7610: Distributed Systems

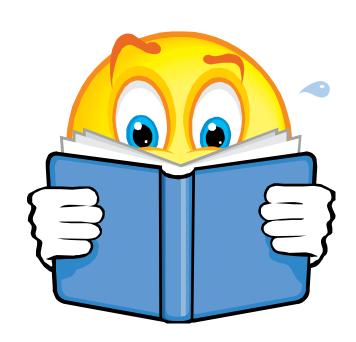
AI.

Slides based on material by Prof. Ken Birman, for CS5412, and authors of TensorFlow and authors of GraphLab

- Lessons from the talk
 - Simple problems are not so simple at scale
 - Byzantine in a data center
 - Membership under churn for loaded machines
- Github incident
- List of systems

Required reading for this topic...

- Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, VLDB 2012
- Pregel: A System for Large-Scale Graph Processing, SIGMOD 2010
- TensorFlow: A System for Large-Scale Machine Learning OSDI 2016

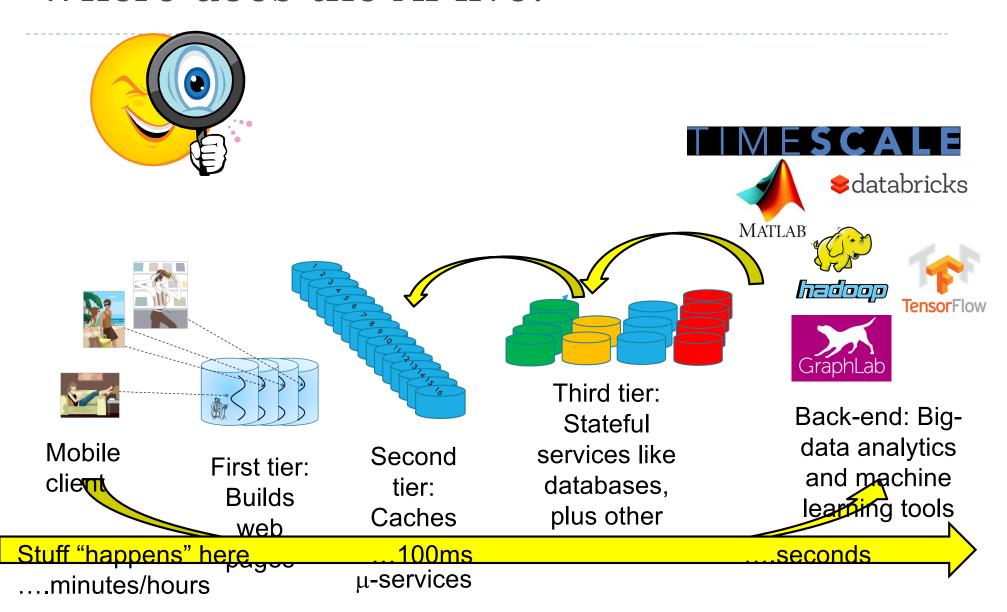


A

Clouds and machine learning tools

- Early cloud just served web pages and embedded ads
- ▶ However, <u>individualized</u> advertising gives far better results... (and they increase revenue)
- Better selection of ads gave rise to an Al revolution
 - Individual actions
 - Social networking "graphs"
- Today, the whole cloud is a massive scalable system for machine learning and associated actions.

Where does the AI live?

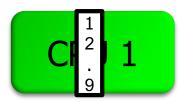


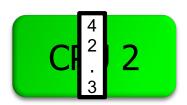
How to support ML algorithms at scale

- Old approach:
 - threads, locks, messages
- Newer approach:
 - MapReduce, Spark
- When is MapReduce the right approach?
- When MapReduce does not work well?
- Design new abstractions and systems to support ML development and running at scale
 - GraphLab, created at CMU, eventually bought by Apple
 - ▶ TensorFlow, created by GoogleBrain

1:Why Map-Reduce is not the best approach for ML applications

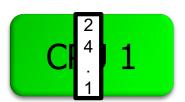
MapReduce - Map Phase

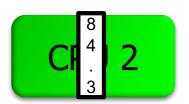


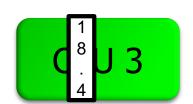


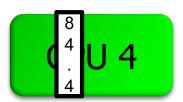
Embarrassingly Parallel independent computation No Communication needed

MapReduce – Map Phase









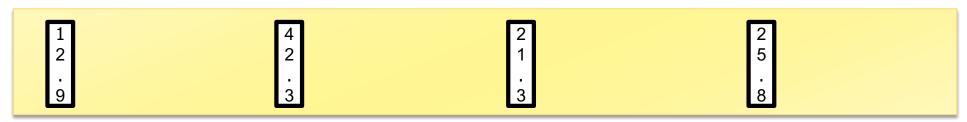
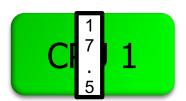
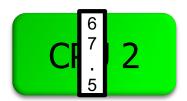
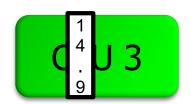


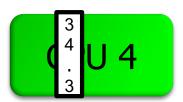
Image Features

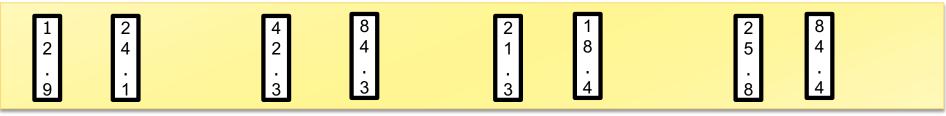
MapReduce - Map Phase







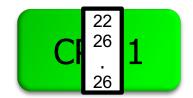


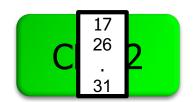


Embarrassingly Parallel independent computation No Communication needed

MapReduce – Reduce Phase

Class A Face Statistics Class B Face Statistics





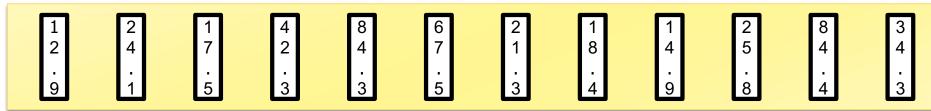


Image Features

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Is there more to Machine Learning

Label propagation algorithm

Social Arithmetic:

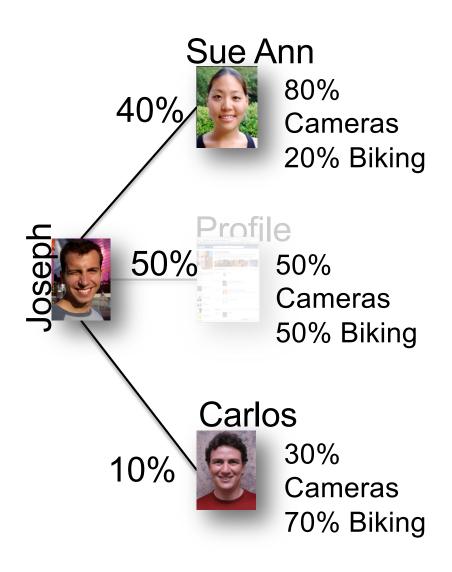
50% What I list on my profile
40% Sue Ann Likes
10% Carlos Like

I Like: 60% Cameras, 40% Biking

Recurrence Algorithm:

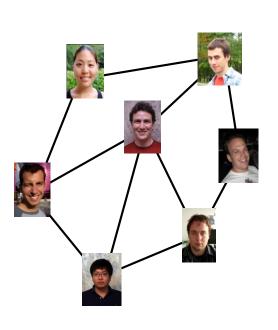
$$Likes[i] = \sum_{j \in Friends[i]} W_{ij} \times Likes[j]$$

- iterate until convergence
- Parallelism:
 - Compute all Likes[i] in parallel

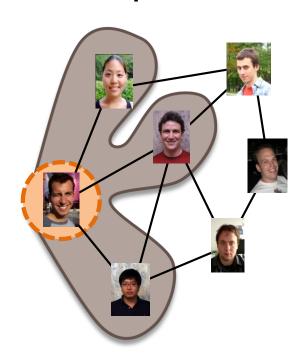


Properties of Graph Parallel Algorithms

Dependency Graph



Factored Computation



Iterative Computation

What I Like
What My
Friends Like

14 A

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Map Reduce?

