
Cristina Nita-Rotaru

7610 : Distributed Systems

Consensus.

Required reading for this topic…

} Michael J. Fischer, Nancy A. Lynch, and
Michael S. Paterson for "Impossibility of
Distributed Consensus with One Faulty
Process,” 1985.

} Consensus in the Presence of Partial
Synchrony, C. Dwork, Nancy Lynch, L.
Stockmeyer, Journal of the Association for
Computing Machinery, 1988

} L. Lamport, R. Shostak, and M. Pease. The
Byzantine Generals Problem ACM
Transactions on Programming 1982.

} M. Ben-Or. Another advantage of free choice
(Extended Abstract): Completely
asynchronous agreement protocol. 1983.

Consensus2

Synchronous/asynchronous communication

let Δ be the time it takes to send a message between two
processes

} Synchronous:
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ

Consensus3

Most common failure models

} Fail-stop (crash): accurately detectable halting failures,
once failed the process does not restart

} Omission: just a subset of the messages are delivered
} Network partitioning: subset of processes are not

reachable
} Byzantine: arbitrary failures, include both benign and

malicious failures; processes can be authenticated or not

Consensus.4

1: Consensus in synchronous systems with
no failures

Consensus in distributed systems

} Consensus: According to Merriam-Webster dictionary it
means general agreement

} When do we need consensus in distributed systems?
} Read-Modify-Write Memory
} Database commit
} Transactional file system
} Totally ordered broadcast

Consensus6

The consensus problem

} Input:
} Each process has a value, either 1 or 0

} Properties:
} Agreement: all nodes decide on the same value
} Validity: if a process decides on a value, then there was a

process that started with that value

Consensus7

Consensus in a synchronous system:
No failures

} Failure model:
} No faults

} Assumptions:
} Communication is synchronous

} Algorithm - requires 1 round:
} Each process sends its value to all the other processes

} Each process decides:
} 1: If all received values including its own are 1

} 0: otherwise decides 0

WHY IS THIS ALGORITM CORRECT?
(i.e. provides agreement and validity)

Consensus8

Consensus in a synchronous system
with crash failures: Model

} Failure model:
} Any process can crash, once crashed, a process

does not recover
} At most f processes can crash

} Communication model
} Communication is synchronous
} Network is a fully connected graph

Consensus9

Consensus in a synchronous system
with crash failures: Properties

} Input:
} 1 or 0 to each process

} Properties:
} Agreement: all non-faulty processes decide on the same

value
} Validity: if a process decides on a value, then there was a

process that started with that value
} Termination: non-faulty processes decide in a finite time

NOTE: FAULTY PROCESSES MAY DECIDE DIFFERENTLY FROM
CORRECT PROCESSES

Consensus10

Consensus in a synchronous system
with crash failures: Algorithm

} Algorithm tolerates at most f failures, out of n nodes
} Each process maintains V the set of values proposed by

other processes (initially it contains only its own value)
} In every round a process:

} Sends to all other processes the values from V that it has not
sent before

} After f+1 rounds each process decides on the minimum
value in V

f < n

Consensus11

Consensus in a synchronous system
with crash failures: Algorithm

Consensus12

A closer look…

} Remember that communication is synchronous (the time it
takes to send a message between two process is known and
fixed)

} A process in a round may:
} Send messages to any set of processes
} Receive messages from any set of processes
} Do local processing
} Make a decision
} Crash

} If a process p crashes in a round, then any subset of the
messages sent by p in this round can be lost

} If a message was sent in a round it is either received in that
round or it will never be received at all

Consensus13

} Key: all processes must be sure that all processes that did
not crashed have the same information (so they can
make the same decision)

} Processes can not decide in less than f+1 because they
can not distinguish between executions in which all alive
have the same list, or all alive have different lists.

Consensus14

Example

} Consider that you have 5 processes and 2 processes can crash
} After 1 round p1 has all 5 values, can he decide?

