Cristina Nita-Rotaru

7610: Distributed Systems

Introduction. Class Policy. Examples.

Why do we need distributed systems

» Distribute load

» Faster response by placing replicas closer to clients
» Increased resources, computation and storage

» Resilience to failures and attacks

2 Introduction.

What is a distributed system?

A distributed computing system is a set of computer
programs executing on one or more computers and
coordinating actions by exchanging messages.

A distributed system is one in which the failure
of a computer you didn't even know existed can

render your own computer unusable.
Attributed to Leslie Lamport

3 Introduction.

What do we expect from distributed systems

» Reliability: provide continuous service

» Availability: ready to use

» Safety: systems do what they are supposed to do,
avoiding catastrophic consequences

» Security: withstands passive/active attacks from
outsiders or insiders

9 Introduction.

...not easy to achieve because

» Computers and networks fail in many (often
unpredictable) ways

» Computers get compromised
» Real-time constraints
» Performance requirements

» Complexity

10 Introduction.

Why do computer systems fail?

» Why Do Computers Stop and What can be done about it?
Jim Gray, 1985

System administration (operator actions, system configuration and
maintenance)

Software faults, environmental failures

Hardware failures (disks and communication controllers)
Power outages

» Why do Internet services fail, and what can be done about
it? D. Oppenheimer,A.Ganapathi and D.A. Patterson, 2003.

Operator error (particularly configuration errors) is the leading cause of
failures

Failures in custom-written front-end software
Not enough on-line testing

6 Introduction.

Why do computers get compromised?

» Software bugs
» Administration errors
» Lack of diversity, same vulnerability is exploited

» The explosion of the Internet facilitates the
spread of malware

» Social engineering attacks

12 Introduction.

..how do computer systems fail...

vV VvV VvV VvV VvV 9v V9

13

Halting failures: no way to detect except by using timeout
Fail-stop failures: accurately detectable halting failures
Send-omission failures

Receive-omission failures

Network failures

Network partitioning failures

Timing failures: temporal property of the system is
violated

Byzantine failures: arbitrary failures, include both benign
and malicious failures

Introduction.

Example 1:
Boeing 737 MAX and sensor inputs

» Disclaimer: this is not a detailed description of the MAX
design, but an exemplification on how not following the
fault-tolerance principle on sensor inputs can lead to

severe problems.

Based on articled by Gregory Travis

Introduction.

Redundancy in 737 design

» Boeing included the requisite redundancy in
instrumentation and sensors, and flight computers —
one on the pilot’s side and one on the co-pilot’s side

» The flight computers (among many other things)

act as the autopilot (i.e. fly the plane by computer) when
commanded

make sure that the human pilots do not do anything wrong
when the autopilot is not flying the plane

10 Introduction.

7T3TMAX and MCAS review

» MCAS was put into the 737 MAX because the larger engines
and their placement, make an aerodynamic stall more likely in a

737 MAX than in previous 737 models

» MCAS pushes the nose of the plane down when the MCAS
system thinks the plane might exceed its angle of attack limits
— in order to avoid an aerodynamic stall

» MCAS is implemented in the flight computer software.

When MCAS senses that the angle of attack is too high, it

commands the aircraft’s trim system (the system that makes
the plane go up or down) to lower the nose

It pushes the pilot’s control columns in the down direction

11 Introduction.

No redundancy on sensor input

» In the 737 MAX only one of the flight management
computers is active at once

» And that computer takes inputs ONLY from the
sensors on the side of the aircraft corresponding
to which flight computer is in control

» If one sensor has erroneous information it will
incorrectly infer stall and push the nose down

» How was fault-tolerance achieved before?
Human in the loop - the pilot and co-pilot were
able to see that the two sensors have different
inputs and infer that something is wrong

12 Introduction.

Example 2:

A network partition’s impact on github

» What happened: A routine maintenance work to replace failing
|00G optical equipment resulted in the loss of connectivity for
43 seconds between POP US East Coast and DC East Coast.

» Result:

13

Degraded service for 24 hours and | | minutes.

Multiple internal systems were affected which resulted in displaying
of information that was out of date and inconsistent.

