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Required reading for this topic…

} Michael J. Fischer, Nancy A. Lynch, and 
Michael S. Paterson for "Impossibility of  
Distributed Consensus with One Faulty 
Process,” 1985.

} Consensus in the Presence of Partial 
Synchrony, C. Dwork, Nancy Lynch, L. 
Stockmeyer, Journal of the Association for 
Computing Machinery, 1988

} L. Lamport, R. Shostak, and M. Pease. The 
Byzantine Generals Problem ACM 
Transactions on Programming 1982.

} M. Ben-Or. Another advantage of free choice 
(Extended Abstract): Completely 
asynchronous agreement protocol. 1983.
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Synchronous/asynchronous communication

let Δ be the time it takes to send a message between two 
processes 

} Synchronous: 
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ
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Most common failure models

} Fail-stop (crash): accurately detectable halting failures, 
once failed the process does not restart

} Omission: just a subset of the messages are delivered
} Network partitioning: subset of processes are not 

reachable
} Byzantine: arbitrary failures, include both benign and 

malicious failures; processes can be authenticated or not
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1: Consensus in synchronous systems with 
no failures



Consensus in distributed systems

} Consensus:  According to Merriam-Webster dictionary it 
means general agreement

} When do we need consensus in distributed systems?
} Read-Modify-Write Memory
} Database commit 
} Transactional file system
} Totally ordered broadcast
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The consensus problem

} Input:
} Each process has a value, either 1 or 0 

} Properties:
} Agreement: all nodes decide on the same value
} Validity: if a process decides on a value, then there was a 

process that started with that value

Consensus7



Consensus in a synchronous system: 
No failures

} Failure model: 
} No faults

} Assumptions:
} Communication is synchronous

} Algorithm - requires 1 round:
} Each process sends its value to all the other processes 

} Each process decides: 
} 1: If all received values including its own are 1

} 0: otherwise decides 0

WHY IS THIS ALGORITM CORRECT? 
(i.e. provides agreement and validity)
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Consensus in a synchronous system 
with crash failures: Model

} Failure model:
} Any process can crash, once crashed, a process 

does not recover
} At most f processes can crash

} Communication model
} Communication is synchronous
} Network is a fully connected graph 
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Consensus in a synchronous system 
with crash failures: Properties

} Input:
} 1 or 0 to each process

} Properties:
} Agreement: all non-faulty processes decide on the same 

value
} Validity: if a process decides on a value, then there was a 

process that started with that value
} Termination: non-faulty processes decide in a finite time

NOTE:  FAULTY PROCESSES MAY DECIDE DIFFERENTLY FROM 
CORRECT PROCESSES
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Consensus in a synchronous system
with crash failures: Algorithm 

} Algorithm tolerates at most f failures, out of n nodes
} Each process maintains V the set of values proposed by 

other processes (initially it contains only its own value)
} In every round a process:

} Sends to all other processes the values from V that it has not 
sent before

} After f+1 rounds each process decides on the minimum 
value in V

f < n
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Consensus in a synchronous system
with crash failures: Algorithm

Consensus12



A closer look…

} Remember that communication is synchronous (the time it
takes to send a message between two process  is known and 
fixed)

} A process in a round may:
} Send messages to any set of processes
} Receive messages from any set of processes 
} Do local processing 
} Make a decision
} Crash

} If a process p crashes in a round, then any subset of the 
messages sent by p in this round can be lost

} If a message was sent in a round it is either received in that 
round or it will never be received at all

Consensus13



} Key: all processes must be sure that all processes that did 
not crashed have the same information  (so they can 
make the same decision)

} Processes can not decide in less than f+1 because they 
can not distinguish between executions in which all alive 
have the same list, or all alive have different lists.
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Example

} Consider that you have 5 processes and 2 processes can crash
} After 1 round p1 has all 5 values, can he decide?

} No, because he is not sure that every other process has all the 
information he has, for example, p5 crashed and p1 is the only one 
having info from p5

} After round 2, can p1 decide? 
} He has all the info.

} But what about p2? P2 can not be sure that all the other processes 
received the info from p1, maybe p1 send his list to p2 and then crashed

} Can he decide now? 