Lasso

Label Propagation

Kernel Methods Belief Propagation

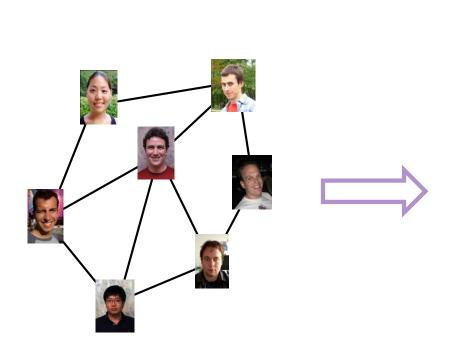
Tensor Factorization

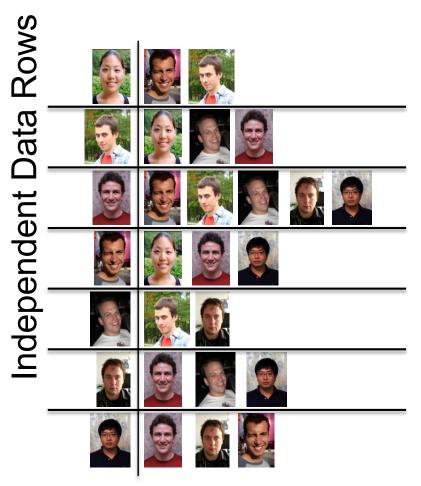
PageRank

Deep Belief Networks Neural Networks

Limitations of MR: Data Dependencies

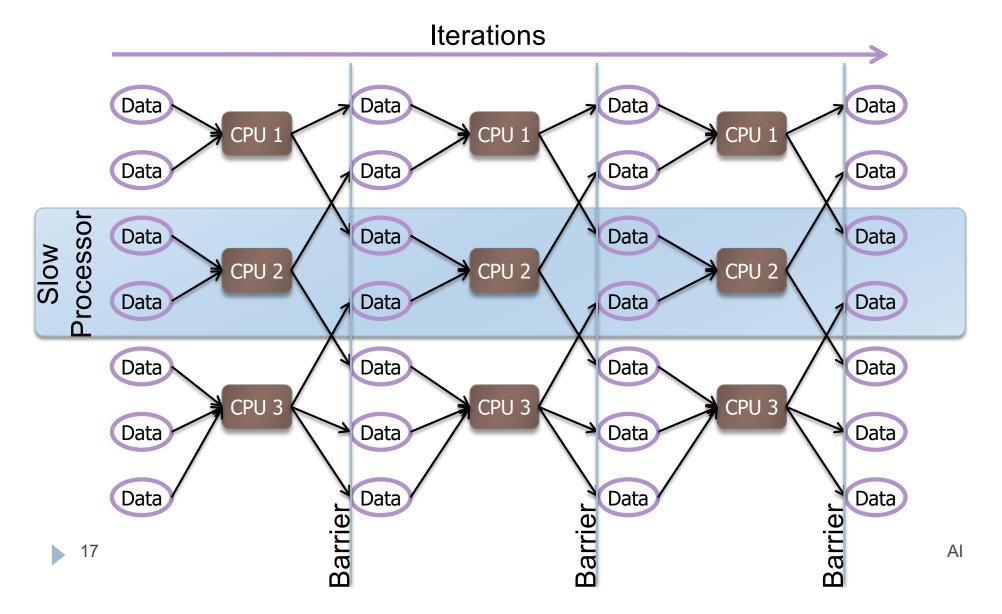
- Map-Reduce does not efficiently express dependent data
 - User must code substantial data transformations
 - Costly data replication





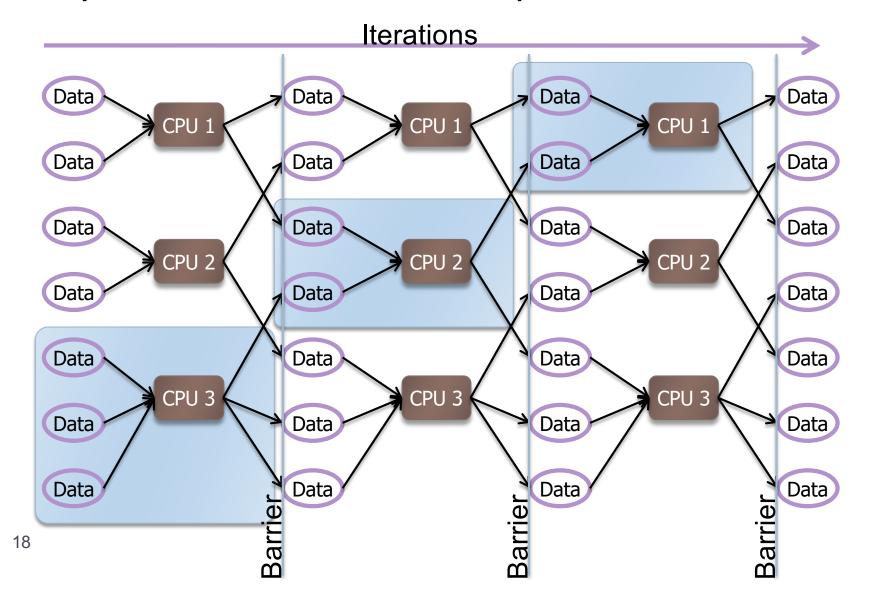
Limitations of MR: Iterative Algorithms

Map-Reduce does not efficiently express iterative algorithms:



Iterative MapReduce

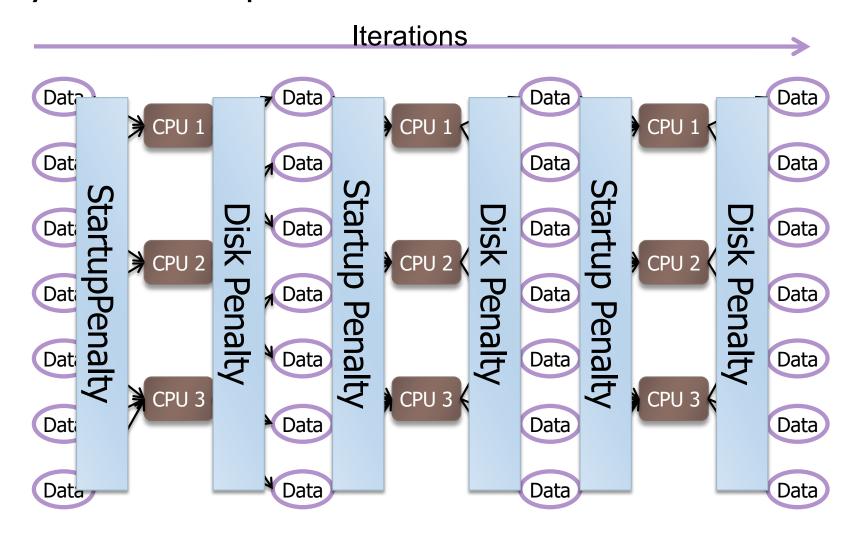
Only a subset of data needs computation:



ΑI

Iterative MapReduce

System is not optimized for iteration:



Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Pregel (Giraph)?

Lasso

SVM

Kernel Methods Belief Propagation

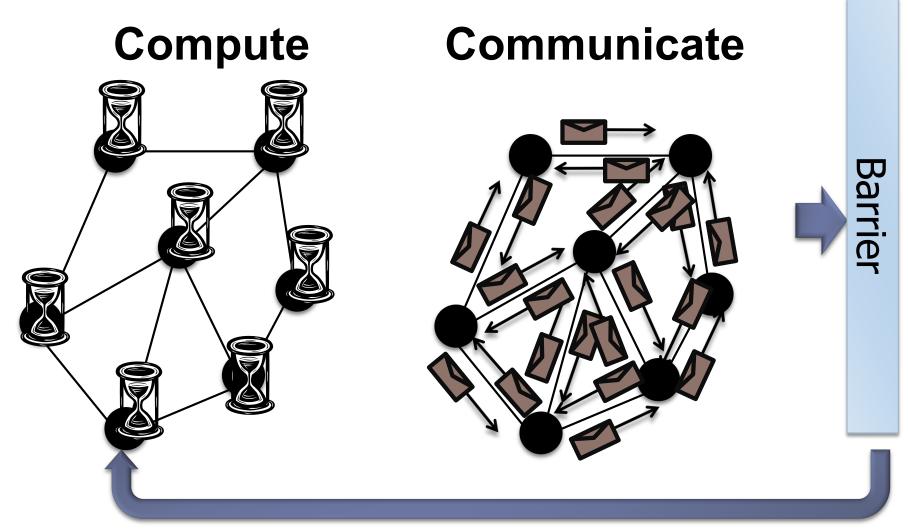
Tensor Factorization

PageRank

Deep Belief Networks Neural Networks

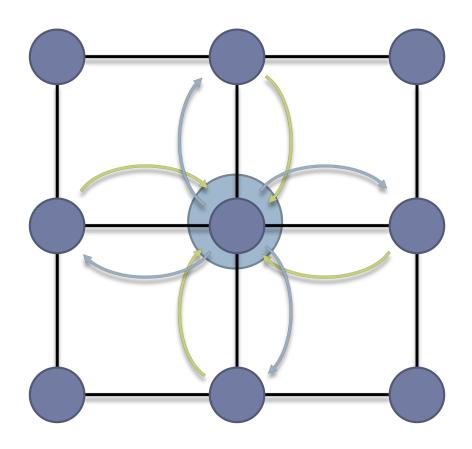
Pregel (Giraph)

▶ Bulk Synchronous Parallel Model (Valiant 1990):



Loopy Belief Propagation (Loopy BP)

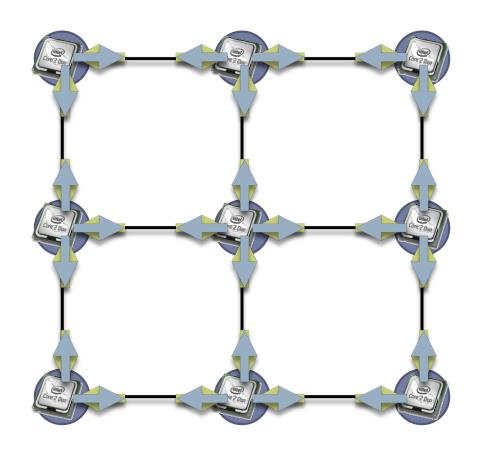
- Iteratively estimate the "beliefs" about vertices
 - Read in messages
 - Updates marginal estimate (belief)
 - Send updated out messages
- Repeat for all variables until convergence



Bulk Synchronous Loopy BP

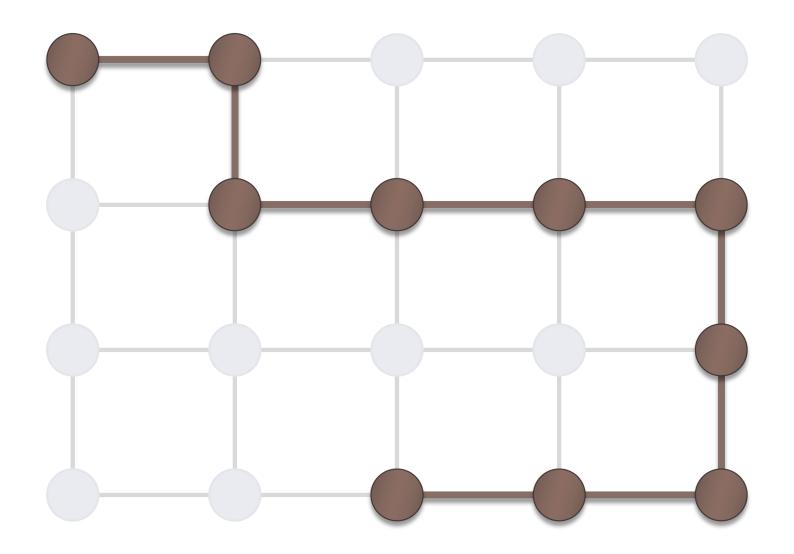
Often considered embarrassingly parallel

- Associate processor with each vertex
- Receive all messages
- Update all beliefs
- Send all messages
- Proposed by:
 - ▶ Brunton et al. CRV'06
 - Mendiburu et al. GECC'07
 - ► Kang, et al. LDMTA'10
 - ...



