
Cristina Nita-Rotaru

7610: Distributed Systems

Introduction. Class Policy. Examples.

1: Intro

Welcome to cs7610

} Introducing the team
} How we will communicate
} Take questions
} Class policies
} Take questions
} Why distributed systems
} Class syllabus
} Take questions
} Docker and project zero
} Take questions

Introduction.3

How we communicate in this class

} ZOOM – main class delivery channel

} CANVAS – main hub

} PIAZZA – main communication channel

} Email in case of emergency - use cs7610 in subject
c.nitarotaru@northeastern.edu

Introduction.4

ZOOM (Link is in canvas and piazza)

} Before class:
} Mute and no video before class start
} Zoom opens at 1:15, join early

} Start class:
} Please show your video for a few minutes to say hi

} During class: you can close the video when I start teaching
} Questions: Please type them in ZOOM chat window

} Emergency for onsite students – you mention them to the Fengqi
or somebody that can type in zoom chat

} I will go through questions every 10-15 minutes

} We will take a 5 minutes break after 50 minutes

Introduction.5

CANVAS

} It’s a hub
} Have links there to class and piazza
} Add things that need to be protected
} Plan to have the grades there

Introduction.6

PIAZZA

} Main communication environment where I will post
} announcements
} homework and projects
} questions from class, etc

} You can post privately just to me and TA
} Public questions are anonymous to your colleagues

} MAKE SURE YOU CHECK IT OFTEN

Introduction.7

How to ask on Piazza

} Read slides, notes, homework or project description
} Use #hashtags (#lecture2, #project3, #hw1, etc.)

} Describe the problem clearly, using the right terms
} Add code in attached files
} Add output from compiler or debugginng information
} Add any other relevant information
} Don’t post solutions on piazza
} Anything that relates to solution post PRIVATELY

Introduction.8

OFFICE HOURS

} There are 2 hours of office hours every day with either
me or the TA, also additional availability outside the
allocated time

Schedule is in piazza post @15

https://piazza.com/class/kdyjt8cld8c7ot?cid=15

Introduction.9

https://piazza.com/class/kdyjt8cld8c7ot?cid=15

Exceptional situations

} Anything that impacts you and class please let me know
} We will accommodate the situation and find a solution

} I expect that deadlines will be difficult to make if you will
be impacted by covid19, so just let me know and we will
work together to accommodate the situation

} DO NOT WORRY !!!!

Introduction.10

Weather/Emergency

} In the event of a major campus emergency, course
requirements, deadlines and grading percentages are
subject to changes that may be necessitated by a revised
semester calendar or other circumstances beyond the
instructor’s control.

Introduction.11

Academy integrity

} It is allowed to discuss homework problems before
writing them down; however, WRITING IS INDIVIDUAL
} if you look at another student’s written or typed answers, or

let another student look at your written or typed answers, that
is considered cheating.

} It is allowed to discuss your project with your colleagues,
but DO NOT SHARE CODE

} Never have a copy of someone else's homework or
program in your possession and never give your
homework (or password) or program to someone else.

} NO CHEATHING WILL BE TOLERATED.

Introduction.12

Individual meeting

} You are required to meet with me at least once per
semester

} I will update piazza @15 with how to sign up to meet
with me during office hours or outside office hours

} If needed you can set up additional appointments by
sending me a private message on piazza

Introduction.26

How to stay engaged during lecture and
outside lecture

} Come to lecture, having a structure helps
} Take notes
} Ask questions
} Chat with colleagues
} Make appointments with colleagues to work together on

homework and projects
} They are individual but you can discuss them

} Ask/answer questions on piazza
} Meet with the TAs
} Final project is in teams (more about it next)

Introduction.14

QUESTIONS:
Please type in zoom chat window

Why do we need distributed systems

} Distribute load
} Faster response by placing replicas closer to clients
} Increased resources, computation and storage
} Resilience to failures and attacks

Introduction.16

What is a distributed system?

A distributed computing system is a set of computer
programs executing on one or more computers and
coordinating actions by exchanging messages.

Introduction.17

A distributed system is one in which the failure
of a computer you didn't even know existed can
render your own computer unusable.