No user data was lost; but required manual reconciliation of a few
seconds of database writes that took hours

For the majority of the incident, GitHub was also unable to serve
webhook events or build and publish GitHub Pages sites.

Cristina Nita-Rotaru

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

Example 3: 0 @ m 3 Big takeaways from Amazor X —_
Amazon

14

C ® www.networkworld.com/article/2985128/cloud-computing/3-big-takeaways-from-amazon-s-

= NETWORKWORLD

FROM IDG

At 6 AM ET error rates for the company’s massive NoSQL database named

DynamoDB began skyrocketing in AWS’s US-East Virginia region - the oldest and

largest of its nine global regions. By 7:52 AM ET, AWS determined the cause of the

problems: an issue with how the database manages metadata had gone awry,

impacting the service’s partitions and tables.

° [RESOLVED)] Increased API error rates

3:00 AM PDT We are investigating increased error rates for APl requests in
the US-EAST-1 Region.

3:26 AM PDT We are continuing to see increased error rates for all AP|
calls in DynamoDB in US-East-1. We are actively working on resolving the
issue.

4:05 AM PDT We have identified the source of the issue. We are working
on the recovery.

4:41 AM PDT We continue to work towards recovery of the issue causing
increased error rates for the DynamoDB APIs in the US-EAST-1 Region.
4:52 AM PDT We want to give you more information about what is
happening. The root cause began with a portion of our metadata service
within DynamoDB. This is an internal sub-service which manages table and
pantition information. Our recovery efforts are now focused on restoring
metadata operations. We will be throttling APIs as we work on recovery.
5:22 AM PDT We can confirm that we have now throttied APls as we
continue to work on recovery.

5:42 AM PDT We are seeing increasing stability in the metadata service
and continue 10 work towards a point where we can begin removing
throttles.

6:19 AM PDT The metadata service is now stable and we are actively
working on removing throttles.

7:12 AM PDT We continue to work on removing throttles and restoring API
availability but are proceeding cautiously.

7:22 AM PDT We are continuing to remove throtties and enable traffic
progressively.

7:40 AM PDT We continue to remove throtties and are starting o see
recovery.

7:50 AM PDT We continue 10 see recovery of read and write operations and
continue to work on restoring all other operations.

8:16 AM PDT We are seeing significant recovery of read and write
operations and continue to work on restoring all other operations.

9:12 AM PDT Between 2:13 AM and 8:15 AM PDT we experienced high
error rates for API requests in the US-EAST-1 Region. The issue has been
resolved and the service is operating normally.

Amazon Web Services

Amazon Web Service's Health Dashboard shows

Because of the intricate

interconnectivity of AWS’s services, the

issue snowballed to impact 34 total
services (out of 117) that the

company’s Service Health Dashboard

monitors. Everything from Elastic
Compute Cloud (EC2) virtual machines
to the Glacier storage service to its
Relational Database Service were

impacted. According to media reports

other companies that rely on AWS

experienced outages too, ranging from

Netflix to IMDB, to Tinder, PbtreIuHier|.

Buffer.

| NN Delta finally explained how or x

(& C | ® bgr.com/2016/08/14/delta-finally-explained-how-one-power-outage-grounded-an-entire-airline/
August 14th, 2016 at 12:00 PM
Earlier this week, Delta passengers worldwide were stranded as a computer failure completely screwed up

operations. The ensuing chaos provided a good look at how the robots are actually going to kill us, but also

raised some good questions: how does one power outage ground an airline, and how fired is the sysadmin?

The Week spoke to Delta’s COO, Giles West, to try and understand what happened to take the entire
network offline. It’s a sad story of backups that should’ve worked, knock-on effects, and one seriously

expensive outage.
DON’T MISS: The iPhone 7 is going to be so much more exciting than you think

“Monday morning a critical power control module at our Technology Command Center malfunctioned,
causing a surge to the transformer and a loss of power,” West said. “When this happened, critical systems
and network equipment didn’t switch over to backups. Other systems did. And now we’re seeing instability

in these systems,” West told The Week.