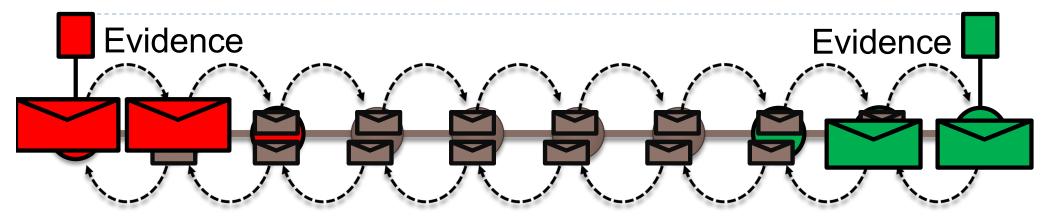
24 A

Sequential Computational Structure



Hidden Sequential Structure

Hidden Sequential Structure



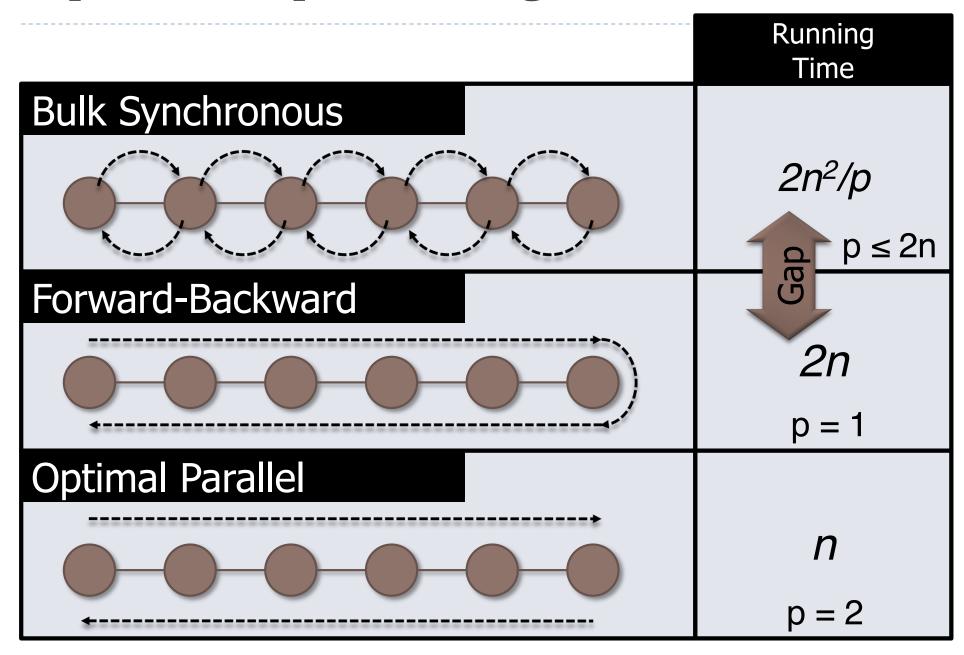
Running Time:

$$\frac{2n \text{ Messages Calculations}}{p \text{ Processors}} \times (n \text{ Iterations to Converge}) = \frac{2n^2}{p}$$

Time for a single parallel iteration

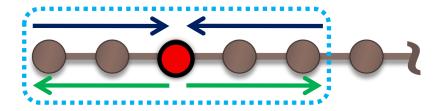
Number of Iterations

Optimal Sequential Algorithm



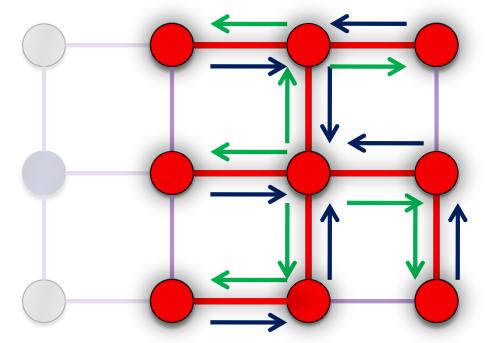
The Splash Operation

Generalize the optimal chain algorithm:



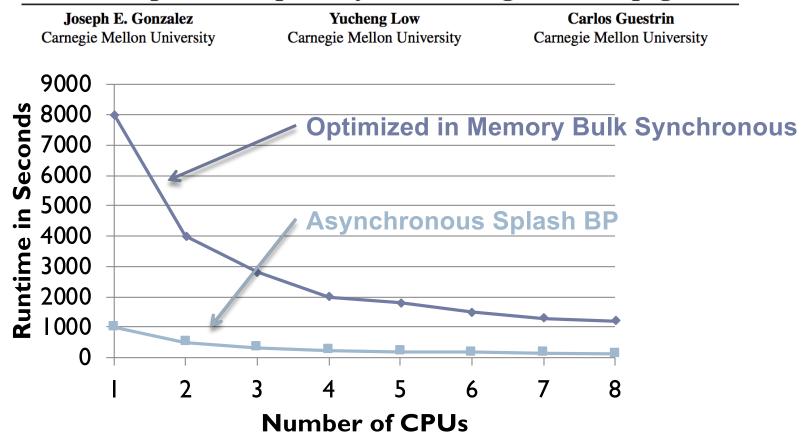
to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- 3) Backward Pass computing all messages at each vertex



Data-Parallel algorithms can be inefficient

Residual Splash for Optimally Parallelizing Belief Propagation



The limitations of the Map-Reduce abstraction can lead to inefficient parallel algorithms.

Need a new abstraction

Map-Reduce is not well suited for Graph-Parallelism

Data-Parallel Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

SVM Kernel P

Belief Propagation

Tensor Factorization

PageRank

Deep Belief Networks Neural Lasso Networks

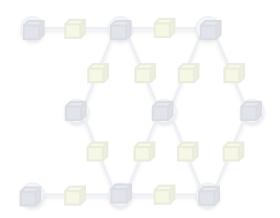
Αl

2:GraphLab

The GraphLab Framework

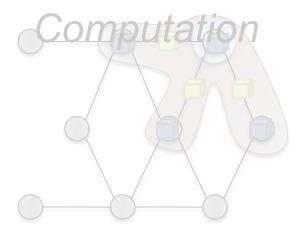
Graph Based

Data Representation

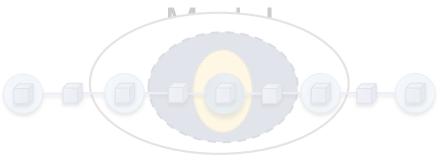


Scheduler

Update Functions *User*

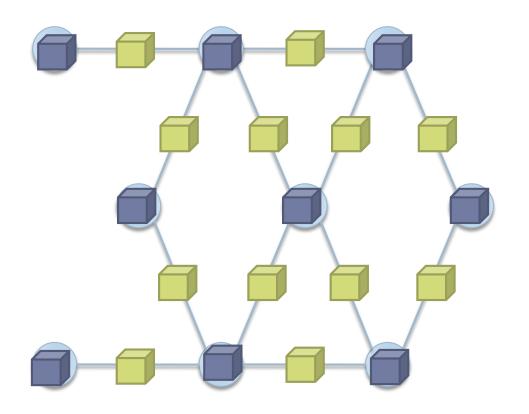


Consistency



Data Graph

A graph with arbitrary data (C++ Objects) associated with each vertex and edge.



Graph:

Social Network

Vertex Data:

- User profile text
- Current interests estimates

Edge Data:

Similarity weights

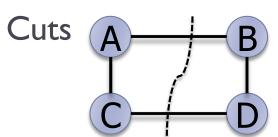
Implementing the Data Graph

Multicore Setting

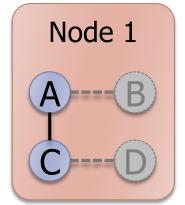
- In Memory
- Relatively Straight Forward
 - ▶ vertex_data(vid) → data
 - ▶ edge_data(vid,vid) → data
 - ▶ neighbors(vid) → vid_list
- Challenge:
 - Fast lookup, low overhead
- Solution:
 - Dense data-structures
 - Fixed Vdata&Edata types
 - Immutable graph structure

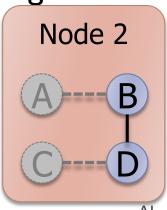
Cluster Setting

- **▶ In Memory**
- Partition Graph:
 - ParMETIS or Random



Cached Ghosting

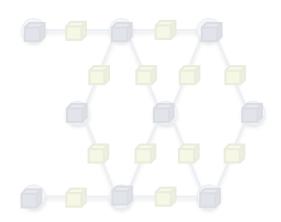




The GraphLab Framework

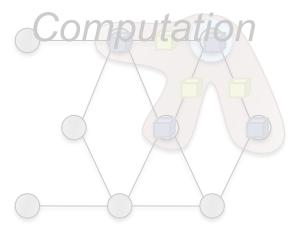
Graph Based

Data Representation

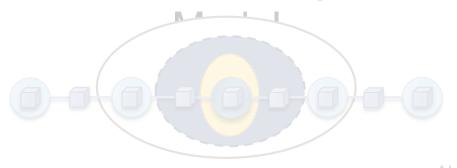


Scheduler

Update Functions *User*

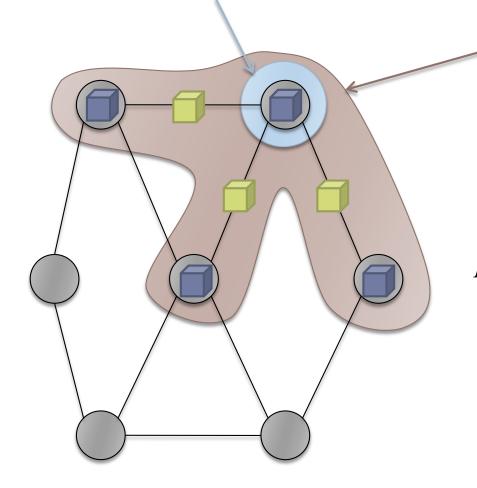


Consistency



Update Functions

An **update function** is a user defined program which when applied to a **vertex** transforms the data in the **scope**of the vertex



```
label_prop(i, scope){

// Get Neighborhood data

(Likes[i], W_{ij}, Likes[j]) \leftarrow scope

// Update the vertex data

Likes[i] \leftarrow \sum_{j \in Friends[i]} W_{ij} \times Likes[j];

// Reschedule Neighbors if needed

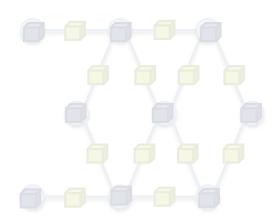
if Likes[i] changes then

reschedule_neighbors_of(i);
}
```