} After round 3? Can p2 decide? Yes, assuming that p2 does not 
have the same list as another process, leads to more than 2 
processes have crashed which contradicts our assumption
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Sketch proof for the agreement property

} Assume by contradiction that two processes decide on 
different values, this means they had different final set of values, 
let’s say p has a value v that q does not have

} How come that p got v and q did not? The only possible case 
is that a third process s, sent v to p, and crashed before 
sending v to q. SO in ROUND f +1,  process s crashed (1 
process)

} Because q does not have v it means that any process that may 
have sent v crashed also in round f 

} Proceeding in this way, we infer at least one crash in each of 
the preceding rounds. 

} STOP! We can have at most f crashes and we obtained that 
there are f+1 crashes (one in each round) à contradiction.
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Variant: Uniform Consensus

} Input:
} 1 or 0 to each process

} Properties:
} Uniform Agreement: all processes (correct or faulty) decide on 

the same value
} Validity: if a process decides on a value, then there was a 

process that started with that value
} Termination: a non-faulty process decides in a finite time
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2: Consensus in Asynchronous Systems
Includes slides from Ali Ghodsi, UC 

Berkeley



Synchronous/asynchronous communication

let Δ be the time it takes to send a message between two 
processes 

} Synchronous: 
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ
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There is no asynchronous algorithm that achieves     
agreement on a one-bit value in the presence of crash 
faults. The result is true even if no crash actually occurs!

Consensus in Asynchronous Systems

} Also known as the FLP result
} Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson 

for "Impossibility of  Distributed Consensus with One 
Faulty Process," Journal of the ACM, April 1985, 32(2):374
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What happens …

} In an asynchronous system, a process pi cannot tell 
whether a non-responsive process pj has crashed or it is 
just slow 

} What can pi do?
} If it waits, it will block since it might never receive the message 

from the non-responsive process
} If it decides, it may find out later that the non-responsive 

process pi made a different decision 
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Execution, configuration, events

} Set of processes pi, 
} State Si: each process has a state
} Configuration Ct: set of state of each process at some 

moment in time
} Events: send and deliver messages, events can change the 

state at a process 
} Execution: sequence of configuration and events

} A process pi can send a message at most once
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The problem

} Input:
} 1 or 0 to each process

} Properties:
} Agreement: all non-faulty processes decide on the same value
} Validity: if a process decides on a value, then there was a 

process that started with that value
} Termination: A non-faulty process decides in a finite time
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Proof Sketch

} The main idea of the proof is to construct an execution 
that does not decide (i.e. does not terminate), showing 
that the protocol remains forever indecisive

} Classify configurations (set of state of each process) as
} 0-valent will result in deciding 0 (some process has decided 0 

in C or if all configurations accessible from C are 0-valent; no 1-
decided configurations are reachable)

} 1-valent will result in deciding 1 (some process has decided 1 
in C or if all configurations accessible from C are 1-valent; no 0-
decided configurations are reachable )

} Bivalent has a bivalent outcome, decision is not already 
predetermined, outcome can be either 0 or ; both 0-decide and 
1-decide configurations are reachable 
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Ali Ghodsi, alig(at)cs.berkeley.edu

0- valent configuration

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

0-valent configuration

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}

0-valent configuration

{ decide-0,

P2_state,

P3_state,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state,

P3_state,

decide-0,

{ msg2}
}

0-valent configuration

{ decide-0,

P2_state2,

P3_state2,

decide-0,

{ msg2}
}

0-valent configuration

{ decide-0,

P2_state,

decide-0,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state3,

P3_state,

decide-0,

{}
}

0-Valent Configuration Example

25



1- valent configuration

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

1-valent configuration

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}
1-valent configuration

{ decide-1,

P2_state,

P3_state,

P4_state,

{msg1, msg2}
}

1-valent configuration

{ decide-1,

P2_state,

P3_state,

decide-1,

{ msg2}
}

1-valent configuration

{ decide-1,

P2_state2,

P3_state2,

decide-1,

{ msg2}
}

1-valent configuration

{ decide-1,

P2_state,

decide-1,

P4_state,

{msg1, msg2}
}

1-valent configuration

{ decide-1,

P2_state3,

P3_state,

decide-1,

{}
}

1-valent configuration

{ decide-1,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

1-Valent Configuration Example
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Bivalent Configuration Example

Bivalent config.

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

0-valent config.

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}

1-valent config.

{ decide-1,

P2_state5,

P3_state6,

P4_state5,

{msg1, msg3}
}

0-valent config.

{ decide-0,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

1-valent config.

{ decide-1,

P2_state5,

P3_state6,

decide-1,

{ msg2}
}

0-valent config.

{ decide-0,

P2_state2,

P3_state2,

decide-0,

{ msg2}
}

0-valent config.