In other words: a power surge caused by one malfunctioning piece of equipment tripped a power
transformer, killing everything at Delta’s command center in Atlanta. Clearly, this shouldn’t have happened,

and there should have been a backup power system in place (or an entire backup command system).

But even with this failure, why did a computer failure in Atlanta stop planes from flying in London? From

news stories at the time, it sounds like the main problem was with the passenger information system.

15\Nithou’t the computer, airline staff couldn’t check in passengers or issue boarding passes, a vital step in flon.

landin~ thAa nlanAa CArma nauiirn Anitlata vanaAavkAaAd NMAlkA AadAf fillina Ak lhAaavAinA mAacaAn s hanA hat that’a A

Examples of distributed systems

» Air Traffic Control APAcHsJ‘Z
» Space Shuttle Spr K

» Banking Systems
» Grid Power Systems
» Cloud Computing

16 Introduction.

2: Syllabus and class policy

What is this class about

THEORY + SYSTEM IMPLEMENTATION
» Theory
Design principles
Fundamental algorithms and services

Trade-offs between different characteristics designing
distributed systems

» Implementation

What can go wrong when designing, implementing, testing and
deploying a distributed service

Design of existing and popular software
Dependencies between different services
Interoperability issues

18 Introduction.

Course Information

» Meetings
MW 2:50-4:30 pm Sept. — Dec.

» Professor contact info:
Office: ISEC 626

Office hours:Tu 5:00 - 6 pm and by appointment

» TA contact info:
Office hours: 5-6 M KA 208; W somewhere in ISEC

» Class webpage
http://cnitarot.github.io/courses/ds_Fall 2019/index.html

» Piazza for class communication
Use Piazza for questions and postings

Hw and projects posted on piazza

19

Introduction.

Course overview

MODULE | — FUNDAMENTAL TOPICS

» Ordering events and distributed snapshots

Time in distributed systems. Clock synchronization.
Global states and distributed snapshots. Detecting
failures.

3 Consensus

Synchronous systems, asynchronous systems,
byzantine failures (including randomized solutions).

» Distributed commit and consistency models

2PC and 3PC.Weak and strong consistency in
partitioned database systems. Linearizability. CAP
Theorem.

20 Introduction.

Course overview

MODULE Il - ADVANCED TOPICS
> Process Groups

Leader election, membership, reliable multicast, virtual
synchrony. Gossip protocols.

> Quorums

Paxos.Viewstamped replication. BFT.

» Peer-to-peer systems

File sharing, lookup services, streaming, publish-subscribe

21 Introduction.

Course overview

MODULE Ill - SYSTEMS

» Files systems
GFS, HDFS

> Databases
BigTable, HBase, Spanner, DynamoDB, Casandra

» Lock services
Chubby, Zookeeper, Zab

» Computational services
MapReduce, Spark
TensorFlow, GraphlLab

» Distributed ledgers:

Digital currency (BitCoin), smart contracts (Etherum), credit
22 systems (Rlpple) Introduction.

Reference Material

» Textbooks
Ken Birman: Reliable Distributed Systems

» Recommended reading
Research papers that will be specified for each lecture

23 Introduction.

Prerequisites

» Strong systems and networking background
» Socket programming

» Fluency in many languages
C/C++
Java
Go

Python or some other scripting language
» Linux command line proficiency
» Some computer security and cryptography fundamentals

24 Introduction

Grading policy

» Written assignments (3) 24%
» Programming projects (2) 40%
» Final project 26

» Class participation 10%

» There is no curve for grades

25

Introduction

Written assignments

» Purpose of the written assignments is to make
you understand the theoretical results discussed in
class

Read the material before solving them and solve them
with closed books and notebooks

» 3 written theoretical assignments
» Homework is individual
» Homework must be typed — PDF submission format only

» For submission, follow the information in the homework
description

26 Introduction

Programming projects

» Purpose of the programming projects is to help
you understand practical aspects of things
discussed in class

Read all material in class and the description of the
project in details before starting

» 2 programming projects
» Programming projects are individual
» All the code must be from scratch

» Use the languages, tools,VMs, specified in the project
description

27 Introduction

Final project

» Purpose of the final project is to help you
understand some existing software or
start a research project