The GraphLab Framework

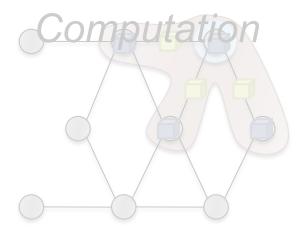
Graph Based

Data Representation

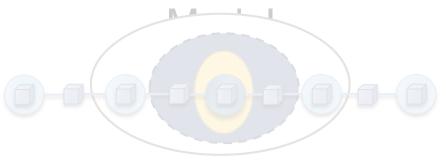


Scheduler

Update Functions *User*



Consistency

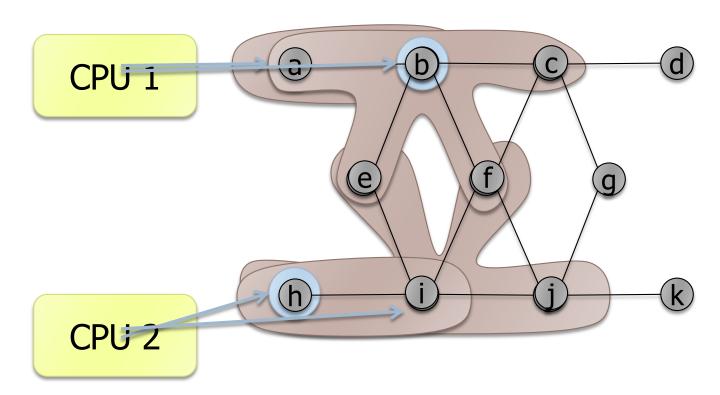


The Scheduler

The **scheduler** determines the order that vertices are

updated.

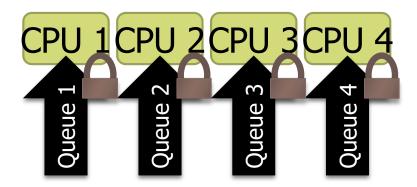
Scheduler



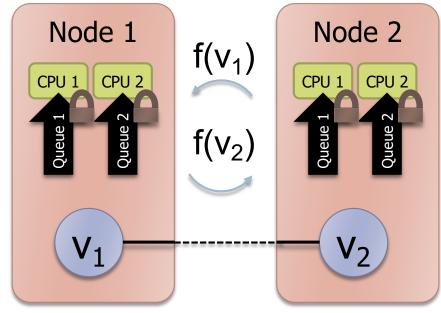
The process repeats until the scheduler is empty.

Implementing the Schedulers

- Multicore Setting
 - Challenging!
 - Fine-grained locking
 - Atomic operations
 - Approximate FiFo/Priority
 - Random placement
 - Work stealing



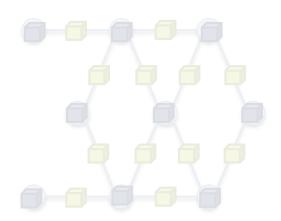
- Cluster Setting
- Multicore scheduler on each node
 - Schedules only "local" vertices
 - Exchange update functions



The GraphLab Framework

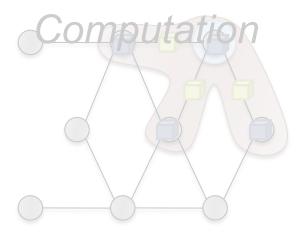
Graph Based

Data Representation

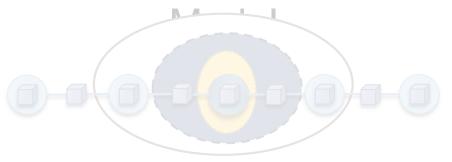


Scheduler

Update Functions *User*

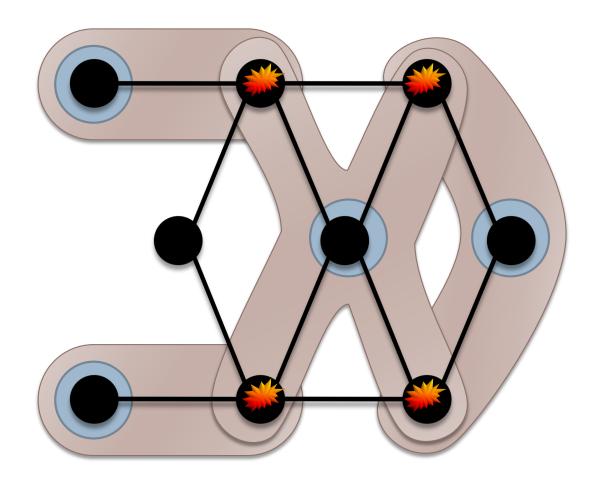


Consistency



Ensuring Race-Free Code

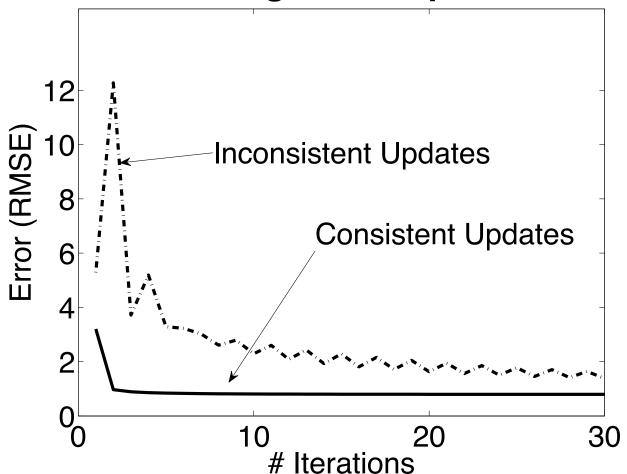
▶ How much can computation overlap?



Importance of consistency

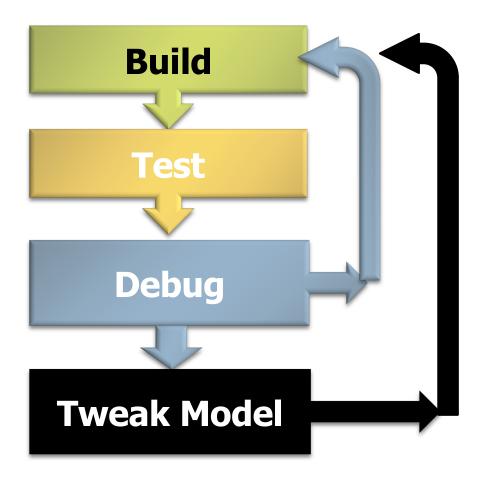
Many algorithms require strict consistency, or perform significantly better under strict consistency.

Alternating Least Squares



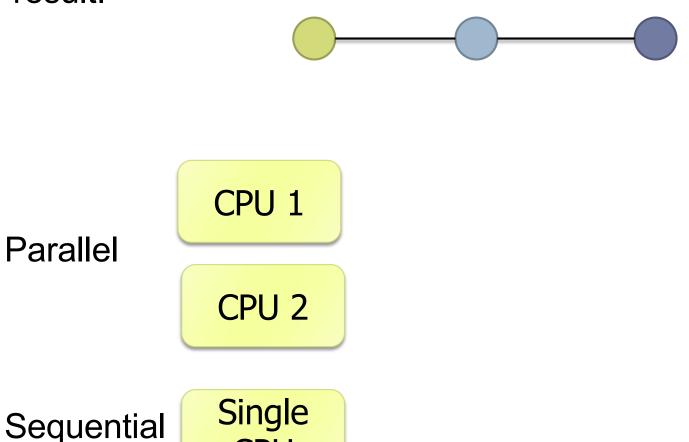
Importance of consistency

Machine learning algorithms require "model debugging"

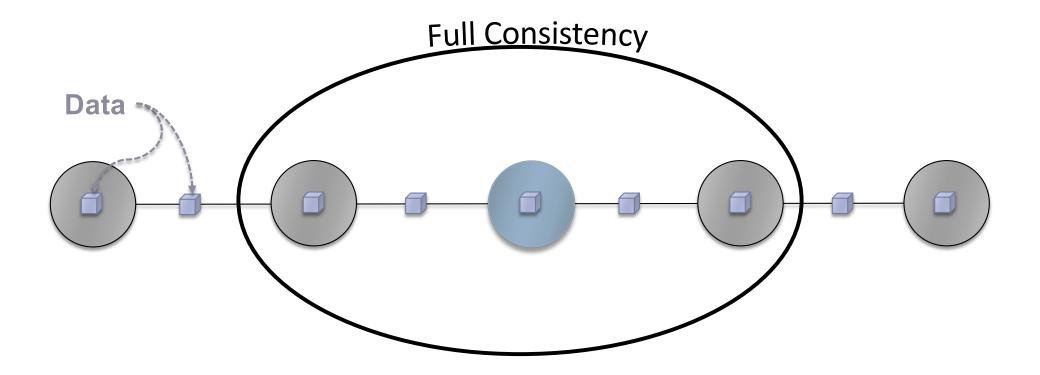


GraphLab Ensures Sequential Consistency

For **each parallel execution**, there exists a **sequential execution** of update functions which produces the same result.