Attributed to Leslie Lamport

What do we expect from distributed systems

} Reliability: provide continuous service
} Availability: ready to use
} Safety: systems do what they are supposed to do,

avoiding catastrophic consequences
} Security: withstands passive/active attacks from

outsiders or insiders

Introduction.9

…not easy to achieve because

} Computers and networks fail in many (often
unpredictable) ways

} Computers get compromised
} Real-time constraints
} Performance requirements
} Complexity

Introduction.10

Why do computer systems fail?

} Why Do Computers Stop and What can be done about it?
Jim Gray, 1985
} System administration (operator actions, system configuration and

maintenance)
} Software faults, environmental failures
} Hardware failures (disks and communication controllers)
} Power outages

} Why do Internet services fail, and what can be done about
it? D. Oppenheimer, A.Ganapathi and D. A. Patterson, 2003.
} Operator error (particularly configuration errors) is the leading cause of

failures
} Failures in custom-written front-end software
} Not enough on-line testing

Introduction.20

Why do computers get compromised?

} Software bugs
} Administration errors
} Lack of diversity, same vulnerability is exploited
} The explosion of the Internet facilitates the

spread of malware
} Social engineering attacks

Introduction.12

..how do computer systems fail…

} Halting failures: no way to detect except by using timeout
} Fail-stop failures: accurately detectable halting failures
} Send-omission failures
} Receive-omission failures
} Network failures
} Network partitioning failures
} Timing failures: temporal property of the system is

violated
} Byzantine failures: arbitrary failures, include both benign

and malicious failures

Introduction.13

Example 1:
Boeing 737 MAX and sensor inputs

} Disclaimer: this is not a detailed description of the MAX
design, but an exemplification on how not following the
fault-tolerance principle on sensor inputs can lead to
severe problems.

Introduction.23

Based on articled by Gregory Travis

Redundancy in 737 design

} Boeing included the requisite redundancy in
instrumentation and sensors, and flight computers –
one on the pilot’s side and one on the co-pilot’s side

} The flight computers (among many other things)
} act as the autopilot (i.e. fly the plane by computer) when

commanded
} make sure that the human pilots do not do anything wrong

when the autopilot is not flying the plane

Introduction.24

737MAX and MCAS review

} MCAS was put into the 737 MAX because the larger engines
and their placement, make an aerodynamic stall more likely in a
737 MAX than in previous 737 models

} MCAS pushes the nose of the plane down when the MCAS
system thinks the plane might exceed its angle of attack limits
– in order to avoid an aerodynamic stall

} MCAS is implemented in the flight computer software.
} When MCAS senses that the angle of attack is too high, it

commands the aircraft’s trim system (the system that makes
the plane go up or down) to lower the nose

} It pushes the pilot’s control columns in the down direction

Introduction.25

No redundancy on sensor input

} In the 737 MAX only one of the flight management
computers is active at once

} And that computer takes inputs ONLY from the
sensors on the side of the aircraft corresponding
to which flight computer is in control

} If one sensor has erroneous information it will
incorrectly infer stall and push the nose down

} How was fault-tolerance achieved before?
Human in the loop – the pilot and co-pilot were
able to see that the two sensors have different
inputs and infer that something is wrong

Introduction.26

Example 2:
A network partition’s impact on github

} What happened: A routine maintenance work to replace failing
100G optical equipment resulted in the loss of connectivity for
43 seconds between POP US East Coast and DC East Coast.

} Result:
} Degraded service for 24 hours and 11 minutes.
} Multiple internal systems were affected which resulted in displaying

of information that was out of date and inconsistent.
} No user data was lost; but required manual reconciliation of a few

seconds of database writes that took hours
} For the majority of the incident, GitHub was also unable to serve

webhook events or build and publish GitHub Pages sites.

27

https://blog.github.com/2018-10-30-oct21-post-
incident-analysis/

Introduction.