{ decide-0,

P2_state,

decide-0,

P4_state,

{msg1, msg2}
}

1-valent config.

{ decide-1,

P2_state9,

P3_state6,

decide-1,

{}
}
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Proof Sketch (2)

} Start with an initially bivalent configuration 
} Identify an execution that would lead to a univalent state, let’s say 0-

valent
} The switch from bivalent to univalent is due to an event e = (p,m) 

in which some process p receives some message m
} We will delay the e event for a while. Delivery of m would make the 

run univalent but m is delayed (fair-game in an asynchronous system)
} Since the protocol is indeed fault-tolerant there must be a run that 

leads to the other univalent state (1-valent in this case)
} Now  let m be delivered, this will bring the system back in a bivalent 

state
} Decision can be delayed indefinitely
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Proof: More Details

} Lemma 1: There exists an initial configuration that is bivalent.
} Lemma 2: Starting from a bivalent configuration C and an event 

e = (p, m) applicable to C, consider C the set of all 
configurations reachable from C without applying e and D the 
set of all configurations obtained by applying e to the 
configurations from C,  then D contains a bivalent 
configuration.

} Theorem: There is always a run of events in an 
asynchronous distributed system such that the group of 
processes never reach consensus

Initial bivalent configuration Bivalent configuration
I can reach
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Lemma 1: 
There exists an initial configuration that is bivalent

Lemma 1:Proof Sketch

Proof by contradiction
} Let’s assume that there is no bivalent initial configuration; then all 

configurations are 0-valent or 1-valent.
} List all initial configurations (list the 1 bits on the left).  
} Consider a 0-valent initial configuration C0 adjacent to a 1-valent 

configuration C1: they differ only in the value corresponding to some 
process p.
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Lemma 1 (cont.)

Lemma 1: There exists an initial configuration that is 
bivalent

} Let this process p crash. 
} Note that now that p is crashed both C0 and C1 will lead to the 

same final configuration because with the exception of internal state 
of p they were identical (the only difference was determined by p). 
} Assume decision reached is 1: C1 was 1-valent,  then C0 must have 

been bivalent (we assumed it was 0-valent and that is impossible)
} Assume decision reached is 0:  C0 was already 0-valent, then C1

must have been bivalent (we assumed it 1-valent, impossible)
} Thus, there exists an initial configuration that is bivalent.
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Commutativity Lemma 

Lemma
} Let S1 and S2 be schedules (sequences of events) 

applicable to some configuration C, and suppose that the 
set of processes taking steps in S1 is disjoint from the set 
of processes taking steps in S2 . 

} Then, S1; S2 and S2; S1 are both sequences applicable to C, 
and they lead to the same configuration. 
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Lemma 2: 
Starting from a bivalent configuration, there is 
always another bivalent configuration that is reachable

Lemma 2 

} Consider an event e  = (p, m) that can be applied to a bivalent 
initial configuration C

} C the set of all configurations reachable from C without 
applying e

} D the set of all configurations obtained by applying e to a 
configuration in C

} We want to show that D contains a bivalent configuration.
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Lemma 2 (cont.)

} Lemma 2: ……We want to show that D contains a 
bivalent configuration 

Proof by contradiction
} Assume that there is no bivalent configuration in D
} However there are adjacent configurations C0 and C1 in 

C such that C1 = C0 followed by event e’=(p’,m’)   
WHY (remember initial configuration is bivalent)

} Then denote 
} D0 be C0 followed by e=(p,m)
} D1 be C1 followed by e=(p,m)

} Since there are no bivalent configurations in D, let’s 
assume that D0 is 0-valent and D1 is 1-valent 
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Lemma 2 (cont.)

} Case 1: p and p’ are different. 
} If we apply e’ to D0 we obtain D1

since e and e’ are disjoint..
} CONTRADICTION, any successor 

of a 0-valent configuration must be 
0-valent.

C0

D1

D0 C1

e

ee’

e’

p ¹ p’
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Lemma 2 (cont.)

} Case 2: Process p is 
the same process as p’

} S is a run that reaches 
a decision, consider A 
that configuration.

} We obtain that A is 
bivalent, contradiction!

C0

D1

D0
C1

e e’

A

E0

e

S

S

E1

Se’

e

e
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FLP impact on distributed systems 
design

} FLP proves that any fault-tolerant algorithm solving 
consensus has runs that never terminate
} These runs are extremely unlikely (“probability zero”)
} Yet they imply that we can’t find a totally correct solution
} And so “consensus is impossible” ( “not always possible”) 

} A distributed system trying to agree on something in 
which process p plays a key role will not terminate if p 
crashes
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So what can we do?