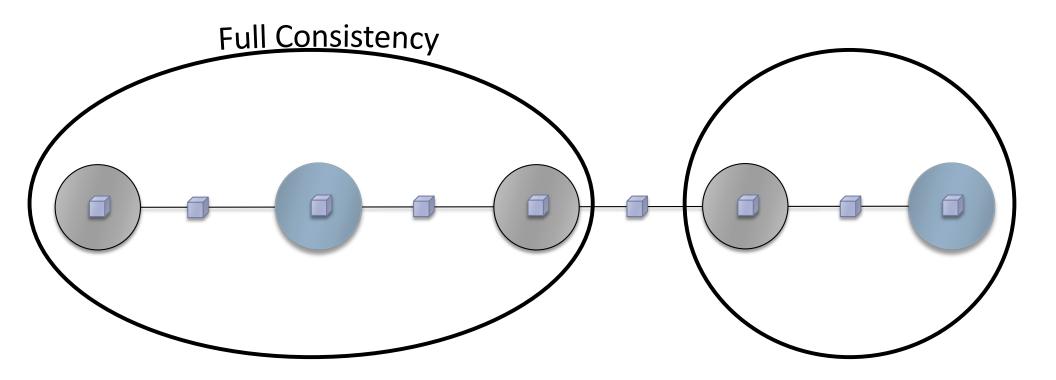


Consistency Rules



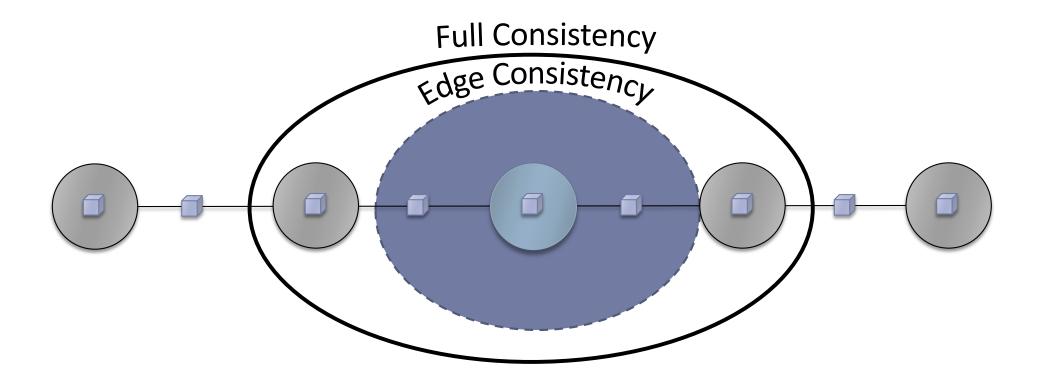
Guaranteed sequential consistency for all update functions

Full Consistency

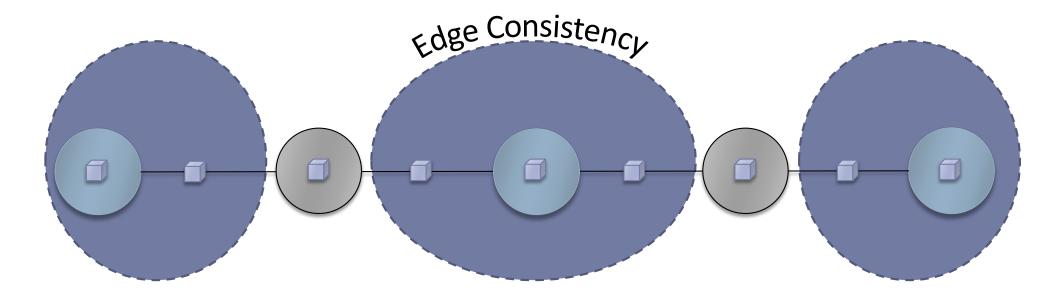


Al

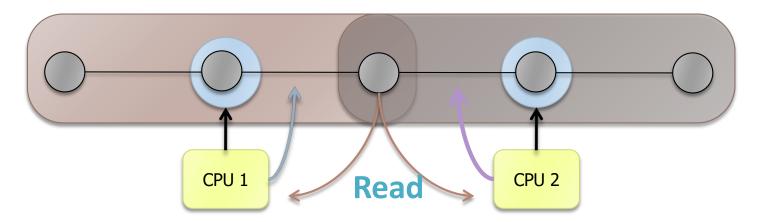
Obtaining More Parallelism



Edge Consistency



Safe

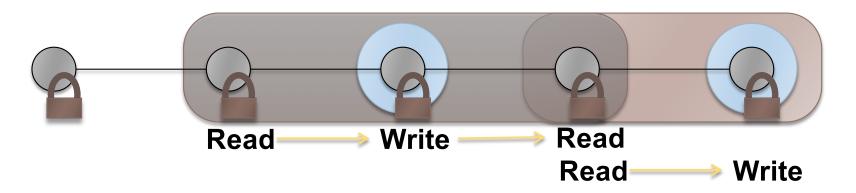


Αl

Consistency Through R/W Locks

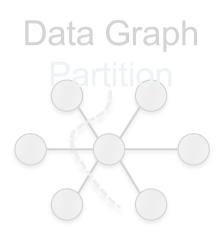
- Read/Write locks:
 - Full Consistency

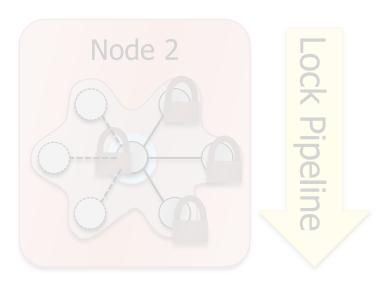
Edge Consistency



Consistency Through R/W Locks

- Multicore Setting: Pthread R/W Locks
- Distributed Setting: Distributed Locking
 - Prefetch Locks and Data





Allow computation to proceed while locks/data are requested.

Consistency through scheduling

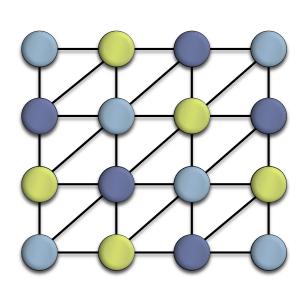
Edge Consistency Model:

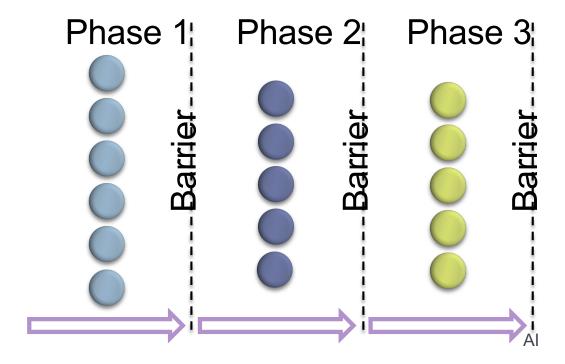
Two vertices can be **Updated** simultaneously if they do not share an edge.

Graph Coloring:

Two vertices can be assigned the same color if they do not

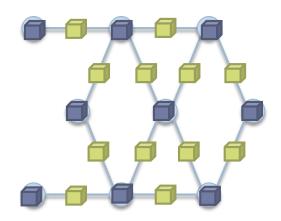
share an edge.



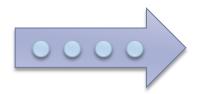


The GraphLab Framework

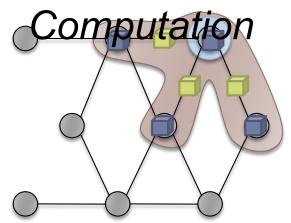
Graph Based Data Representation



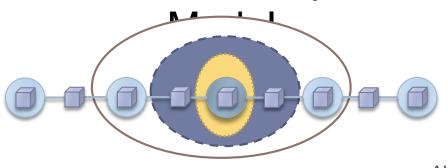
Scheduler



Update Functions *User*



Consistency



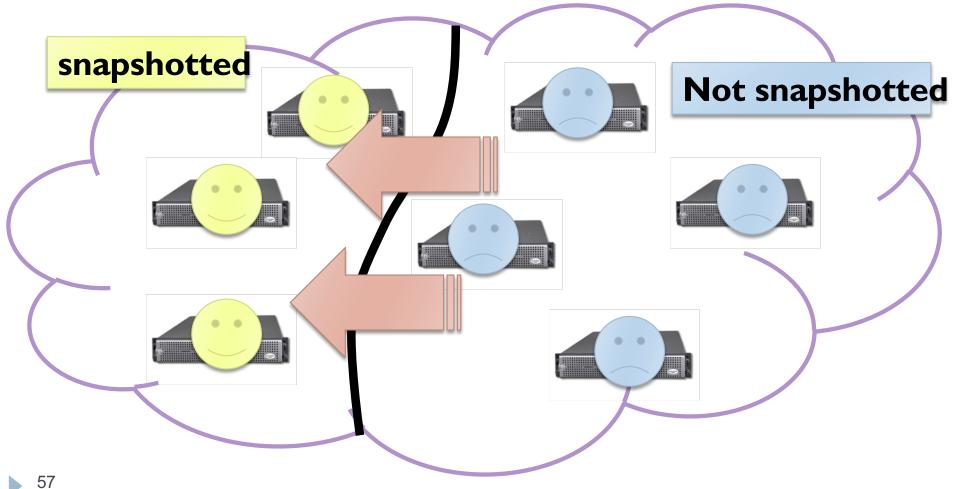
Algorithms Implemented

- PageRank
- Loopy Belief Propagation
- Gibbs Sampling
- CoEM
- Graphical Model Parameter Learning
- Probabilistic Matrix/Tensor Factorization
- Alternating Least Squares
- Lasso with Sparse Features
- Support Vector Machines with Sparse Features
- Label-Propagation

...