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

Introduction.28

Example 3:
Amazon

Example 4: Delta

Introduction.29

Examples of distributed systems

Introduction.30

} Air Traffic Control
} Space Shuttle
} Banking Systems
} Grid Power Systems
} Cloud Computing

QUESTIONS:
Please type in zoom chat window

2: Syllabus and class policy

Looking under the hood of
distributed systems

THEORY + SYSTEMS
} Theory

} Fundamental problems
} Algorithms solving this problems
} Impossibility results
} Trade-offs between properties provided by distributed systems

} Systems
} What can go wrong when designing, implementing, testing and

deploying a distributed service
} Design of existing and popular software
} Dependencies between different services

Introduction.33

Course Information

} Meetings
} TuF 1:25-3:15 pm Sept. – Dec.
} Zoom opens at 1:15, join early

} Office hours:
} Office hours: Fri 3:30 – 5:30 pm see piazza post @15

} Class webpage
http://cnitarot.github.io/courses/ds_Fall_2020/index.html

} Piazza for class communication
} Use Piazza for questions and postings
} Hw and projects posted on piazza

Introduction.34

Course overview

MODULE 1 – FUNDAMENTAL TOPICS
} Ordering events and distributed snapshots

} Time in distributed systems. Clock synchronization.
Global states and distributed snapshots. Detecting
failures.

} Consensus
} Synchronous systems, asynchronous systems,

byzantine failures (including randomized solutions).
} Distributed commit and consistency models

} 2PC and 3PC. Weak and strong consistency in
partitioned database systems. Linearizability. CAP
Theorem.

Introduction.35

Course overview

MODULE II – ADVANCED TOPICS
} Process Groups

} Leader election, membership, reliable multicast, virtual
synchrony. Gossip protocols.

} Quorums
} Paxos. Viewstamped replication. BFT.

} Peer-to-peer systems
} File sharing, lookup services, streaming, publish-subscribe

Introduction.36

Course overview

MODULE III – SYSTEMS
} Files systems

GFS, HDFS

} Databases
} BigTable, HBase, Spanner, DynamoDB, Casandra

} Lock services
} Chubby, Zookeeper, Zab

} Computational services
} MapReduce, Spark

Introduction.37

Course overview

MODULE III – SYSTEMS (cont.)
} Distributed ledgers:

} Digital currency (BitCoin), smart contracts (Etherum), credit
systems (Ripple)

} Infrastructure for ML
} TensorFlow, GraphLab

} Microservices
} AWS Lambda

Introduction.38

Reference Material

} Textbooks
} Ken Birman: Reliable Distributed Systems

} Recommended reading
} Research papers that will be specified for each lecture

Introduction.39

Prerequisites

} Strong systems and networking background
} Socket programming
} Fluency in many languages

} C/C++
} Java
} Go
} Python or some other scripting language

} Linux command line proficiency
} Some computer security and cryptography fundamentals

Introduction.40

Grading policy

} Written assignments (3) 30%
} Programming projects (2) 40%

} Do not include ungraded projects to get you started

} Final project 30%

} There is no curve for grades

Introduction.41

Written assignments

} Purpose of the written assignments is to make
you understand the theoretical results discussed in
class
} Read the material before solving them and solve them

with closed books and notebooks
} 3 written theoretical assignments
} Homework is individual
} Homework must be typed – PDF submission format only
} For submission, see piazza post @10

Introduction.42

Programming projects

} Purpose of the programming projects is to help
you understand practical aspects of things
discussed in class
} Read all material in class and the description of the

project in details before starting
} 2 programming projects
} Programming projects are individual
} All the code must be from scratch
} Follow the project description

Introduction.43

Final project

} Purpose of the final project is to help you
understand some existing software or
start a research project

} You must work in teams of 2
} Start looking for a partner at the beginning of the

semester, don’t wait till the project is assigned/chosen

} You can choose the final project, or I can assign
one

} Project proposal presentation + 1 page
description

} Final presentation in class + report of 3 pages
submitted with the code and presentation

Introduction.44

Late policy

} Each of you gets 5 LATE DAYS that can be used any way
you want for homework and projects (but not the final
project); you do not need to let me know if you plan to
take any late day; just submit late
} Keep track of your late days used

} 20% off from grade obtained for that project or homework per day
late

} Follow the requirements from project description to see
how to submit

} Assignments are due at 9:59:59 pm, no exceptions
} 1 second late = 1 hour late = 1 day late

Introduction.45

Regrading

} YOU HAVE 1 WEEK to ASK for REGRADING of a
homework or project from the moment solutions were
posted on piazza or discussed in class

