
Cristina Nita-Rotaru

7610 : Distributed Systems

AI.

Slides based on material by Prof. Ken Birman,
for CS5412, and authors of TensorFlow and
authors of GraphLab

Required reading for this topic…

} Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the
Cloud, VLDB 2012

} Pregel: A System for Large-Scale Graph
Processing, SIGMOD 2010

} TensorFlow: A System for Large-Scale
Machine Learning OSDI 2016

} Scaling Distributed Machine Learning
with the Parameter Server, OSDI 2014

AI2

Clouds and machine learning tools

} Early cloud just served web pages and embedded ads
} However, individualized advertising gives far better

results… (and they increase revenue)
} Better selection of ads gave rise to an AI revolution

} Individual actions
} Social networking “graphs”

} Today, the whole cloud is a massive scalable system for
machine learning and associated actions

AI33

Where does the AI live?

4

Mobile
client

Second
tier:

Caches
and similar
µ-services

First tier:
Builds
web

pages

Third tier:
Stateful

services like
databases,
plus other
“workers”

Back-end: Big-
data analytics
and machine
learning tools

Stuff “happens” here …100ms ….seconds
….minutes/hours

http://www.cs.cornell.edu/courses/cs5412/2018sp
AI

How to support ML algorithms at scale

} Old approach:
} threads, locks, messages

} Newer approach:
} MapReduce, Spark

} When is MapReduce the right approach?
} When MapReduce does not work well?
} Design new abstractions and systems to support ML

development and running at scale
} GraphLab, created at CMU, eventually bought by Apple
} TensorFlow, created by GoogleBrain

AI5

1:Why Map-Reduce is not the best approach
for ML applications

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase

AI7

Embarrassingly Parallel independent computation

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

No Communication needed

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase

AI88

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

Image Features

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase

AI99

Embarrassingly Parallel independent computation

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

No Communication needed

CPU 1 CPU 2

MapReduce – Reduce Phase

AI1010

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

22
26
.
26

17
26
.
31

Image Features

Class A Face
Statistics

Class B Face
Statistics

Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!

AI1111

Data-ParallelGraph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Is there more to
Machine Learning

?

Profile

Label propagation algorithm

} Social Arithmetic:

} Recurrence Algorithm:

} iterate until convergence

} Parallelism:
} Compute all Likes[i] in parallel

Sue Ann

Carlos
Jo

se
ph

50% What I list on my profile
40% Sue Ann Likes
10% Carlos Like

40%

10%

50%

80%
Cameras
20% Biking

30%
Cameras
70% Biking

50%
Cameras
50% Biking

I Like:

+
60% Cameras,
40% Biking

Likes[i]= Wij × Likes[j]
j∈Friends[i]
∑

AI12

Properties of Graph Parallel Algorithms

AI13

Dependency
Graph

Iterative
Computation

What I Like

What My
Friends Like

Factored
Computation

?

Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!

AI14

Data-ParallelGraph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Map Reduce?

Limitations of MR: Data Dependencies
} Map-Reduce does not efficiently express dependent data

} User must code substantial data transformations
} Costly data replication

In
de

pe
nd

en
t D

at
a

R
ow

s

AI15

Sl
ow

Pr
oc

es
so

r
Limitations of MR: Iterative Algorithms

} Map-Reduce does not efficiently express iterative algorithms:

AI16

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rri

er

Ba
rri

er

Ba
rri

er

Iterative MapReduce

} Only a subset of data needs computation:

AI17

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rri

er

Ba
rri

er

Ba
rri

er

Iterative MapReduce

} System is not optimized for iteration:

AI18

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Disk Penalty

Disk Penalty

Disk Penalty

StartupPenalty

Startup Penalty

Startup Penalty

Belief
Propagation

SVM

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!

AI19

Data-ParallelGraph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Map Reduce?Pregel (Giraph)?

Barrier
Pregel (Giraph)

} Bulk Synchronous Parallel Model (Valiant 1990):

AI20

Compute Communicate

Loopy Belief Propagation (Loopy BP)

} Iteratively estimate the “beliefs” about vertices
} Read in messages
} Updates marginal

estimate (belief)
} Send updated

out messages

} Repeat for all variables
until convergence

AI21

Bulk Synchronous Loopy BP

} Often considered embarrassingly parallel
} Associate processor

with each vertex
} Receive all messages
} Update all beliefs
} Send all messages

} Proposed by:
} Brunton et al. CRV’06
} Mendiburu et al. GECC’07
} Kang,et al. LDMTA’10
} …

AI22

Sequential Computational Structure

AI23

Hidden Sequential Structure

AI24

Hidden Sequential Structure

} Running Time:

AI25

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations

Optimal Sequential Algorithm

AI26

Forward-Backward

Bulk Synchronous
2n2/p

p ≤ 2n

Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2

The Splash Operation

} Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

AI27
~

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

Data-Parallel algorithms can be inefficient

AI28

The limitations of the Map-Reduce abstraction can
lead to inefficient parallel algorithms.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4 5 6 7 8

R
un

ti
m

e
in

 S
ec

on
ds

Number of CPUs

Optimized in Memory Bulk Synchronous

Asynchronous Splash BP

Belief
PropagationSVM

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

Need a new abstraction

} Map-Reduce is not well suited for Graph-Parallelism

AI29

Data-ParallelGraph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Pregel (Giraph)

2:GraphLab

The GraphLab Framework

AI31

Scheduler Consistency
Model

Graph Based
Data Representation

Update Functions
User

Computation

Data Graph

AI32

A graph with arbitrary data (C++ Objects)
associated with each vertex and edge.

Vertex Data:
•User profile text
• Current interests estimates

Edge Data:
• Similarity weights

Graph:
• Social Network

Implementing the Data Graph

} In Memory
} Relatively Straight Forward

} vertex_data(vid) à data
} edge_data(vid,vid) à data
} neighbors(vid) à vid_list

} Challenge:
} Fast lookup, low overhead

} Solution:
} Dense data-structures
} Fixed Vdata&Edata types
} Immutable graph structure

AI33

Multicore Setting Cluster Setting
} In Memory
} Partition Graph:

} ParMETIS or Random
Cuts

} Cached Ghosting
Node 1 Node 2

A B

C D

A B

C D

A B

C D

The GraphLab Framework

AI34

Scheduler Consistency
Model

Graph Based
Data Representation

Update Functions
User

Computation

label_prop(i, scope){
// Get Neighborhood data

(Likes[i], Wij, Likes[j]) ßscope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then

reschedule_neighbors_of(i);
}

Likes[i]← Wij × Likes[j]
j∈Friends[i]
∑ ;

Update Functions

AI35

An update function is a user defined program which when applied
to a vertex transforms the data in the scope of the vertex

The GraphLab Framework

AI36

Scheduler Consistency
Model

Graph Based
Data Representation

Update Functions
User

Computation

The Scheduler

AI37

CPU 1

CPU 2

The scheduler determines the order that vertices are
updated.

e f g

kjih

dcba b

i
h

a

i

b e f

j

c

Sc
he

du
le

r

The process repeats until the scheduler is empty.

CPU 1CPU 2CPU 3CPU 4

Implementing the Schedulers

} Challenging!
} Fine-grained locking
} Atomic operations

} Approximate FiFo/Priority
} Random placement
} Work stealing

AI39

} Multicore Setting } Cluster Setting

} Multicore scheduler on
each node
} Schedules only “local”

vertices
} Exchange update functions

Qu
eu

e
1

Qu
eu

e
2

Qu
eu

e
3

Qu
eu

e
4

Node 1
CPU 1 CPU 2

Qu
eu

e
1

Qu
eu

e
2

Node 2
CPU 1 CPU 2

Qu
eu

e
1

Qu
eu

e
2

v1 v2

f(v1)

f(v2)

The GraphLab Framework

AI40

Scheduler Consistency
Model

Graph Based
Data Representation

Update Functions
User

Computation

Ensuring Race-Free Code

} How much can computation overlap?

AI41

Importance of consistency

AI42

Many algorithms require strict consistency, or perform
significantly better under strict consistency.

0 10 20 300

2

4

6

8

10

12

Iterations

Er
ro

r (
R

M
SE

)

Inconsistent Updates

Consistent Updates

Alternating Least Squares

Importance of consistency

Machine learning algorithms require “model debugging”

Build

Test

Debug

Tweak Model
AI43

GraphLab Ensures Sequential Consistency

AI44

For each parallel execution, there exists a sequential
execution of update functions which produces the same
result.

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time

Consistency Rules

AI46

Guaranteed sequential consistency for all update functions

Data

Full Consistency

AI47

Obtaining More Parallelism
48

AI

Edge Consistency

AI49

CPU 1 CPU 2

Safe

Read

Consistency Through R/W Locks

} Read/Write locks:
} Full Consistency

} Edge Consistency

AI50

Write Write Write
Canonical Lock Ordering

Read Write Read
Read Write

Consistency Through R/W Locks

} Multicore Setting: Pthread R/W Locks
} Distributed Setting: Distributed Locking

} Prefetch Locks and Data

} Allow computation to proceed while locks/data are requested.

AI51

Node 2Node 1Data Graph
Partition

Lock Pipeline

Consistency through scheduling

} Edge Consistency Model:
} Two vertices can be Updated simultaneously if they do not

share an edge.