} No, because he is not sure that every other process has all the
information he has, for example, p5 crashed and p1 is the only one
having info from p5

} After round 2, can p1 decide?
} He has all the info.

} But what about p2? P2 can not be sure that all the other processes
received the info from p1, maybe p1 send his list to p2 and then crashed

} Can he decide now?

} After round 3? Can p2 decide? Yes, assuming that p2 does not
have the same list as another process, leads to more than 2
processes have crashed which contradicts our assumption

Consensus15

Sketch proof for the agreement property

} Assume by contradiction that two processes decide on
different values, this means they had different final set of values,
let’s say p has a value v that q does not have

} How come that p got v and q did not? The only possible case
is that a third process s, sent v to p, and crashed before
sending v to q. SO in ROUND f +1, process s crashed (1
process)

} Because q does not have v it means that any process that may
have sent v crashed also in round f

} Proceeding in this way, we infer at least one crash in each of
the preceding rounds.

} STOP! We can have at most f crashes and we obtained that
there are f+1 crashes (one in each round) à contradiction.

Consensus16

Variant: Uniform Consensus

} Input:
} 1 or 0 to each process

} Properties:
} Uniform Agreement: all processes (correct or faulty) decide on

the same value
} Validity: if a process decides on a value, then there was a

process that started with that value
} Termination: a non-faulty process decides in a finite time

Consensus17

2: Consensus in Asynchronous Systems
Includes slides from Ali Ghodsi, UC

Berkeley

Synchronous/asynchronous communication

let Δ be the time it takes to send a message between two
processes

} Synchronous:
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ

Consensus19

There is no asynchronous algorithm that achieves
agreement on a one-bit value in the presence of crash
faults. The result is true even if no crash actually occurs!

Consensus in Asynchronous Systems

} Also known as the FLP result
} Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

for "Impossibility of Distributed Consensus with One
Faulty Process," Journal of the ACM, April 1985, 32(2):374

Consensus20

What happens …

} In an asynchronous system, a process pi cannot tell
whether a non-responsive process pj has crashed or it is
just slow

} What can pi do?
} If it waits, it will block since it might never receive the message

from the non-responsive process
} If it decides, it may find out later that the non-responsive

process pi made a different decision

Consensus21

Execution, configuration, events

} Set of processes pi,
} State Si: each process has a state
} Configuration Ct: set of state of each process at some

moment in time
} Events: send and deliver messages, events can change the

state at a process
} Execution: sequence of configuration and events

} A process pi can send a message at most once

Consensus22

The problem

} Input:
} 1 or 0 to each process

} Properties:
} Agreement: all non-faulty processes decide on the same value
} Validity: if a process decides on a value, then there was a

process that started with that value
} Termination: A non-faulty process decides in a finite time

Consensus23

Proof Sketch

} The main idea of the proof is to construct an execution
that does not decide (i.e. does not terminate), showing
that the protocol remains forever indecisive

} Classify configurations (set of state of each process) as
} 0-valent will result in deciding 0 (some process has decided 0

in C or if all configurations accessible from C are 0-valent; no 1-
decided configurations are reachable)

} 1-valent will result in deciding 1 (some process has decided 1
in C or if all configurations accessible from C are 1-valent; no 0-
decided configurations are reachable)

} Bivalent has a bivalent outcome, decision is not already
predetermined, outcome can be either 0 or ; both 0-decide and
1-decide configurations are reachable