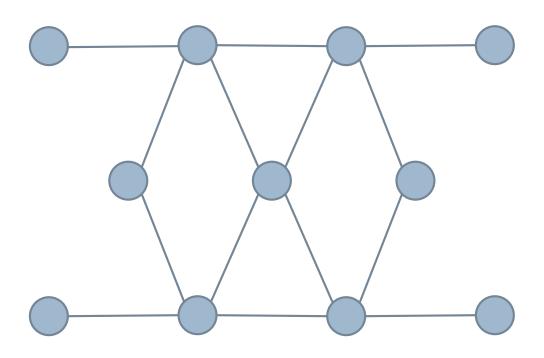
Fault-tolerance: Checkpointing

1985: Chandy-Lamport invented an asynchronous snapshotting algorithm for distributed systems.



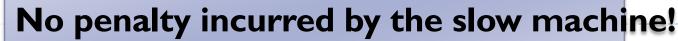
Checkpointing

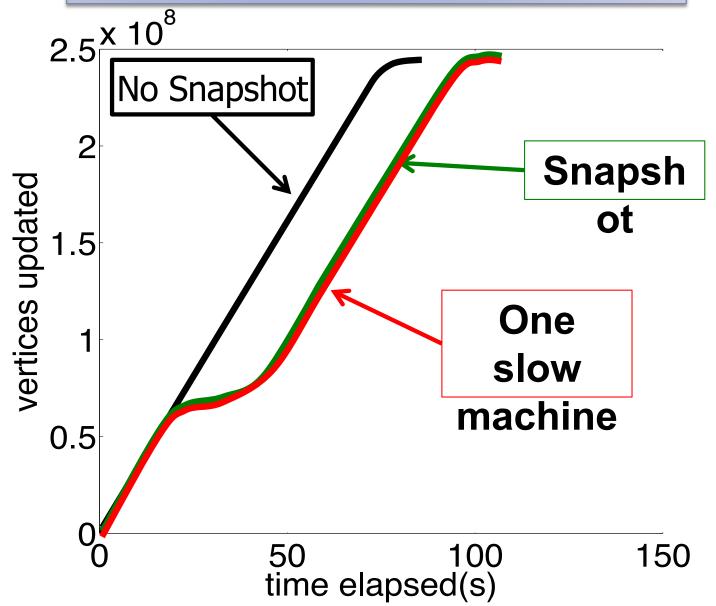
Fine Grained Chandy-Lamport.



Easily implemented within GraphLab as an Update Function!

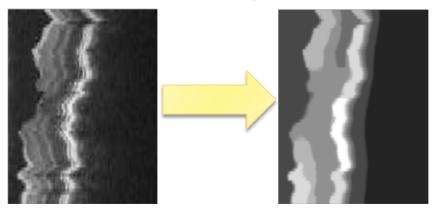
Async, Snapshot Performance





Loopy Belief Propagation

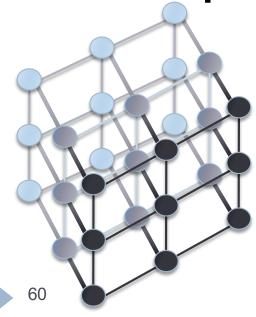
3D retinal image denoising



Vertices: 1 Million

Edges: 3 Million

Data Graph



Update Function:

Loopy BP Update Equation

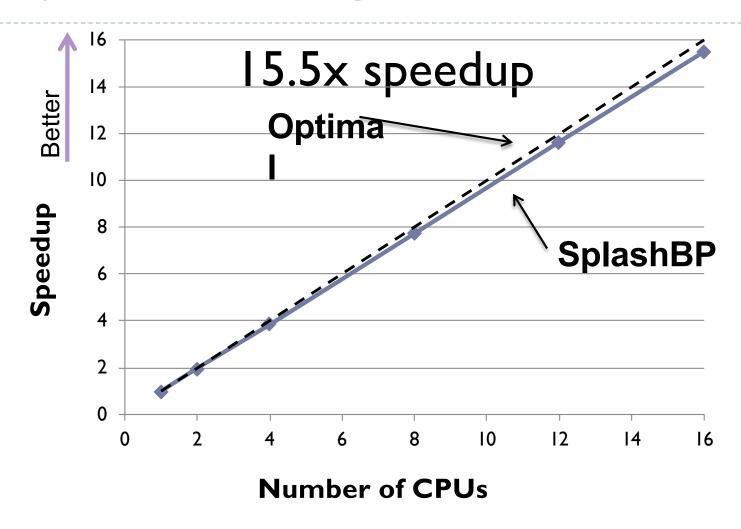
Scheduler:

Approximate Priority

Consistency Model:

Edge Consistency

Loopy Belief Propagation



CoEM (Rosie Jones, 2005)

Named Entity Recognition Task

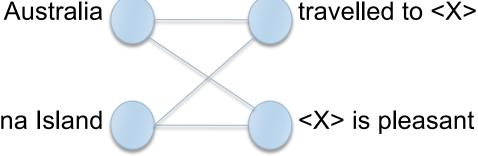
Is "Dog" an animal?

Is "Catalina" a place?

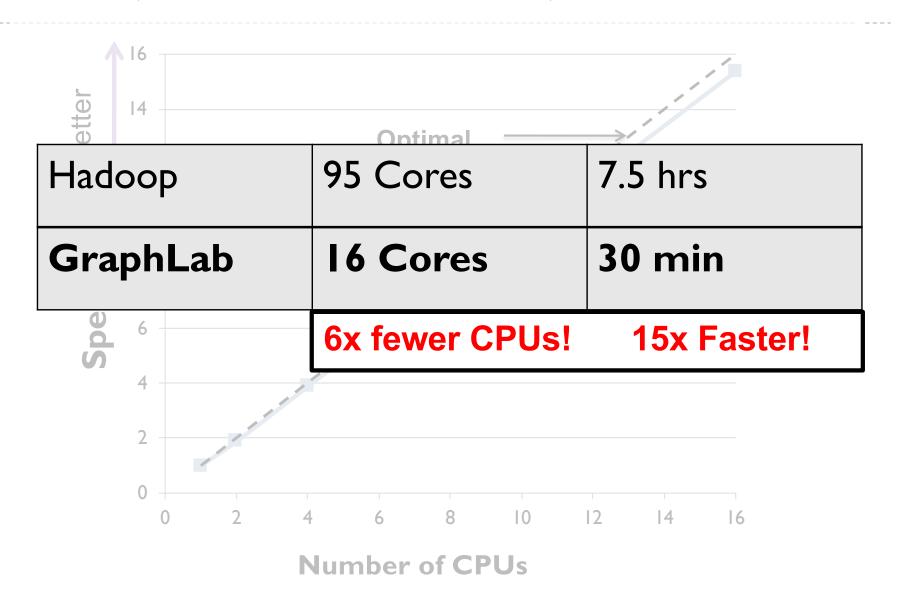
the dog <X> ran quickly

Vertices: 2 Million

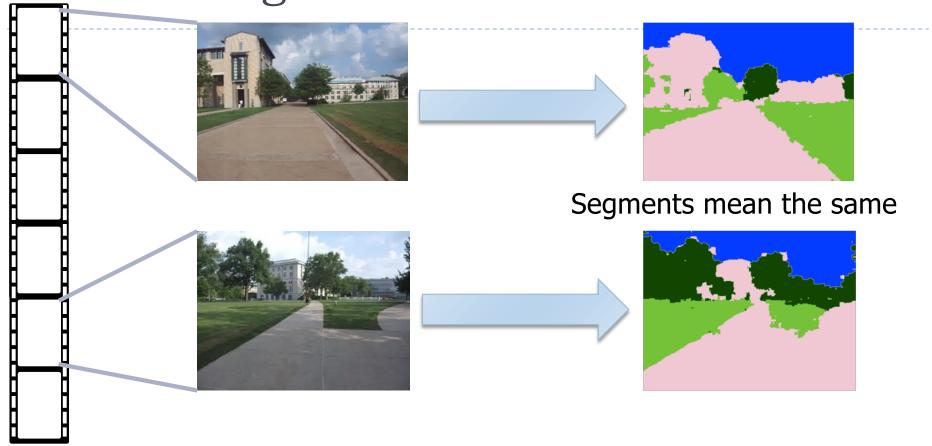
Edges: 200 Million Catalina Island



CoEM (Rosie Jones, 2005)