} Make sure you read and understand the solution before
asking for a regrade

} Request for a regrade will result in the regrading of the
entire homework, project

Introduction.46

Debugging distributed protocols

} They are known to be difficult to debug
} Write proactively – print all the info you send/receive

over the network;
} Have state machine design before implementation and

make sure you understand what your state machine is
supposed to do before you implement your code

} Have message detailed description in design before
implementation

} Focus on testcases to understand specific behavior
} Delay, interleave, drop messages
} Crash participants

Introduction.47

One last word …

} No meetings will be accepted with the TA or
instructor the day homework or projects are due

} Start early, plan carefully
} Develop your solution gradually, test gradually so you

always have functionality for which you can receive a
grade; YOUR CODE MUST WORK

} Do not wait to submit your code last minute

Introduction.48

Required Reading

} Chapter 1 and 2 from Reliable Distributed Systems
} Why do Internet services fail, and what can be

done about it? D. Oppenheimer, A.Ganapathi and D.
A. Patterson, 2003.

} Why Do Computers Stop and What can be done
about it? Jim Gray, 1985.

Introduction.49

QUESTIONS:
Please type in zoom chat window

Cristina Nita-Rotaru

Containers
Basic docker commands

Why containerize applications

-- build once, run anywhere --

} A container packs together an application and all its
dependencies and isolates the application from the rest of the
machine it runs on.

} Running multiple instances: Because the dependencies are
isolated from each other you can run multiple containers on
the same machine without them interfering with each other.

} Automated installation on clusters: Orchestrators (such
as Kubernetes) automatically distribute containerized
applications across a cluster of servers so you do not have to
manually install applications.

Introduction.52

Linux features that make containers
work

} Control groups (Cgroups): limits the resources, such as
memory, CPU, and network input/output, that a group of
Linux processes can use
} By limiting the resources a process can use, containers provide

protection against attacks that consume excessive resources
} Linux Namespaces: restricts visibility of resources to a

process
} By putting a process in a namespace, you can restrict the

resources that are visible to that process
} Changing the Root Directory: limits the set of files

and directories that a process can see
} By changing the root directory when the container is created,

a container can not see the host’s entire filesystem

Introduction.53

Containers vs VMs

} Hypervisors: a pure virtual machine environment, a
dedicated kernel-level VMM program runs instead of the
OS kernel.

} HostedVM: VMs are hosted by the host OS, a VMM runs
on the host OS and the guest OS runs on the VMM – e.g.
VirtualBox on your laptop

} Containers share the kernel with the OS on the
machine they are running on

} VM – fixed resources, overhead of running a whole
kernel.

} Faster to start a container than a kernel
} VMs offer better isolation

Introduction.54

Cristina Nita-Rotaru

Basic docker commands

What is Docker:

} Docker in an application that allows you to create and
built containers
} Set of commands to manipulate images and containers

} Image: complete and executable version of an application
} Container: is the instantiation of an image

} Docker maintains a repository of images

Introduction.56

Docker basic commands: push/pull

} Allow you to pull an image from repo or push; you need to
have a docker account to run push

docker push [OPTIONS] NAME[:TAG]
docker pull [OPTIONS] NAME[:TAG|@DIGEST]

$ docker push registry-host:5000/myadmin/rhel-httpd
$ docker pull Debian

https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/pull/

Introduction.57

https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/pull/

Docker basic commands: run/stop

} Run a command in a new container

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
docker stop [OPTIONS] CONTAINER [CONTAINER...]

$ docker run mydockerhello
$ docker stop mydockerhello

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/stop/

Introduction.58

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Docker basic commands: ps

} Allows to see containers running or finished (finished
containers are saved on disk)

docker ps [OPTIONS]

Examples:
$ docker ps
$ docker ps –a

https://docs.docker.com/engine/reference/commandline/ps/

Introduction.59

https://docs.docker.com/engine/reference/commandline/ps/

Docker basic commands: images

} List all images

} docker images [OPTIONS] [REPOSITORY[:TAG]]

} $docker images java

} https://docs.docker.com/engine/reference/commandline/i
mages/

Introduction.60

https://docs.docker.com/engine/reference/commandline/images/

Docker basic commands: rm/rmi

} Allows to remove containers/images, you can not remove an
image before you removed all containers that are using it

} docker rm [OPTIONS] CONTAINER [CONTAINER...]
} docker rmi [OPTIONS] IMAGE [IMAGE...]