Consensus24

Ali Ghodsi, alig(at)cs.berkeley.edu

0- valent configuration

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

0-valent configuration

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}

0-valent configuration

{ decide-0,

P2_state,

P3_state,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state,

P3_state,

decide-0,

{ msg2}
}

0-valent configuration

{ decide-0,

P2_state2,

P3_state2,

decide-0,

{ msg2}
}

0-valent configuration

{ decide-0,

P2_state,

decide-0,

P4_state,

{msg1, msg2}
}

0-valent configuration

{ decide-0,

P2_state3,

P3_state,

decide-0,

{}
}

0-Valent Configuration Example

25

1- valent configuration

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

1-valent configuration

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}
1-valent configuration

{ decide-1,

P2_state,

P3_state,

P4_state,

{msg1, msg2}
}

1-valent configuration

{ decide-1,

P2_state,

P3_state,

decide-1,

{ msg2}
}

1-valent configuration

{ decide-1,

P2_state2,

P3_state2,

decide-1,

{ msg2}
}

1-valent configuration

{ decide-1,

P2_state,

decide-1,

P4_state,

{msg1, msg2}
}

1-valent configuration

{ decide-1,

P2_state3,

P3_state,

decide-1,

{}
}

1-valent configuration

{ decide-1,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

1-Valent Configuration Example

26
Ali Ghodsi, alig(at)cs.berkeley.edu

Bivalent Configuration Example

Bivalent config.

{ P1_state,

P2_state,

P3_state,

P4_state,

{msg1}
}

0-valent config.

{ P1_state,

P2_state2,

P3_state,

P4_state,

{msg1}
}

1-valent config.

{ decide-1,

P2_state5,

P3_state6,

P4_state5,

{msg1, msg3}
}

0-valent config.

{ decide-0,

P2_state2,

P3_state2,

P4_state,

{msg1, msg2}
}

1-valent config.

{ decide-1,

P2_state5,

P3_state6,

decide-1,

{ msg2}
}

0-valent config.

{ decide-0,

P2_state2,

P3_state2,

decide-0,

{ msg2}
}

0-valent config.

{ decide-0,

P2_state,

decide-0,

P4_state,

{msg1, msg2}
}

1-valent config.

{ decide-1,

P2_state9,

P3_state6,

decide-1,

{}
}

27
Ali Ghodsi, alig(at)cs.berkeley.edu

Proof Sketch (2)

} Start with an initially bivalent configuration
} Identify an execution that would lead to a univalent state, let’s say 0-

valent
} The switch from bivalent to univalent is due to an event e = (p,m)

in which some process p receives some message m
} We will delay the e event for a while. Delivery of m would make the

run univalent but m is delayed (fair-game in an asynchronous system)
} Since the protocol is indeed fault-tolerant there must be a run that

leads to the other univalent state (1-valent in this case)
} Now let m be delivered, this will bring the system back in a bivalent

state
} Decision can be delayed indefinitely

Consensus28

Proof: More Details

} Lemma 1: There exists an initial configuration that is bivalent.
} Lemma 2: Starting from a bivalent configuration C and an event

e = (p, m) applicable to C, consider C the set of all
configurations reachable from C without applying e and D the
set of all configurations obtained by applying e to the
configurations from C, then D contains a bivalent
configuration.

} Theorem: There is always a run of events in an
asynchronous distributed system such that the group of
processes never reach consensus

Initial bivalent configuration Bivalent configuration
I can reach

Consensus29

Lemma 1:
There exists an initial configuration that is bivalent

Lemma 1:Proof Sketch

Proof by contradiction
} Let’s assume that there is no bivalent initial configuration; then all

configurations are 0-valent or 1-valent.
} List all initial configurations (list the 1 bits on the left).
} Consider a 0-valent initial configuration C0 adjacent to a 1-valent

configuration C1: they differ only in the value corresponding to some
process p.

Consensus30

Lemma 1 (cont.)

Lemma 1: There exists an initial configuration that is
bivalent

} Let this process p crash.
} Note that now that p is crashed both C0 and C1 will lead to the

same final configuration because with the exception of internal state
of p they were identical (the only difference was determined by p).
} Assume decision reached is 1: C1 was 1-valent, then C0 must have

been bivalent (we assumed it was 0-valent and that is impossible)
} Assume decision reached is 0: C0 was already 0-valent, then C1

must have been bivalent (we assumed it 1-valent, impossible)
} Thus, there exists an initial configuration that is bivalent.