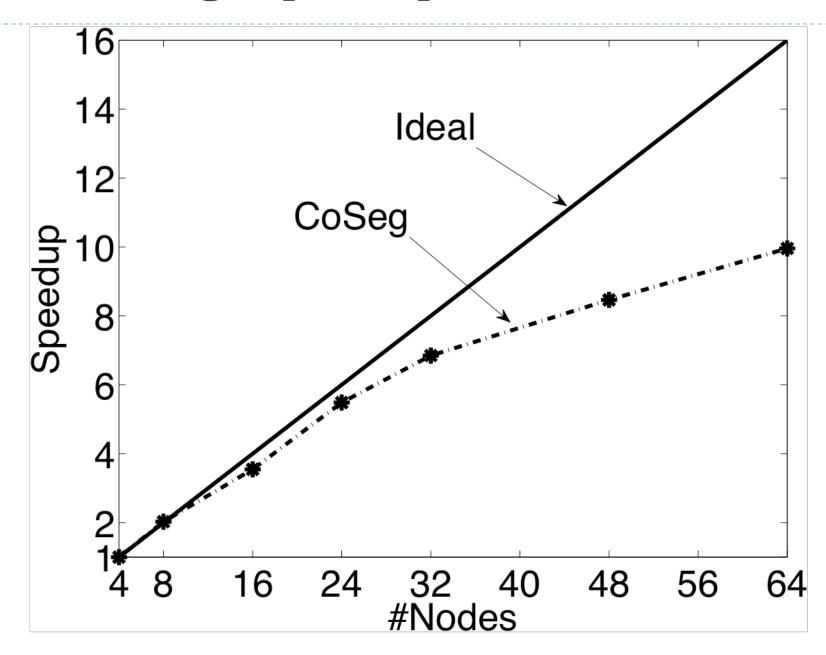
Video Cosegmentation



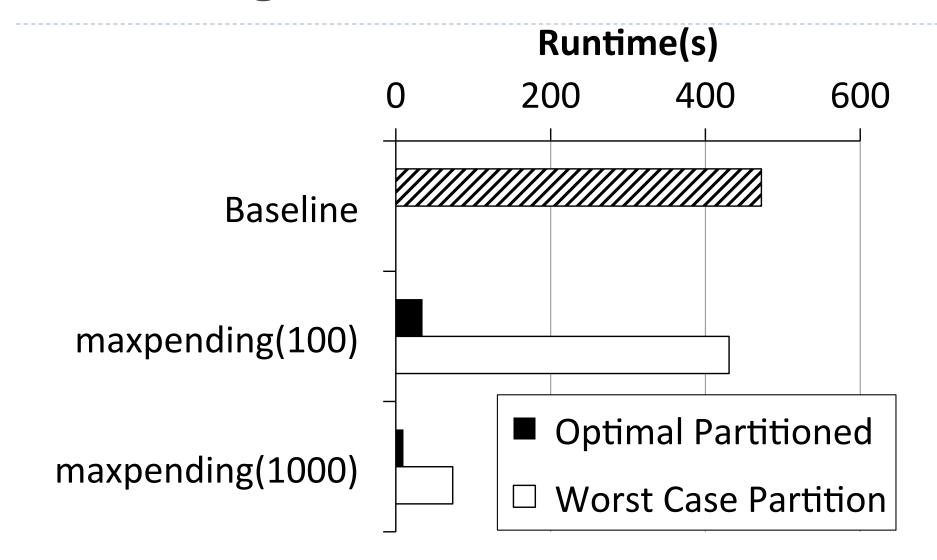
Gaussian EM clustering + BP on 3D grid

Model: 10.5 million nodes, 31 million edges

Video Coseg. Speedups



Prefetching Data & Locks

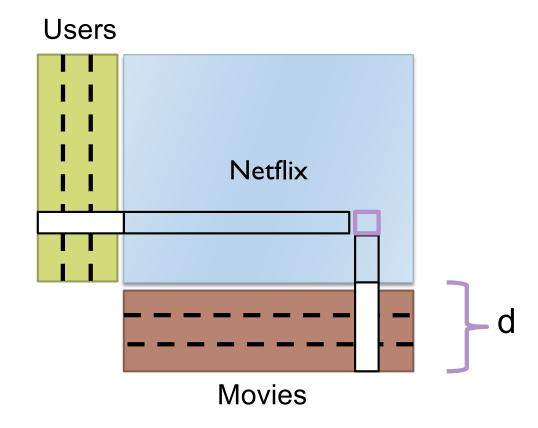


Matrix Factorization

Netflix Collaborative Filtering

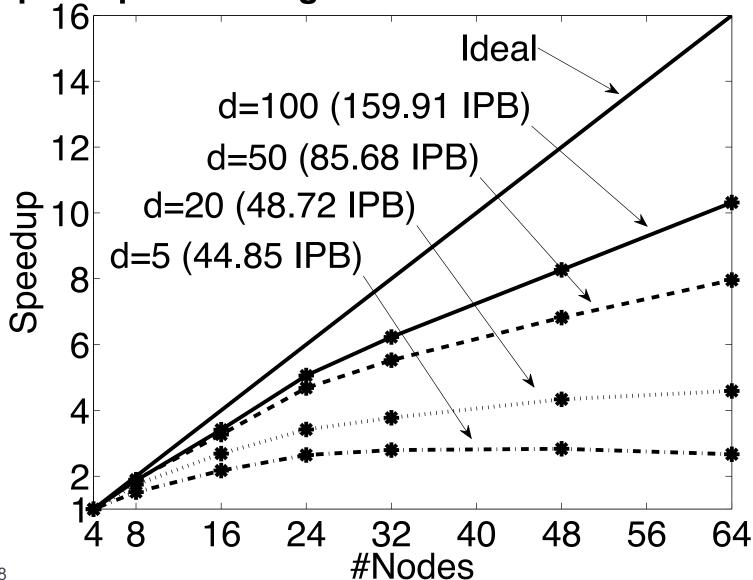
Alternating Least Squares Matrix Factorization

Model: 0.5 million nodes, 99 million edges

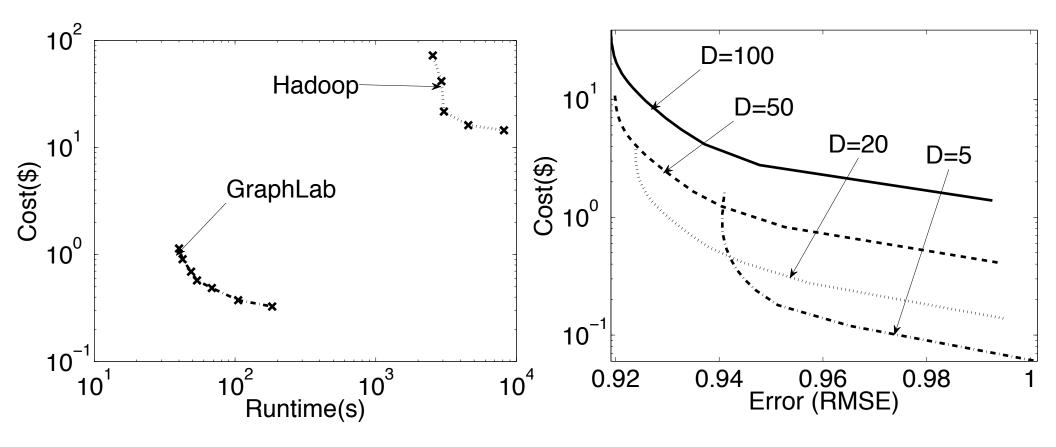


Netflix

Speedup Increasing size of the matrix factorization



The Cost of Hadoop



Summary

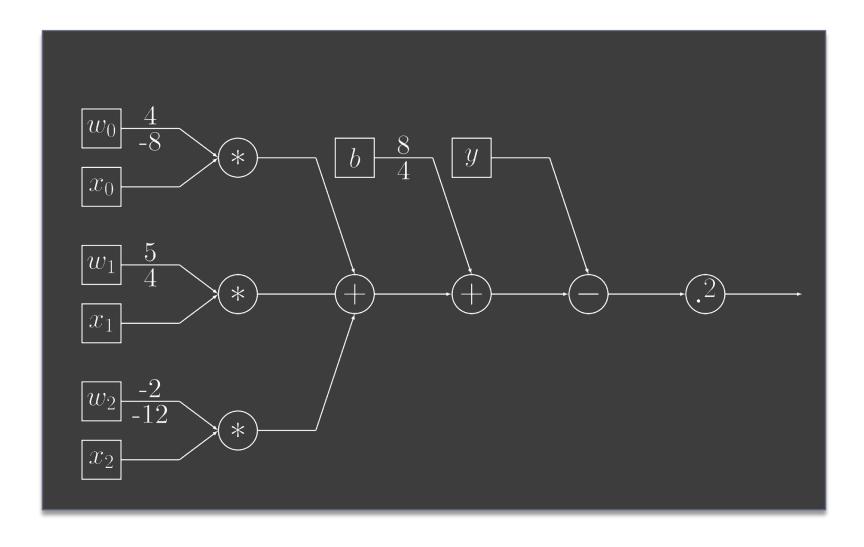
- An abstraction tailored to Machine Learning
 - Targets Graph-Parallel Algorithms
- Naturally expresses
 - Data/computational dependencies
 - Dynamic iterative computation
- Simplifies parallel algorithm design
- Automatically ensures data consistency
- Achieves state-of-the-art parallel performance on a variety of problems

3:TensorFlow

Context

- Huge need for high-productivity tools for building solutions to machine-learning problems
- Current infrastructures force people to reinvent the wheel
- Spark/RDD model illustrates power that better tools bring, but remains very low level: an RDD can deal with "anything" and is really just a small code applet
- ▶ TensorFlow builds off idea that ML applications are best understood by thinking about structured data: tensors

Python+Dataflow Programming



DataFlow Programming Example

```
Constant 3
Add
Constant 4
```

```
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0, dtype=tf.float32)
node3 = tf.add(node1,node2)
```

Core TensorFlow Constructs

- Dataflow Graphs: entire computation
- ▶ Data Nodes: individual data or operations
- ▶ Edges: implicit dependencies between nodes
- Operations: any computation
- Constants: single values (tensors)

Core TensorFlow constructs

▶ All nodes return **tensors**, or higher-dimensional matrices

How a node computes is indistinguishable to TensorFlow

You are metaprogramming. No computation occurs yet!