} Graph Coloring:
} Two vertices can be assigned the same color if they do not

share an edge.

AI52

Ba
rri

er

Phase 1

Ba
rri

er

Phase 2

Ba
rri

er

Phase 3

The GraphLab Framework

AI53

Scheduler Consistency
Model

Graph Based
Data Representation

Update Functions
User

Computation

Algorithms Implemented

} PageRank
} Loopy Belief Propagation
} Gibbs Sampling
} CoEM
} Graphical Model Parameter Learning
} Probabilistic Matrix/Tensor Factorization
} Alternating Least Squares
} Lasso with Sparse Features
} Support Vector Machines with Sparse Features
} Label-Propagation
} …

AI54

Fault-tolerance: Checkpointing

1985: Chandy-Lamport invented an asynchronous
snapshotting algorithm for distributed systems.

55

snapshotted
Not snapshotted

Checkpointing
Fine Grained Chandy-Lamport.

Easily implemented within GraphLab as an Update
Function!

Async. Snapshot Performance

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

No Snapshot

Snapshot

One slow
machine

No penalty incurred by the slow machine!

Loopy Belief Propagation

AI58

3D retinal image denoising

Data Graph
Update Function:
Loopy BP Update Equation
Scheduler:
Approximate Priority
Consistency Model:

Edge Consistency

Vertices: 1 Million
Edges: 3 Million

Loopy Belief Propagation

15.5x speedup

AI59

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

Number of CPUs

Optima
lBe

tte
r

SplashBP

CoEM (Rosie Jones, 2005)

AI60

Named Entity Recognition Task
the dog

Australia

Catalina Island

<X> ran quickly

travelled to <X>

<X> is pleasant

Hadoop 95 Cores 7.5 hrs

Is “Dog” an animal?
Is “Catalina” a place?

Vertices: 2 Million
Edges: 200 Million

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

Number of CPUs

Be
tte

r

Optimal

GraphLabCoE
M

CoEM (Rosie Jones, 2005)

61

GraphLab 16 Cores 30 min

15x Faster!6x fewer CPUs!

Hadoop 95 Cores 7.5 hrs

AI61

Video Cosegmentation

AI62

Segments mean the same

Model: 10.5 million nodes, 31 million edges

Gaussian EM clustering + BP on 3D grid

Video Coseg. Speedups

AI63

Prefetching Data & Locks

AI64

0" 200" 400" 600"

Baseline"

maxpending(100)"

maxpending(1000)"

Run$me(s)*

"Op6mal"Par66oned"

"Worst"Case"Par66on"

Matrix Factorization

} Netflix Collaborative Filtering
} Alternating Least Squares Matrix Factorization

AI65

Model: 0.5 million nodes, 99 million edges

Netflix

Users

Movies

d

Netflix

AI66

4 8 16 24 32 40 48 56 641
2

4

6

8

10

12

14

16

#Nodes

Sp
ee

du
p

Ideal
d=100 (159.91 IPB)

d=50 (85.68 IPB)

d=5 (44.85 IPB)
d=20 (48.72 IPB)

Speedup Increasing size of the matrix factorization

The Cost of Hadoop

AI67

101 102 103 104
10−1

100

101

102

Runtime(s)

C
os
t($
)

GraphLab

Hadoop

0.92 0.94 0.96 0.98 1
10−1

100

101

Error (RMSE)

C
os

t($
)

D=100

D=50
D=20 D=5

Summary

} An abstraction tailored to Machine Learning
} Targets Graph-Parallel Algorithms

} Naturally expresses
} Data/computational dependencies
} Dynamic iterative computation

} Simplifies parallel algorithm design
} Automatically ensures data consistency
} Achieves state-of-the-art parallel performance

on a variety of problems

AI68

3:TensorFlow

Context

} Huge need for high-productivity tools for building
solutions to machine-learning problems

} Current infrastructures force people to reinvent the
wheel

} Spark/RDD model illustrates power that better tools
bring, but remains very low level: an RDD can deal with
“anything” and is really just a small code applet

} TensorFlow builds off idea that ML applications are best
understood by thinking about structured data: tensors

AI70

Python+Dataflow Programming

AI71

DataFlow Programming Example

node1 = tf.constant(3.0, dtype=tf.float32)

node2 = tf.constant(4.0, dtype=tf.float32)

node3 = tf.add(node1,node2)

Constant 3

Constant 4

Add

AI72

Core TensorFlow Constructs

} Dataflow Graphs: entire computation
} Data Nodes: individual data or operations
} Edges: implicit dependencies between nodes;

} TensorFlow transparently inserts the appropriate
communication between distributed subcomputations.