Consensus31

Commutativity Lemma

Lemma
} Let S1 and S2 be schedules (sequences of events)

applicable to some configuration C, and suppose that the
set of processes taking steps in S1 is disjoint from the set
of processes taking steps in S2 .

} Then, S1; S2 and S2; S1 are both sequences applicable to C,
and they lead to the same configuration.

Consensus32

Lemma 2:
Starting from a bivalent configuration, there is
always another bivalent configuration that is reachable

Lemma 2

} Consider an event e = (p, m) that can be applied to a bivalent
initial configuration C

} C the set of all configurations reachable from C without
applying e

} D the set of all configurations obtained by applying e to a
configuration in C

} We want to show that D contains a bivalent configuration.

Consensus33

Lemma 2 (cont.)

} Lemma 2: ……We want to show that D contains a
bivalent configuration

Proof by contradiction
} Assume that there is no bivalent configuration in D
} However there are adjacent configurations C0 and C1 in

C such that C1 = C0 followed by event e’=(p’,m’)
WHY (remember initial configuration is bivalent)

} Then denote
} D0 be C0 followed by e=(p,m)
} D1 be C1 followed by e=(p,m)

} Since there are no bivalent configurations in D, let’s
assume that D0 is 0-valent and D1 is 1-valent

Consensus34

Lemma 2 (cont.)

} Case 1: p and p’ are different.
} If we apply e’ to D0 we obtain D1

since e and e’ are disjoint..
} CONTRADICTION, any successor

of a 0-valent configuration must be
0-valent.

C0

D1

D0 C1

e

ee’

e’

p ¹ p’

Consensus35

Lemma 2 (cont.)

} Case 2: Process p is
the same process as p’

} S is a run that reaches
a decision, consider A
that configuration.

} We obtain that A is
bivalent, contradiction!

C0

D1

D0
C1

e e’

A

E0

e

S

S

E1

Se’

e

e

Consensus36

FLP impact on distributed systems
design

} FLP proves that any fault-tolerant algorithm solving
consensus has runs that never terminate
} These runs are extremely unlikely (“probability zero”)
} Yet they imply that we can’t find a totally correct solution
} And so “consensus is impossible” (“not always possible”)

} A distributed system trying to agree on something in
which process p plays a key role will not terminate if p
crashes

Consensus37

So what can we do?

} Alternative? Synchronous models? BUT REAL,
PRACTICAL SYSTEMS ARE NOT SYNCHRONUS !!!

} Use randomization, probabilistic guarantees
} Process groups: sacrifice liveness under the assumption

that retransmissions will eventually be received from
good participants, the protocol eventually terminates

} Avoid consensus, use quorum systems

Consensus38

Partial Synchrony

let Δ be the time it takes to send a message

} Synchronous:
} Δ is known and fixed

} Asynchronous:
} There is no bound for Δ

} Partially synchronous:
} Version 1: There is a bound for Δ but it it not known
} Version 2: Bound for Δ is known and holds after a time T

Consensus39

Consensus: Summary so Far

} Considered only benign failures
} In synchronous systems we have a f+1

rounds consensus algorithm that can
tolerate f failures, f < n

} In asynchronous systems
} We can not solve consensus
} We can order events and determine

consistent snapshots

Consensus40

3: Byzantine Agreement

Byzantine Failures

} Model arbitrary failures
} Model insider attacks
} Name comes from a paper that introduced the problem
“Byzantine Generals Problem”

} A process having Byzantine behavior can:
} Crash
} Delay messages
} Refuse to forward messages
} Two-face behavior
} Lie

Consensus42

Byzantine Generals Problem

• Several Byzantine
generals are laying siege
to an enemy city

• They can only
communicate by
messenger

• They have to agree on a
common strategy, attack
or retreat.

