
Cristina Nita-Rotaru

7610: Distributed Systems

Introduction. Class Policy. Examples.

Why do we need distributed systems

} Distribute load
} Faster response by placing replicas closer to clients
} Increased resources, computation and storage
} Resilience to failures and attacks

Introduction.2

What is a distributed system?

A distributed computing system is a set of computer
programs executing on one or more computers and
coordinating actions by exchanging messages.

Introduction.3

A distributed system is one in which the failure
of a computer you didn't even know existed can
render your own computer unusable.

Attributed to Leslie Lamport

What do we expect from distributed systems

} Reliability: provide continuous service
} Availability: ready to use
} Safety: systems do what they are supposed to do,

avoiding catastrophic consequences
} Security: withstands passive/active attacks from

outsiders or insiders

Introduction.9

…not easy to achieve because

} Computers and networks fail in many (often
unpredictable) ways

} Computers get compromised
} Real-time constraints
} Performance requirements
} Complexity

Introduction.10

Why do computer systems fail?

} Why Do Computers Stop and What can be done about it?
Jim Gray, 1985
} System administration (operator actions, system configuration and

maintenance)
} Software faults, environmental failures
} Hardware failures (disks and communication controllers)
} Power outages

} Why do Internet services fail, and what can be done about
it? D. Oppenheimer, A.Ganapathi and D. A. Patterson, 2003.
} Operator error (particularly configuration errors) is the leading cause of

failures
} Failures in custom-written front-end software
} Not enough on-line testing

Introduction.6

Why do computers get compromised?

} Software bugs
} Administration errors
} Lack of diversity, same vulnerability is exploited
} The explosion of the Internet facilitates the

spread of malware
} Social engineering attacks

Introduction.12

..how do computer systems fail…

} Halting failures: no way to detect except by using timeout
} Fail-stop failures: accurately detectable halting failures
} Send-omission failures
} Receive-omission failures
} Network failures
} Network partitioning failures
} Timing failures: temporal property of the system is

violated
} Byzantine failures: arbitrary failures, include both benign

and malicious failures

Introduction.13

Example 1:
Boeing 737 MAX and sensor inputs

} Disclaimer: this is not a detailed description of the MAX
design, but an exemplification on how not following the
fault-tolerance principle on sensor inputs can lead to
severe problems.

Introduction.9

Based on articled by Gregory Travis

Redundancy in 737 design

} Boeing included the requisite redundancy in
instrumentation and sensors, and flight computers –
one on the pilot’s side and one on the co-pilot’s side

} The flight computers (among many other things)
} act as the autopilot (i.e. fly the plane by computer) when

commanded
} make sure that the human pilots do not do anything wrong

when the autopilot is not flying the plane

Introduction.10

737MAX and MCAS review

} MCAS was put into the 737 MAX because the larger engines
and their placement, make an aerodynamic stall more likely in a
737 MAX than in previous 737 models

} MCAS pushes the nose of the plane down when the MCAS
system thinks the plane might exceed its angle of attack limits
– in order to avoid an aerodynamic stall

} MCAS is implemented in the flight computer software.
} When MCAS senses that the angle of attack is too high, it

commands the aircraft’s trim system (the system that makes
the plane go up or down) to lower the nose

} It pushes the pilot’s control columns in the down direction

Introduction.11

No redundancy on sensor input

} In the 737 MAX only one of the flight management
computers is active at once

} And that computer takes inputs ONLY from the
sensors on the side of the aircraft corresponding
to which flight computer is in control

} If one sensor has erroneous information it will
incorrectly infer stall and push the nose down

} How was fault-tolerance achieved before?
Human in the loop – the pilot and co-pilot were
able to see that the two sensors have different
inputs and infer that something is wrong

Introduction.12

Example 2:
A network partition’s impact on github

} What happened: A routine maintenance work to replace failing
100G optical equipment resulted in the loss of connectivity for
43 seconds between POP US East Coast and DC East Coast.