} Operations: any computation
} Constants: single values (tensors)

AI73

Core TensorFlow constructs

} All nodes return tensors, or higher-dimensional matrices

} How a node computes is indistinguishable to
TensorFlow

} You are metaprogramming. No computation occurs
yet!

AI74

Running code

tf.Session().run(node3) #returns 7

AI75

Placeholders (inputs) and how to use
them

node1 = tf.placeholder(tf.float32)

node2 = tf.placeholder(tf.float32)

node3 = tf.add(node1,node2)

tf.Session().run(node3, {node1 : 3, node2 : 4})

AI76

Variables (mutable state)

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

x = tf.placeholder(tf.float32)

linear_model = W * x + b #Operator

Overloading!

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

sess.run(linear_model) AI77

Specifying devices using with blocks

with tf.device("/cpu:0"):

W = tf.Variable(...)

V = tf.Variable(...)

with tf.device("/gpu:0")

output = tf.some_fancy_math(input, W) + b

CPU:0 GPU:0
AI78

Specifying devices using with blocks

with tf.device("/task:0/cpu:0"):

W = tf.Variable(...)

V = tf.Variable(...)

with tf.device("/task:1/gpu:0")

output = tf.some_fancy_math(input, W) + b

task:0/CPU:0 task:1/GPU:0
AI79

Starting remote TensorFlow nodes

#all the machines mentioned in the dataflow

graph

cluster =

tf.train.ClusterSpec([ip1:p1,ip2:p2,...])

#task_index is set to my "id"

server = tf.train.Server(cluster,task_index=0)

#begin listening

server.join()

AI80

with tf.device("/task:n"):

half_input = tf.Variable(input[:len(input)/2])

work = tf.CoolFeature(half_input)

cluster = tf.train.ClusterSpec(...)

server = tf.train.Server(cluster, task_index=n)

with tf.Session(server.target) as sess:

sess.run(work)

Sessions run code on subgraphs; can parallelize by
splitting input

Server actions

AI81

Suggested Design: parameter server

TensorFlow allows naming groups of nodes by their role: useful!

AI82

Parameter server focus :

} Hold Mutable state
} Apply updates
} Maintain availability
} Group Name: ps

AI83

Worker focus:

} Perform “active” actions
} Checkpoint state to FS
} Mostly stateless; can be restarted
} Group name: worker

AI84

Parameter server example

with tf.device("/jobs:ps/task:0/cpu:0"):

W = tf.Variable(...)

b = tf.Variable(...)

inputs = tf.split(0,num_workers,input)

outputs = []

for i in range (num_workers):

with tf.device("/job:worker/task:%d/gpu:0" % i):

outputs.append(tf.matmul(input[i],W) + b)

AI85

And that’s it!

} For most TF applications, you don’t need to know more.

} But this is because most TF runs are just a few steps, like
a Spark job that performs a few actions on some RDDs

} What about using TF for long-term jobs that continuously
process input, like events from a smart highway?
} The model still makes sense, but now fault-tolerance would be

an issue
} Control of concurrency / consistency could begin to matter,

too.

AI86

Adding Fault tolerance

Leader

AI87

Distinguished Leader

saver = tf.train.Saver(sharded=True)

with tf.Session(server.target) as sess:

while True:

... #sleep a bit

saver.save(sess, "gs://path/to/dump")

if (bad_thing_happens):

saver.load(sess,"gs://path/to/dump")

Hardcoded role. No worries about leader election, no
consensus

AI88

Adding Fault tolerance

Leader

AI89

Adding Fault tolerance

Leader

AI90

Adding Fault tolerance

Leader

AI91

Adding Fault tolerance

Leader

RESTART FROM CHECKPOINT!

AI92

Adding Fault tolerance

Leader

AI93

Adding Fault tolerance

Leader

CALL THE OPERATOR! MANUAL INTERVENTION!
AI94

} There are libraries, but they are still a bit painful.

} Remember to create frequent checkpoints

Bottom line is that by default, TF is not consistent and
is good at restarting from a checkpoint. Recent
events not in a checkpoint can be forgotten.

Notes

AI95

TensorFlow implementation

} Semi-interpreted
} Call to kernel per

primitive operation
} Can batch operations

with custom C++
} Basic type-safety within

dataflow graph (error at
graph construction time)

} Global Names:
overlapping TF instances
share variables!

AI96

Synchronous vs Asynchronous

} Determined by node: Queue nodes used for barriers
} Synchronous nearly as fast as asynchronous
} Default model is asynchronous

AI97

Performance: Single Node

AI98

Performance: Distributed Throughput

AI99

Key Contributions

} Programmability
} Accessibility / ease of use
} Richness of Libraries
} Ready-made community

AI100