$ docker rm redis
$ docker rmi test:latest

https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/rmi/

Introduction.61

https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/rmi/

Docker basic commands: volume mapping

} When the container ends, data is not persistent, it is lost.
} To have data persistent after the container ends you can

mount in the container a volume (file, directory) from the
host

$ docker run –v /opt/data:/var/lib/mysql mysql

/var/lib/mysql of the container is mapped to /opt/data of the
host.

https://docs.docker.com/engine/reference/commandline/run

Introduction.62

https://docs.docker.com/engine/reference/commandline/rm/

Docker basic commands: port mapping
} Containers are not accessible via networking from outside the host

by default
} Using port mapping you can access them from outside, using host

ports
} You can run multiple instances, but each host port can be mapped

only once

$ docker run –p 8001:5000 mycontainer1
$ docker run –p 8002:5000 mycontainer2

When accessing via host port 8001 you will access mycontainer1

https://docs.docker.com/engine/reference/commandline/run

Introduction.63

https://docs.docker.com/engine/reference/commandline/rm/

Docker basic commands: stdin, stdout,stderr

} Containers are not mapped to stdin, stdout, stderr by
default, option –i for run command

$ docker run –i mycontainer1

When running mycontainer, if you’re reading from stdin, you
will be prompted to input from the keyboard

https://docs.docker.com/engine/reference/commandline/run

Introduction.64

https://docs.docker.com/engine/reference/commandline/rm/

Docker basic commands: attach/detach

} run option –d runs the container in the background
} run option –a attaches stdout, stdin, stderr for a

container

$ docker run –d mycontainer
$ docker run –a mycontainer1
$ docker run –i –a STDERR mycontainer

https://docs.docker.com/engine/reference/commandline/run

Introduction.65

https://docs.docker.com/engine/reference/commandline/rm/

Docker basic commands: exec

} Run a command in a running container

docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

$ docker run --name ubuntu_bash --rm -i -t ubuntu bash
$ docker exec -d ubuntu_bash touch /tmp/execWorks

Result is creating a new file /tmp/execWorks inside the
running container ubuntu_bash, in the background.

https://docs.docker.com/engine/reference/commandline/exec

Introduction.66

https://docs.docker.com/engine/reference/commandline/exec

Docker basic commands: Networking

} When you install docker it creates three networks: bridge,
host and none

} Bridge is an internal private network, all containers get an IP
address on this internal network (172.17)

} Containers can talk to each other using this IP
} If you want to access them from outside there are several

solutions, one is port mapping
} You can also create your own private network using docker

network create

https://docs.docker.com/engine/reference/commandline/netwo
rk/

Introduction.67

https://docs.docker.com/engine/reference/commandline/network/

Docker basic commands: Dockerfile

} It tells docker how to build a container

FROM ubuntu:latest

RUN apt-get update
RUN apt-get install -y gcc

ADD hello.c /app/

WORKDIR /app/ RUN gcc hello.c -o hello
ENTRYPOINT /app/hello

https://github.com/asadsalman/docker-tutorial

Introduction.68

https://github.com/asadsalman/docker-tutorial

Docker basic commands: passing args

FROM ubuntu:latest

RUN apt-get update
RUN apt-get install -y gcc

ADD hello.c /app/

WORKDIR /app/ RUN gcc hello.c -o hello
ENTRYPOINT /app/hello classnumber

$docker run hello 7610
Introduction.69

Project 0: Objective

} Get started with docker
} Get started with UDP sockets
} Bootstrap a set of distributed processes communicating

just through messages

} It’s a pass/fail to prepare you for the first project
} The main goal is to do it completely not to get a grade, it

is the basis for project 1

Introduction.70

Bootstrapping

} One problem in distributed systems: how do processes
find each other, how do you bootstrap

} Who are the processes
} We are going to use a file with list of processes
} List needs to be the same

} Are they up?
} Each process needs to know that the other processes came up
} Simple approach, *I am alive message*
} It is sent with UDP thus can be lost, you have to send a few

times

Introduction.71