Running code

tf.Session().run(node3) #returns 7

Placeholders (inputs) and how to use them

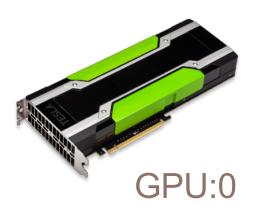
```
node1 = tf.placeholder(tf.float32)
node2 = tf.placeholder(tf.float32)
node3 = tf.add(node1,node2)
tf.Session().run(node3, {node1 : 3, node2 : 4})
```

Variables (mutable state)

```
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear model = W * x + b #Operator
Overloading!
init = tf.global variables initializer()
with tf.Session() as sess:
  sess.run(init)
```

Specifying devices using with blocks

```
with tf.device("/cpu:0"):
    W = tf.Variable(...)
    V = tf.Variable(...)
with tf.device("/gpu:0")
    output = tf.some_fancy_math(input, W) + b
```

Specifying devices using with blocks

```
with tf.device("/task:0/cpu:0"):
  W = tf.Variable(...)
 V = tf.Variable(...)
with tf.device("/task:1/gpu:0")
  output = tf.some_fancy_math(input, W) + b
                            task:1/GPU:
     task:0/CPU:0
```

Starting remote TensorFlow nodes

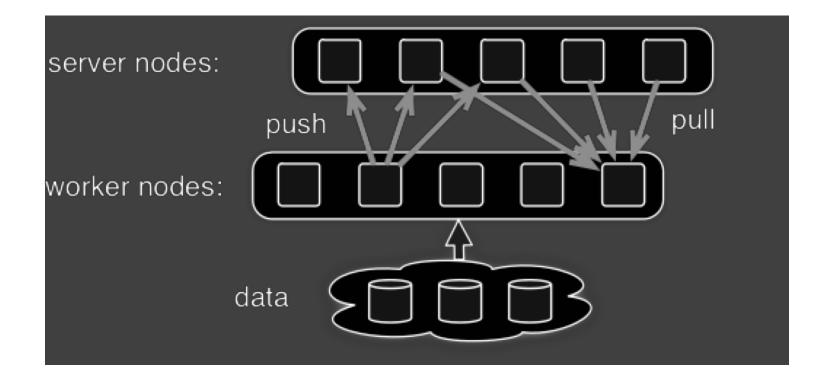
```
#all the machines mentioned in the dataflow
graph
cluster =
tf.train.ClusterSpec([ip1:p1,ip2:p2,...])
#task index is set to my "id"
server = tf.train.Server(cluster, task index=0)
#begin listening
server.join()
```

Server actions

Sessions run code on **subgraphs**; can parallelize by splitting input

```
with tf.device("/task:n"):
  half_input = tf.Variable(input[:len(input)/2])
  work = tf.CoolFeature(half_input)
cluster = tf.train.ClusterSpec(...)
server = tf.train.Server(cluster, task index=n)
with tf.Session(server.target) as sess:
  sess.run(work)
```

Suggested Design: parameter server



Parameter server focus:

- ▶ Hold Mutable state
- Apply updates
- Maintain availability
- Group Name: ps

Worker focus:

- Perform "active" actions
- Checkpoint state to FS
- Mostly stateless; can be restarted
- ▶ Group name: worker

Parameter server example

```
with tf.device("/jobs:ps/task:0/cpu:0"):
  W = tf.Variable(...)
  b = tf.Variable(...)
inputs = tf.split(0, num workers, input)
outputs = []
for i in range (num workers):
  with tf.device("/job:worker/task:%d/gpu:0" % i):
    outputs.append(tf.matmul(input[i],W) + b)
```

And that's it!

- For most TF applications, you don't need to know more.
- But this is because most TF runs are just a few steps, like a Spark job that performs a few actions on some RDDs
- What about using TF for long-term jobs that continuously process input, like events from a smart highway?
 - The model still makes sense, but now fault-tolerance would be an issue
 - Control of concurrency / consistency could begin to matter, too.

server nodes:

push

pull

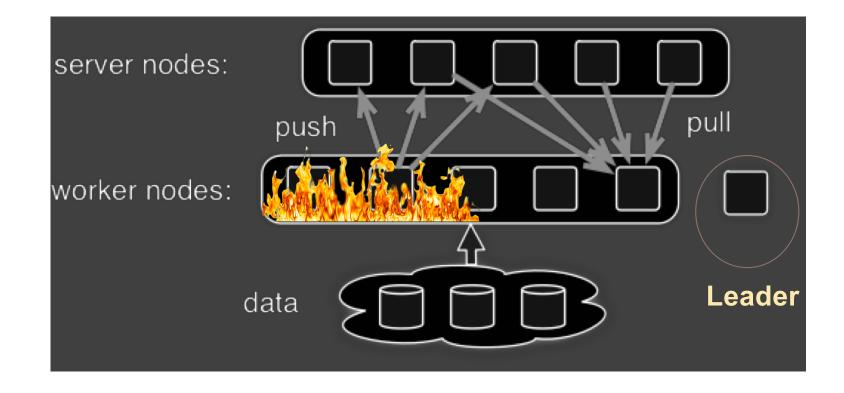
worker nodes:

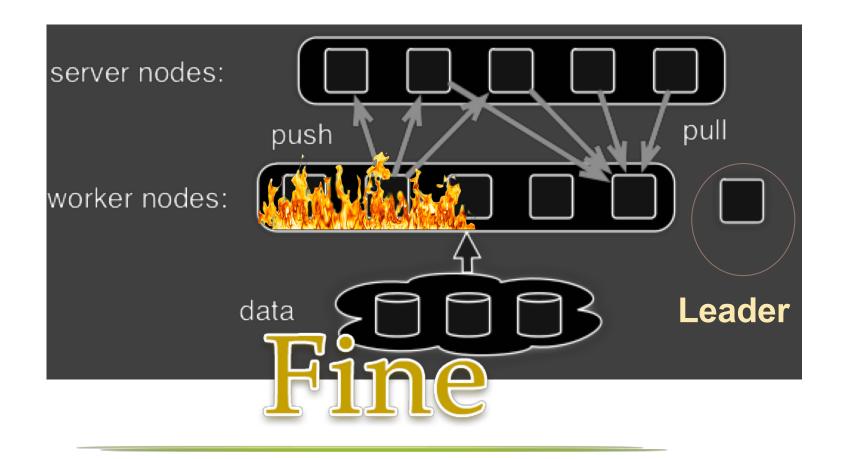
data

Distinguished Leader

Hardcoded role. No worries about leader election, no consensus

```
saver = tf.train.Saver(sharded=True)
with tf.Session(server.target) as sess:
  while True:
    ... #sleep a bit
    saver.save(sess, "gs://path/to/dump")
    if (bad thing happens):
      saver.load(sess, "gs://path/to/dump")
```





server nodes:

push

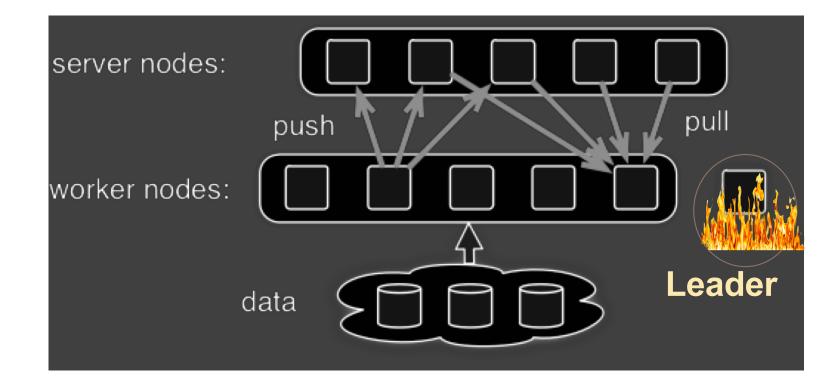
pull

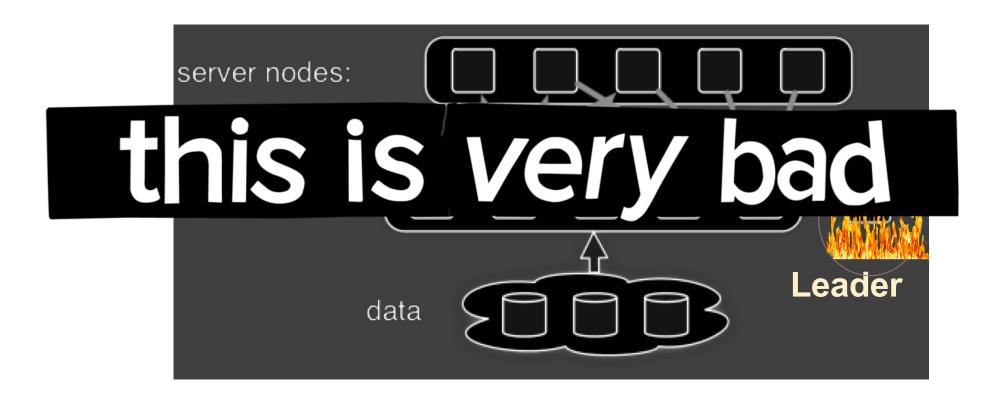
worker nodes:

data

Leader

RESTART FROM CHECKPOINT!





CALL THE OPERATOR! MANUAL INTERVENTION!

Notes

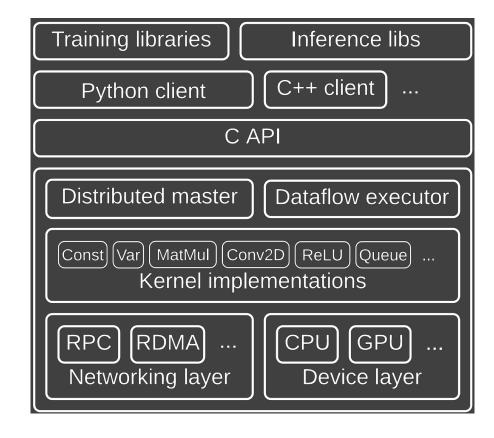
▶ There are libraries, but they are still a bit painful.

Remember to create frequent checkpoints

Bottom line is that by default, TF is not consistent and is good at restarting from a checkpoint. Recent events not in a checkpoint can be forgotten.

TensorFlow implementation

- Semi-interpreted
- Call to kernel per primitive operation
- Can batch operations with custom C++
- Basic type-safety within dataflow graph (error at graph construction time)
- Global Names: overlapping TF instances share variables!



Synchronous vs Asynchronous

- Determined by node: Queue nodes used for barriers
- Synchronous nearly as fast as asynchronous
- Default model is asynchronous

Performance: Single Node

	Training step time (ms)			
Library	AlexNet	Overfeat	OxfordNet	GoogleNet
Caffe [38]	324	823	1068	1935
Neon [58]	87	211	320	270
Torch [17]	81	268	529	470
TensorFlow	81	279	540	445

Performance: Distributed Throughput

(b) Coordination scalability (a) Baseline performance vs. MXNet Images/second/worker mages/second Asynchronous TensorFlow Synchronous **MXNet** 1 4 Number of workers Number of workers

Key Contributions

- Programmability
- Accessibility / ease of use
- Richness of Libraries
- Ready-made community