• Some general may be
traitors (their identity is
not known)

Do you see the connection with the consensus problem?
Consensus43

Goals

} A: All loyal generals decide on same plan of action
} B: A small number of traitors cannot cause a bad plan to

be adopted.
} B is difficult to formalize

Consensus44

Basic Ideas

} To satisfy condition A
} Have all the general use the same method of combining

information to come up with a plan

} To satisfy condition B
} Use a robust method (median function of some sort)

} Why not just use the median?
} Traitors lie and not everyone may have the same information!

Consensus45

Formal Problem Definition

} Assume there is one commanding general and his
subordinate lieutenant generals.

} Commanding general need not be loyal.

} IC1: All loyal lieutenants obey the same order.
} IC2: If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

Consensus46

3 Generals: Impossibility Result

} Assume communication is with oral, easily changed
messages

} Oral Messages
} Models messages with no integrity, no authentication
} Contents are under the control of the sender
} Traitor can do anything to the message

} There is no solution in the case of 3 generals, one traitor
makes the protocol fail!

Consensus47

Scenario A

Attack!
Attack!

General said “Retreat!”

Lieutenant 1

Lieutenant 2

IC2: If the commanding general is
loyal, then every loyal lieutenant
obeys the order he sends.

To satisfy IC2, Lieutenant 1 must
obey the order from the commander

Consensus48

Scenario B

Attack! Retreat!

General said “Retreat!”

Lieutenant 1 Lieutenant 2

IC1: All loyal lieutenants
obey the same order

General said “Attack!”

Lieutenant 1 can not distinguish between
scenario A and scenario B

Consensus49

Generalizing the Impossibility Result

} There is no solution for fewer than 3m+1 generals in the
presence of m traitors

m lieutenants m lieutenants

Commander and m-1 lieutenants

Consensus50

Proof Sketch

} By contradiction: assuming that there is a correct solution
in 3m case with m traitors, we construct a solution for
the case with 3 generals

} We call the 3m case the Romanians Generals.
} Mapping: each Byzantine general will simulate some of the

Romanian generals:
} Byzantine commander: simulates Romanian commander + m-1

Romanians
} Each of the 2 Byzantine lieutenant: simulates at most m

Romanians
} Since only one Byzantine can be a traitor, at most m

Romanians can be traitors
IC1 and IC2 for Romanians, imply the same
properties for the Byzantine Consensus51

Solution with Oral Messages

} For 3m+1 generals, solution tolerates m traitors.
} Oral messages – the sending of content is entirely under

the control of sender.
} A1 – Each message that is sent is delivered correctly.
} A2 – The receiver of a message knows who sent it.
} A3 – The absence of a message can be detected.

} What do we get from the assumptions?
} Traitors cannot interfere with communication as third party.
} Traitors cannot send fake messages
} Traitors cannot interfere by being silent.

} Default order to “retreat” for silent traitor.

Consensus52

Oral Message Algorithm

} Recursive algorithm
} Each general (a.k.a. lieutenant) forwards on received values to

all other lieutenant
} The commander sends his value to every lieutenant
} For each lieutenant i, broadcast the values to all other

lieutenants who have not had the value.
} Take the majority function of the received values.
} To distinguish between messages from different “rounds”,

index them using the lieutenant’s number i

} Intuition:
} Generals might have contradictory data
} In each round, each participant sends out “witness” messages:

here’s what I saw in round i
Consensus53

More Details…

} Algorithm OM(0)
} Commander sends his value to every lieutenant.
} Each lieutenant (L) uses the value received from commander,

or RETREAT if no value is received.

} Algorithm OM(m), m>0
} Commander sends his value to every Lieutenant (vi)
} Each Lieutenant acts as commander for OM(m-1) and sends vi

to the other n-2 lieutenants (or RETREAT)
} For each i, and each j<>i, let vj be the value lieutenant i

receives from lieutenant j in step (2) using OM(m-1).
Lieutenant i uses the value majority (v1, …, vn-1).