» You must work in teams of 2

Start shopping for a partner at the beginning of the
semester, don’t wait till the project is assigned/chosen

» You can choose the final project, or | can assign
one

» Project proposal presentation (| page)

» Final presentation in class + report of 3 pages
submitted with the code and presentation

28 Introduction.

Late policy

» Each of you gets 5 LATE DAYS that can be used any way
you want for homework and projects (but not the final
project); you do not need to let me know if you plan to
take any late day; just submit late

Keep track of your late days used
» 20% off from grade obtained for that project or homework per day

late
» Follow the requirements from project description to see

how to submit
» Assighments are due at 9:59:59 pm, no exceptions

| second late = | hour late = | day late

29 Introduction

Regrading

» YOU HAVE | WEEK to ASK for REGRADING of a
homework or project from the moment solutions were
posted on piazza or discussed in class

» Make sure you read and understand the solution before
asking for a regrade

» Request for a regrade will result in the regrading of the
entire homework, project

30 Introduction

Class attendance and notes

» Your are strongly recommended to attend and take notes

» If you miss class is your responsibility to go through the
covered material on your own

» Slides will be made available online after lecture

» There will be assigned reading from papers and other
online materials

» Class participation is 10% of your grade
Be active on Piazza
Ask questions in class
Answer questions in class

31 Introduction

Individual Meeting

» You are required to meet with me at least once per
semester

» | will send doodle links with available time slots that you
can sign up for, in the next few weeks

» You can always set up additional appointments by sending
me an email first

» Or just come to office hours

26 Introduction.

Academy integrity

» It is allowed to discuss homework problems before
writing them down; however, WRITING IS INDIVIDUAL

if you look at another student’ s written or typed answers, or
let another student look at your written or typed answers, that
is considered cheating.
» Never have a copy of someone else's homework or
program in your possession and never give your
homework (or password) or program to someone else.

» NO CHEATHING WILL BE TOLERATED.

» ANY CHEATING WILL AUTOMATICALLY RESULT in F
grade and report to the university administration

33 Introduction

How to ask on Piazza

» Read slides, notes, homework or project description
» Use #hashtags (#lecture2, #project3, #hwl, etc.)

» Describe the problem clearly, using the right terms
» Add code in attached files

» Add output from compiler or debugginng information

» Add any other relevant information
» Don’t post solutions on piazza
» Anything that relates to solution post PRIVATELY

34 Introduction

Weather/Emergency

» In the event of a major campus emergency, course
requirements, deadlines and grading percentages are
subject to changes that may be necessitated by a revised
semester calendar or other circumstances beyond the
instructor’s control.

» Monitor weather and piazza particularly if you don’t live
close to school.

35 Introduction

Debugging distributed protocols

» They are known to be difficult to debug

» Write proactively — print all the info you send/receive
over the network;

» Have state machine design before implementation and
make sure you understand what your state machine is
supposed to do before you implement your code

» Have message detailed description in design before
implementation

» Focus on testcases to understand specific behavior
Delay, interleave, drop messages
Crash participants

36 Introduction.

One last word ...

» No meetings will be accepted with the TA or
instructor the day homework or projects are due

» Start early, plan carefully

» Develop your solution gradually, test gradually so you
always have functionality for which you can receive a

grade; YOUR CODE MUST WORK

» Do not wait to submit your code last minute
» Don’t post solutions on piazza
» Don’t cheat

37 Introduction

PIAZZA ACCOUNTS

» All communication is on piazza, make sure you get
notifications and you check piazza constantly

» If you have not received a piazza notification email
me c.nitarotaru@neu.edu

38 Introduction

Required Reading

» Chapter | and 2 from Reliable Distributed Systems

» Why do Internet services fail, and what can be
done about it? D. Oppenheimer, A.Ganapathi and D.
A. Patterson, 2003.

» Why Do Computers Stop and What can be done
about it! Jim Gray, 1985.

Class participation

» Find a real life incident that involved the failure of a real

life distributed system and post it on piazza with hashtag
#DSfailure

40 Introduction.

