy-Lamport.

Easily implemented within GraphLab as an Update Function!

Loopy Belief Propagation 3D retinal image denoising

Vertices: 1 Million Edges: 3 Million

Update Function: Loopy BP Update Equation Scheduler: Approximate Priority Consistency Model: Edge Consistency

Loopy Belief Propagation

Hadoop	95 Cores	7.5 hrs
--------	----------	---------

CoEM (Rosie Jones, 2005)

Video Cosegmentation Segments mean the same

Gaussian EM clustering + BP on 3D grid Model: 10.5 million nodes, 31 million edges

Video Coseg. Speedups

Al

Prefetching Data & Locks

Matrix Factorization

Netflix Collaborative Filtering

Alternating Least Squares Matrix Factorization

Model: 0.5 million nodes, 99 million edges

Netflix

The Cost of Hadoop

Summary

An abstraction tailored to Machine Learning

Targets Graph-Parallel Algorithms

Naturally expresses

- Data/computational dependencies
- Dynamic iterative computation
- Simplifies parallel algorithm design
- Automatically ensures data consistency
- Achieves state-of-the-art parallel performance on a variety of problems

3:TensorFlow

Context

- Huge need for high-productivity tools for building solutions to machine-learning problems
- Current infrastructures force people to reinvent the wheel
- Spark/RDD model illustrates power that better tools bring, but remains very low level: an RDD can deal with "anything" and is really just a small code applet
- TensorFlow builds off idea that ML applications are best understood by thinking about structured data: tensors

Python+Dataflow Programming

DataFlow Programming Example

node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0, dtype=tf.float32)
node3 = tf.add(node1,node2)

Core TensorFlow Constructs

- Dataflow Graphs: entire computation
- Data Nodes: individual data or operations
- Edges: implicit dependencies between nodes;
 - TensorFlow transparently inserts the appropriate communication between distributed subcomputations.
- **Operations:** any computation
- Constants: single values (tensors)

Core TensorFlow constructs

> All nodes return **tensors**, or higher-dimensional matrices

How a node computes is indistinguishable to TensorFlow

You are metaprogramming. No computation occurs yet!
Running code

tf.Session().run(node3) #returns 7

Placeholders (inputs) and how to use them

node1 = tf.placeholder(tf.float32)
node2 = tf.placeholder(tf.float32)
node3 = tf.add(node1,node2)
tf.Session().run(node3, {node1 : 3, node2 : 4})

Variables (mutable state)

W = tf.Variable([.3], dtype=tf.float32) b = tf.Variable([-.3], dtype=tf.float32) x = tf.placeholder(tf.float32) linear_model = W * x + b #Operator Overloading! init = tf.global variables initializer() with tf.Session() as sess: sess.run(init)

Specifying devices using with blocks

Specifying devices using with blocks

Starting remote TensorFlow nodes

```
#all the machines mentioned in the dataflow
graph
cluster =
tf.train.ClusterSpec([ip1:p1,ip2:p2,...])
#task index is set to my "id"
server = tf.train.Server(cluster,task index=0)
#begin listening
server.join()
```

Server actions

Sessions run code on **subgraphs**; can parallelize by splitting input

```
with tf.device("/task:n"):
    half_input = tf.Variable(input[:len(input)/2])
    work = tf.CoolFeature(half_input)
    cluster = tf.train.ClusterSpec(...)
    server = tf.train.Server(cluster, task_index=n)
with tf.Session(server.target) as sess:
    sess.run(work)
```

Suggested Design: parameter server

Parameter server focus :

- Hold Mutable state
- Apply updates
- Maintain availability
- Group Name: **ps**

Worker focus:

- Perform "active" actions
- Checkpoint state to FS
- Mostly stateless; can be restarted
- Group name: worker

Parameter server example

```
with tf.device("/jobs:ps/task:0/cpu:0"):
  W = tf.Variable(...)
  b = tf.Variable(...)
inputs = tf.split(0,num workers,input)
outputs = []
for i in range (num workers):
  with tf.device("/job:worker/task:%d/gpu:0" % i):
    outputs.append(tf.matmul(input[i],W) + b)
```

For most TF applications, you don't need to know more.

- But this is because most TF runs are just a few steps, like a Spark job that performs a few actions on some RDDs
- What about using TF for long-term jobs that continuously process input, like events from a smart highway?
 - The model still makes sense, but now fault-tolerance would be an issue
 - Control of concurrency / consistency could begin to matter, too.

Hardcoded role. No worries about leader election, no consensus

```
saver = tf.train.Saver(sharded=True)
with tf.Session(server.target) as sess:
  while True:
    ... #sleep a bit
    saver.save(sess, "gs://path/to/dump")
    if (bad thing happens):
      saver.load(sess,"gs://path/to/dump")
```


RESTART FROM CHECKPOINT!

CALL THE OPERATOR! MANUAL INTERVENTION!

- > There are libraries, but they are still a bit painful.
- Remember to create frequent checkpoints

Bottom line is that by default, TF is not consistent and is good at restarting from a checkpoint. Recent events not in a checkpoint can be forgotten.

TensorFlow implementation

- Semi-interpreted
- Call to kernel per primitive operation
- Can batch operations with custom C++
- Basic type-safety within dataflow graph (error at graph construction time)
- Global Names: overlapping TF instances share variables!

Synchronous vs Asynchronous

- Determined by node: Queue nodes used for barriers
- Synchronous nearly as fast as asynchronous
- Default model is asynchronous

Performance: Single Node

	Training step time (ms)			
Library	AlexNet	Overfeat	OxfordNet	GoogleNet
Caffe [38]	324	823	1068	1935
Neon [58]	87	211	320	270
Torch [17]	81	268	529	470
TensorFlow	81	279	540	445

Performance: Distributed Throughput

Key Contributions

- Programmability
- Accessibility / ease of use
- Richness of Libraries
- Ready-made community