} Result:
} Degraded service for 24 hours and 11 minutes.
} Multiple internal systems were affected which resulted in displaying

of information that was out of date and inconsistent.
} No user data was lost; but required manual reconciliation of a few

seconds of database writes that took hours
} For the majority of the incident, GitHub was also unable to serve

webhook events or build and publish GitHub Pages sites.

13 Cristina Nita-Rotaru

https://blog.github.com/2018-10-30-oct21-post-
incident-analysis/

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

Introduction.14

Example 3:
Amazon

Example 4: Delta

Introduction.15

Examples of distributed systems

Introduction.16

} Air Traffic Control
} Space Shuttle
} Banking Systems
} Grid Power Systems
} Cloud Computing

2: Syllabus and class policy

What is this class about

THEORY + SYSTEM IMPLEMENTATION
} Theory

} Design principles
} Fundamental algorithms and services
} Trade-offs between different characteristics designing

distributed systems

} Implementation
} What can go wrong when designing, implementing, testing and

deploying a distributed service
} Design of existing and popular software
} Dependencies between different services
} Interoperability issues

Introduction.18

Course Information

} Meetings
} MW 2:50-4:30 pm Sept. – Dec.

} Professor contact info:
} Office: ISEC 626
} Office hours: Tu 5:00 - 6 pm and by appointment

} TA contact info:
} Office hours: 5-6 M KA 208; W somewhere in ISEC

} Class webpage
http://cnitarot.github.io/courses/ds_Fall_2019/index.html

} Piazza for class communication
} Use Piazza for questions and postings
} Hw and projects posted on piazza

Introduction.19

Course overview

MODULE 1 – FUNDAMENTAL TOPICS
} Ordering events and distributed snapshots

} Time in distributed systems. Clock synchronization.
Global states and distributed snapshots. Detecting
failures.

} Consensus
} Synchronous systems, asynchronous systems,

byzantine failures (including randomized solutions).
} Distributed commit and consistency models

} 2PC and 3PC. Weak and strong consistency in
partitioned database systems. Linearizability. CAP
Theorem.

Introduction.20

Course overview

MODULE II – ADVANCED TOPICS
} Process Groups

} Leader election, membership, reliable multicast, virtual
synchrony. Gossip protocols.

} Quorums
} Paxos. Viewstamped replication. BFT.

} Peer-to-peer systems
} File sharing, lookup services, streaming, publish-subscribe

Introduction.21

Course overview

MODULE III – SYSTEMS
} Files systems

GFS, HDFS

} Databases
} BigTable, HBase, Spanner, DynamoDB, Casandra

} Lock services
} Chubby, Zookeeper, Zab

} Computational services
} MapReduce, Spark
} TensorFlow, GraphLab

} Distributed ledgers:
} Digital currency (BitCoin), smart contracts (Etherum), credit

systems (Ripple) Introduction.22

Reference Material

} Textbooks
} Ken Birman: Reliable Distributed Systems

} Recommended reading
} Research papers that will be specified for each lecture

Introduction.23

Prerequisites

} Strong systems and networking background
} Socket programming
} Fluency in many languages

} C/C++
} Java
} Go
} Python or some other scripting language

} Linux command line proficiency
} Some computer security and cryptography fundamentals

Introduction24

Grading policy

} Written assignments (3) 24%
} Programming projects (2) 40%
} Final project 26
} Class participation 10%

} There is no curve for grades

Introduction25

Written assignments

} Purpose of the written assignments is to make
you understand the theoretical results discussed in
class
} Read the material before solving them and solve them

with closed books and notebooks
} 3 written theoretical assignments
} Homework is individual
} Homework must be typed – PDF submission format only
} For submission, follow the information in the homework

description

Introduction26

Programming projects

} Purpose of the programming projects is to help
you understand practical aspects of things
discussed in class
} Read all material in class and the description of the

project in details before starting
} 2 programming projects
} Programming projects are individual
} All the code must be from scratch
} Use the languages, tools, VMs, specified in the project

description

Introduction27

Final project

} Purpose of the final project is to help you
understand some existing software or
start a research project