Consensus54

Example with m=1 and n=4

X
Y

Z

X

Y

Z

Y

Z

X

Each lieutenant obtains v1 = x, v2 = y, v3 = z, which all result in the same value
when the majority is taken

Consensus55

Example with m=1 and n=4

v
v

v

v

v

x

v

Z
v

IC1 and IC2 are met.

Consensus56

Proof Sketch

} For any m, algorithm OM(m) satisfies conditions IC1 (All
loyal lieutenants obey the same order) and IC2 (If the
commanding general is loyal, then every loyal lieutenant
obeys the order he sends) if there are more than 3m
generals and at most m traitors.

} Induction on m proves true in all cases.

Consensus57

Written Messages Solution

} Written messages (messages are digitally signed)
} A loyal general’s signature cannot be forged or changed and

anyone can verify authenticity

} Three general solutions now exist!
} Works for any n >= m+2 (1 non-faulty commander and 1

loyal lieutenant)

Consensus58

Signed Message Algorithm

} General sends a signed order to all his lieutenants
} Each lieutenant signs and forwards on the message he

received to all the other lieutenants until every message
has been signed by everyone else.

} Each lieutenant keeps track of the properly signed orders
he has received
} Possible orders are attack, retreat, attack & retreat

} Use choice method to have everyone choose same value

Consensus59

Why Does It Work?

} Every loyal lieutenant eventually has the same set of
signed messages, resulting in the same choice

} If commander is loyal, then all loyal lieutenants will have
correct messages

} If the commander is a traitor, lieutenants receive
conflicting messages and but still end up choosing the
same choice (retreat).

Consensus60

Revisit the Requirements

} Absence can be detected
} Timeout mechanisms are needed
} Synchronous Communication

} Network is connected (different requirements if the
network is not a complete graph)

} A signature cannot be forged or changed and anyone can
verify authenticity
} Message signed by i= (M, S(M))
} Crypto and modular arithmetic

Consensus61

Termination

} How many rounds do you need?
} For the Byzantine generals algorithm described before

you need f+1

Consensus62

Consensus: Summary

} In synchronous systems with benign
failures we have a f+1 rounds
consensus algorithm that can tolerate f
failures, f < n

} In asynchronous systems
} We can not solve consensus
} We can order events and determine

consistent snapshots

} Byzantine failures
} No solution for fewer than 3m+1

generals in the presence of m traitors
} Oral message and written (signed)

messages solutions exist
Consensus63

4: Randomized Agreement.
Based on slides by James Aspnes

Consensus in Asynchronous Systems

} There is no asynchronous algorithm that achieves
agreement on a one-bit value in the presence of crash
faults. The result is true even if no crash actually occurs!

} Also known as the FLP result
} Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

for "Impossibility of Distributed Consensus with One
Faulty Process," Journal of the ACM, April 1985, 32(2):374

Consensus65

So what can we do?

} Alternative? Synchronous models? BUT REAL,
PRACTICAL SYSTEMS ARE NOT SYNCHRONOUS !!!

} Use randomization: probabilistic guarantees for
termination

} Use process groups: sacrifice liveness under the
assumption that retransmissions will eventually be
received from good participants, the protocol eventually
terminates

} Use quorum systems: avoid consensus among all
participants

Consensus66

Randomized Algorithms

} Algorithm that uses randomness by adding a coin-flip to
the distributed model.

} Adversary
} A function from partial executions to operations.
} Chooses which operation happens next.
} Simulates the executing environment.

Consensus67

Types of Adversaries

} Strong adversary
} Adversary can see the entire history of execution: outcomes of

coin flips, internal states of processes, contents of messages.

} Weak adversary
} Adversary chooses for each state, which process executes

next, etc.

Consensus68

Randomized Agreement

} Addition of coin-flip to distributed model.