} Alternative? Synchronous models? BUT REAL, 
PRACTICAL SYSTEMS ARE NOT SYNCHRONUS !!!

} Use randomization, probabilistic guarantees
} Process groups: sacrifice liveness under the assumption 

that retransmissions will eventually be received from 
good participants, the protocol eventually terminates 

} Avoid consensus, use quorum systems
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Partial Synchrony

let Δ be the time it takes to send a message 

} Synchronous: 
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ

} Partially synchronous: 
} Version 1: There is a bound for Δ but it it not known
} Version 2: Bound for Δ is known and holds after a time T 
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Consensus: Summary so Far

} Considered only benign failures
} In synchronous systems we have a f+1 

rounds consensus algorithm that can 
tolerate f failures, f < n

} In asynchronous systems
} We can not solve consensus
} We can order events and determine 

consistent snapshots
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3: Byzantine Agreement



Byzantine Failures

} Model arbitrary failures
} Model insider attacks
} Name comes from a paper that introduced the problem 
“Byzantine Generals Problem”

} A process having Byzantine behavior can:
} Crash
} Delay messages
} Refuse to forward messages
} Two-face behavior
} Lie
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Byzantine Generals Problem

• Several Byzantine 
generals are laying siege 
to an enemy city

• They can only 
communicate by 
messenger

• They have to agree on a 
common strategy, attack 
or retreat.  

• Some general may be 
traitors (their identity is 
not known)

Do you see the connection with the consensus problem?
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Goals

} A: All loyal generals decide on same plan of action
} B: A small number of traitors cannot cause a bad plan to 

be adopted.
} B is difficult to formalize
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Basic Ideas

} To satisfy condition A
} Have all the general use the same method of combining 

information to come up with a plan

} To satisfy condition B
} Use a robust method (median function of some sort)

} Why not just use the median?
} Traitors lie and not everyone may have the same information!
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Formal Problem Definition

} Assume there is one commanding general and his 
subordinate lieutenant generals.

} Commanding general need not be loyal.

} IC1:  All loyal lieutenants obey the same order.
} IC2:  If the commanding general is loyal, then every loyal 

lieutenant obeys the order he sends.
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3 Generals: Impossibility Result

} Assume communication is with oral, easily changed 
messages 

} Oral Messages 
} Models messages with no integrity, no authentication
} Contents are under the control of the sender
} Traitor can do anything to the message

} There is no solution in the case of 3 generals, one traitor 
makes the protocol fail!
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Scenario A

Attack!
Attack!

General said “Retreat!”

Lieutenant 1

Lieutenant 2

IC2:  If the commanding general is 
loyal, then every loyal lieutenant 
obeys the order he sends.

To satisfy IC2, Lieutenant 1 must 
obey the order from the commander
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Scenario B

Attack! Retreat!

General said “Retreat!”

Lieutenant 1 Lieutenant 2

IC1:  All loyal lieutenants 
obey the same order

General said “Attack!”

Lieutenant 1 can not distinguish between 
scenario A and scenario B
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Generalizing the Impossibility Result

} There is no solution for fewer than 3m+1 generals in the 
presence of m traitors

m lieutenants m lieutenants

Commander and m-1 lieutenants
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Proof Sketch

} By contradiction: assuming that there is a correct solution 
in 3m case with m traitors, we construct a solution for 
the case with 3 generals

} We call the 3m case the Romanians Generals.
} Mapping: each Byzantine general will simulate some of the 

Romanian generals:
} Byzantine commander: simulates Romanian commander + m-1 

Romanians 
} Each of the 2 Byzantine lieutenant: simulates at most m 

Romanians
} Since only one Byzantine can be a traitor, at most m 

Romanians can be traitors
IC1 and IC2 for Romanians, imply the same 
properties for the Byzantine Consensus51



Solution with Oral Messages

} For 3m+1 generals, solution tolerates m traitors. 
} Oral messages – the sending of content is entirely under 

the control of sender.
} A1 – Each message that is sent is delivered correctly.
} A2 – The receiver of a message knows who sent it.
} A3 – The absence of a message can be detected.

} What do we get from the assumptions?
} Traitors cannot interfere with communication as third party.
} Traitors cannot send fake messages
} Traitors cannot interfere by being silent.