} You must work in teams of 2
} Start shopping for a partner at the beginning of the

semester, don’t wait till the project is assigned/chosen

} You can choose the final project, or I can assign
one

} Project proposal presentation (1 page)
} Final presentation in class + report of 3 pages

submitted with the code and presentation

Introduction.28

Late policy

} Each of you gets 5 LATE DAYS that can be used any way
you want for homework and projects (but not the final
project); you do not need to let me know if you plan to
take any late day; just submit late
} Keep track of your late days used

} 20% off from grade obtained for that project or homework per day
late

} Follow the requirements from project description to see
how to submit

} Assignments are due at 9:59:59 pm, no exceptions
} 1 second late = 1 hour late = 1 day late

Introduction29

Regrading

} YOU HAVE 1 WEEK to ASK for REGRADING of a
homework or project from the moment solutions were
posted on piazza or discussed in class

} Make sure you read and understand the solution before
asking for a regrade

} Request for a regrade will result in the regrading of the
entire homework, project

Introduction30

Class attendance and notes

} Your are strongly recommended to attend and take notes
} If you miss class is your responsibility to go through the

covered material on your own
} Slides will be made available online after lecture
} There will be assigned reading from papers and other

online materials
} Class participation is 10% of your grade

} Be active on Piazza
} Ask questions in class
} Answer questions in class

Introduction31

Individual Meeting

} You are required to meet with me at least once per
semester

} I will send doodle links with available time slots that you
can sign up for, in the next few weeks

} You can always set up additional appointments by sending
me an email first

} Or just come to office hours

Introduction.26

Academy integrity

} It is allowed to discuss homework problems before
writing them down; however, WRITING IS INDIVIDUAL
} if you look at another student’s written or typed answers, or

let another student look at your written or typed answers, that
is considered cheating.

} Never have a copy of someone else's homework or
program in your possession and never give your
homework (or password) or program to someone else.

} NO CHEATHING WILL BE TOLERATED.
} ANY CHEATING WILL AUTOMATICALLY RESULT in F

grade and report to the university administration

Introduction33

How to ask on Piazza

} Read slides, notes, homework or project description
} Use #hashtags (#lecture2, #project3, #hw1, etc.)

} Describe the problem clearly, using the right terms
} Add code in attached files
} Add output from compiler or debugginng information
} Add any other relevant information
} Don’t post solutions on piazza
} Anything that relates to solution post PRIVATELY

Introduction34

Weather/Emergency

} In the event of a major campus emergency, course
requirements, deadlines and grading percentages are
subject to changes that may be necessitated by a revised
semester calendar or other circumstances beyond the
instructor’s control.

} Monitor weather and piazza particularly if you don’t live
close to school.

Introduction35

Debugging distributed protocols

} They are known to be difficult to debug
} Write proactively – print all the info you send/receive

over the network;
} Have state machine design before implementation and

make sure you understand what your state machine is
supposed to do before you implement your code

} Have message detailed description in design before
implementation

} Focus on testcases to understand specific behavior
} Delay, interleave, drop messages
} Crash participants

Introduction.36

One last word …

} No meetings will be accepted with the TA or
instructor the day homework or projects are due

} Start early, plan carefully
} Develop your solution gradually, test gradually so you

always have functionality for which you can receive a
grade; YOUR CODE MUST WORK

} Do not wait to submit your code last minute
} Don’t post solutions on piazza
} Don’t cheat

Introduction37

PIAZZA ACCOUNTS

} All communication is on piazza, make sure you get
notifications and you check piazza constantly

} If you have not received a piazza notification email
me c.nitarotaru@neu.edu

Introduction38

Required Reading

} Chapter 1 and 2 from Reliable Distributed Systems
} Why do Internet services fail, and what can be

done about it? D. Oppenheimer, A.Ganapathi and D.
A. Patterson, 2003.

} Why Do Computers Stop and What can be done
about it? Jim Gray, 1985.

Class participation

} Find a real life incident that involved the failure of a real
life distributed system and post it on piazza with hashtag
#DSfailure

Introduction.40