} Agreement: all non-faulty processes agree on the same
value
} Validity: if a process decides on a value, then there was a

process that started with that value

} Termination – for all adversaries, every non-faulty process
terminates with probability 1

Consensus69

Coin Models

} Global reliable coin: not always possible
} Local coin: each process tosses a coin independently,

works well when the total number of processes is
relatively large to the number of faulty ones

Consensus70

Ben-Or’s Consensus Protocol

} First protocol to achieve consensus with probabilistic
termination in a model with a strong adversary (1983)
} Tolerates t < n/2 crash failures.
} Requires exponential expected time to converge in the worst

case.

} Strong adversary
} Can see the entire history of execution: outcomes of coin flips,

internal states of processes, contents of messages.
} BUT, every message sent to a correct process must eventually

be received and the final schedule may have at most t crashed
processes.

Consensus71

Ben-Or: Coin Toss

} Each process tosses a coin
independently

} Uniform distribution, the coin outputs
0 or 1 each with probability ½

} Used by a process to pick a new local
value when a majority was not found

Consensus72

Ben-Or’s Consensus Protocol

} Operates in rounds, each round has two phases.
} Suggestion phase – each process transmits its value, and

waits to hear from other processes.
} Decision phase – if majority found, take its value.

Otherwise, flip a coin to decide a new local value.

Consensus73

Purpose of rounds

} If some process decides v then by the next round all the
other operating processes will decide the same value v.

Consensus74

Main Ideas

} Exchange initial values and if enough processes detected
the majority, decide.
} Wait for only n-t messages to avoid blocking.

} If a process knows that someone detected majority,
switch to the majority’s value.

} Terminates, because eventually, the majority of processes
will flip coins correctly.

} Algorithm does not wait for all processes, because they
might be dead.

} Remember this is asynchronous execution model : no
assumptions about the relative speed or about the delay
in delivering a message

Consensus75

Ben-Or’s Consensus Protocol

Input: Boolean initial consensus value
Output: Boolean final consensus value
Data: Boolean preference, integer round
begin

preference := input
round := 1

while true do

end
end

Body of while statement

Consensus76

Body of while Statement
send (1, round, preference) to all processes
wait to receive n – t (1, round, *) messages
if received more than n / 2 (1, round, v) messages with same v
then send (2, round, v, ratify) to all processes
else send (2, round, ?) to all processes
end
wait to receive n – t (2, round, *) messages
If received a (2, round, v, ratify) message
then preference = v

if received more than t (2, round, v, ratify) messages
then output = v
end

else preference = CoinFlip()
end
round = round + 1

n> 2t

Consensus77

Halting

} Once a correct process decides a value, it will keep
deciding the same value in all subsequent phases.

} Easy to modify the algorithm so that every process
decides at most once, and halts at most one round after
deciding.

Consensus78

Agreement

} At most one value can receive majority in
the first stage of a round.

} If some process sees t + 1 (2, r, v, ratify),
then every process sees at least one (2, r, v,
ratify) message.

} If every process sees a (2, r, v, ratify)
message, every process votes for v in the
first stage of r + 1 and decides v in second
stage of r + 1 (if it hasn’t decided before).

Consensus79

Validity

} If all processes vote for their common
value v in round 1, then all processes
send (2, v, 1, ratify) and decide on the
second stage of round 1.

} Only preferences of one of the
processes is sent in the first round.

Consensus80

Termination

} If no process sees the majority value:
} Processes will flip coins, and start everything

again.
} Eventually a majority among the non-faulty

processes flips the same random value.
} The non-faulty processes will read the majority

value.
} The non-faulty processes will propagate ratify

messages, containing the majority value.
} Non-faulty process will receive the ratify

messages, and the protocol finishes.

Consensus81

Summary

} Agreement is a fundamental problem in
distributed systems

} Realistic models include failures and
asynchronous communication

} No solution in asynchronous systems
} Solutions exist for synchronous

communication for both stop failures
and byzantine failures

} Randomized algorithms solutions exist
in asynchronous communication

Consensus82