} Default order to “retreat” for silent traitor.
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Oral Message Algorithm

} Recursive algorithm
} Each general (a.k.a. lieutenant) forwards on received values to 

all other lieutenant
} The commander sends his value to every lieutenant
} For each lieutenant i, broadcast the values to all other 

lieutenants who have not had the value.
} Take the majority function of the received values.
} To distinguish between messages from different “rounds”, 

index them using the lieutenant’s number i

} Intuition: 
} Generals might have contradictory data
} In each round, each participant sends out “witness” messages: 

here’s what I saw in round i
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More Details…

} Algorithm OM(0)
} Commander sends his value to every lieutenant.
} Each lieutenant (L) uses the value received from commander, 

or RETREAT if no value is received.

} Algorithm OM(m), m>0
} Commander sends his value to every Lieutenant (vi)
} Each Lieutenant acts as commander for OM(m-1) and sends vi 

to the other n-2 lieutenants (or RETREAT)
} For each i, and each j<>i,  let vj be the value lieutenant i 

receives from lieutenant j in step (2) using OM(m-1). 
Lieutenant i uses the value majority (v1, …, vn-1). 
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Example with m=1 and n=4

X
Y

Z

X

Y

Z

Y

Z

X

Each lieutenant obtains v1 = x, v2 = y, v3 = z, which all result in the same value 
when the majority is taken
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Example with m=1 and n=4

v
v

v

v

v

x

v

Z
v

IC1 and IC2 are met.
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Proof Sketch

} For any m, algorithm OM(m) satisfies conditions IC1 (All 
loyal lieutenants obey the same order) and IC2 (If the 
commanding general is loyal, then every loyal lieutenant 
obeys the order he sends) if there are more than 3m 
generals and at most m traitors.

} Induction on m proves true in all cases.

Consensus57



Written Messages Solution

} Written messages ( messages are digitally signed)
} A loyal general’s signature cannot be forged or changed and 

anyone can verify authenticity

} Three general solutions now exist!
} Works for any n >= m+2 (1 non-faulty commander and 1 

loyal lieutenant)
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Signed Message Algorithm

} General sends a signed order to all his lieutenants 
} Each lieutenant signs and forwards on the message he 

received to all the other lieutenants until every message 
has been signed by everyone else.

} Each lieutenant keeps track of the properly signed orders 
he has received
} Possible orders are attack, retreat, attack & retreat

} Use choice method to have everyone choose same value
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Why Does It Work?

} Every loyal lieutenant eventually has the same set of 
signed messages, resulting in the same choice

} If commander is loyal, then all loyal lieutenants will have 
correct messages

} If the commander is a traitor, lieutenants receive 
conflicting messages and but still end up choosing the 
same choice (retreat).
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Revisit the Requirements

} Absence can be detected
} Timeout mechanisms are needed
} Synchronous Communication

} Network is connected (different requirements if the 
network is not a complete graph)

} A signature cannot be forged or changed and anyone can 
verify authenticity
} Message signed by i= (M, S(M))
} Crypto and modular arithmetic
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Termination

} How many rounds do you need?
} For the Byzantine generals algorithm described before 

you need f+1
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Consensus: Summary 

} In synchronous systems with benign 
failures we have a f+1 rounds 
consensus algorithm that can tolerate f 
failures, f < n

} In asynchronous systems
} We can not solve consensus
} We can order events and determine 

consistent snapshots

} Byzantine failures
} No solution for fewer than 3m+1 

generals in the presence of m traitors
} Oral message and written (signed) 

messages solutions exist
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4: Randomized Agreement. 
Based on slides by James Aspnes



Consensus in Asynchronous Systems

} There is no asynchronous algorithm that achieves 
agreement on a one-bit value in the presence of crash 
faults. The result is true even if no crash actually occurs!

} Also known as the FLP result
} Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson 

for "Impossibility of  Distributed Consensus with One 
Faulty Process," Journal of the ACM, April 1985, 32(2):374
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So what can we do?

} Alternative? Synchronous models? BUT REAL, 
PRACTICAL SYSTEMS ARE NOT SYNCHRONOUS !!!

} Use randomization: probabilistic guarantees for 
termination

} Use process groups: sacrifice liveness under the 
assumption that retransmissions will eventually be 
received from good participants, the protocol eventually 
terminates 

} Use quorum systems: avoid consensus among all 
participants
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Randomized Algorithms

} Algorithm that uses randomness by adding a coin-flip to 
the distributed model.

} Adversary
} A function from partial executions to operations.
} Chooses which operation happens next.
} Simulates the executing environment.
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Types of Adversaries

} Strong adversary
} Adversary can see the entire history of execution: outcomes of 

coin flips, internal states of processes, contents of messages.

} Weak adversary
} Adversary chooses for each state, which process executes 

next, etc.
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Randomized Agreement

} Addition of coin-flip to distributed model.

} Agreement: all non-faulty processes agree on the same 
value
} Validity: if a process decides on a value, then there was a 

process that started with that value

} Termination – for all adversaries, every non-faulty process 
terminates with probability 1
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Coin Models

} Global reliable coin: not always possible
} Local coin: each process tosses a coin independently, 

works well when the total number of processes is 
relatively large to the number of faulty ones
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Ben-Or’s Consensus Protocol

} First protocol to achieve consensus with probabilistic 
termination in a model with a strong adversary (1983)
} Tolerates t < n/2 crash failures.
} Requires exponential expected time to converge in the worst 

case.

} Strong adversary
} Can see the entire history of execution: outcomes of coin flips, 

internal states of processes, contents of messages.
} BUT, every message sent to a correct process must eventually 

be received and the final schedule may have at most t crashed 
processes. 
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Ben-Or: Coin Toss

} Each process tosses a coin 
independently 

} Uniform distribution, the coin outputs 
0 or 1 each with probability ½

} Used by a process to pick a new local 
value when a majority was not found
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Ben-Or’s Consensus Protocol

} Operates in rounds, each round has two phases.
} Suggestion phase – each process transmits its value, and 

waits to hear from other processes.
} Decision phase – if majority found, take its value. 

Otherwise, flip a coin to decide a new local value.
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Purpose of rounds

} If some process decides v then by the next round all the 
other operating processes will decide the same value v.
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Main Ideas

} Exchange initial values and if enough processes detected 
the majority, decide.
} Wait for only n-t messages to avoid blocking.

} If a process knows that someone detected majority, 
switch to the majority’s value.

} Terminates, because eventually, the majority of processes 
will flip coins correctly.

} Algorithm does not wait for all processes, because they 
might be dead.

} Remember this is asynchronous execution model : no 
assumptions about the relative speed or about the delay 
in delivering a message
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Ben-Or’s Consensus Protocol

Input: Boolean initial consensus value
Output: Boolean final consensus value
Data: Boolean preference, integer round
begin

preference := input
round := 1

while true do

end
end

Body of while statement
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Body of while Statement
send (1, round, preference) to all processes
wait to receive n – t (1, round, *) messages
if received more than n / 2 (1, round, v) messages  with same v
then send (2, round, v, ratify) to all processes
else send (2, round, ?) to all processes
end
wait to receive n – t (2, round, *) messages
If received a (2, round, v, ratify) message 
then preference = v

if received more than t (2, round, v, ratify) messages
then output = v
end

else preference = CoinFlip()
end
round = round + 1

n> 2t
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Halting

} Once a correct process decides a value, it will keep 
deciding the same value in all subsequent phases. 

} Easy to modify the algorithm so that every process 
decides at most once, and halts at most one round after 
deciding. 
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Agreement

} At most one value can receive majority in 
the first stage of a round.

} If some process sees t + 1 (2, r, v, ratify), 
then every process sees at least one (2, r, v, 
ratify) message.

} If every process sees a (2, r, v, ratify) 
message, every process votes for v in the 
first stage of r  + 1 and decides v in second 
stage of r + 1 (if it hasn’t decided before).

Consensus79



Validity

} If all processes vote for their common 
value v in round 1, then all processes 
send (2, v, 1, ratify) and decide on the 
second stage of round 1.

} Only preferences of one of the 
processes is sent in the first round.
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Termination

} If no process sees the majority value:
} Processes will flip coins, and start everything 

again.
} Eventually a majority among the non-faulty 

processes flips the same random value.
} The non-faulty processes will read the majority 

value.
} The non-faulty processes will propagate ratify 

messages, containing the majority value.
} Non-faulty process will receive the ratify 

messages, and the protocol finishes.
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Summary

} Agreement is a fundamental problem in 
distributed systems

} Realistic models include failures and 
asynchronous communication

} No solution in asynchronous systems
} Solutions exist for synchronous 

communication for both stop failures 
and byzantine failures

} Randomized algorithms solutions exist 
in asynchronous communication
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