
Cristina Nita-Rotaru

7610: Distributed Systems

BigTable. Hbase.Spanner.

1: BigTable

Acknowledgement

} Slides based on material from course at UMichigan, U
Washington, and the authors of BigTable and Spanner.

BigTable. HBase. Spanner. Dynamo. Cassandra3

REQUIRED READING

} Bigtable: A Distributed Storage
System for Structured Data. 2008.
ACM Trans. Comput. Syst. 26, 2
(Jun. 2008), 1-26

} Spanner, Google’s globally
distributed database. OSDI 2012.

BigTable. HBase. Spanner. Dynamo. Cassandra4

BigTable

} Distributed storage system for managing structured data
such as:
} URLs: contents, crawl metadata, links, anchors, pagerank
} Per-user data: user preference settings, recent queries/search

results
} Geographic locations: physical entities (shops, restaurants, etc.),

roads, satellite image data, user annotations, …

} Designed to scale to a very large size: petabytes of data
distributed across thousands of servers

} Used for many Google applications
} Web indexing, Personalized Search, Google Earth, Google

Analytics, Google Finance, … and more
BigTable. HBase. Spanner. Dynamo. Cassandra5

Why BigTable?

} Scalability requirements not met by existent commercial
systems:
} Millions of machines
} Hundreds of millions of users
} Billions of URLs, many versions/page
} Thousands or queries/sec
} 100TB+ of satellite image data

} Low-level storage optimization helps performance
significantly

BigTable. HBase. Spanner. Dynamo. Cassandra6

Goals

} Simpler model that supports dynamic control over data
and layout format

} Want asynchronous processes to be continuously
updating different pieces of data: access to most current
data at any time

} Examine data changes over time: e.g. contents of a web
page over multiple crawls

} Support for:
} Very high read/write rates (millions ops per second)
} Efficient scans over all or subsets of data
} Efficient joins of large one-to-one and one-to-many datasets

BigTable. HBase. Spanner. Dynamo. Cassandra7

Design Overview

} Distributed multi-level map
} Fault-tolerant, persistent
} Scalable

} Thousands of servers
} Terabytes of in-memory data
} Petabyte of disk-based data
} Millions of reads/writes per second, efficient scans

} Self-managing
} Servers can be added/removed dynamically
} Servers adjust to load imbalance

BigTable. HBase. Spanner. Dynamo. Cassandra8

Typical Google Cluster

Shared pool of machines that also run other distributed applications

BigTable. HBase. Spanner. Dynamo. Cassandra9

Building Blocks

} Google File System (GFS)
} Stores persistent data (SSTable file format)

} Scheduler
} Schedules jobs onto machines

} Chubby
} Lock service: distributed lock manager, master election,

location bootstrapping

} MapReduce (optional)
} Data processing
} Read/write BigTable data

BigTable. HBase. Spanner. Dynamo. Cassandra10

Chubby

} {lock/file/name} service
} Coarse-grained locks

} Provides a namespace that consists of directories and small
files.

} Each of the directories or files can be used as a lock.

} Each client has a session with Chubby
} The session expires if it is unable to renew its session lease

within the lease expiration time.

} 5 replicas Paxos, need a majority vote to be active

BigTable. HBase. Spanner. Dynamo. Cassandra11

Data Model

} A sparse, distributed persistent multi-dimensional sorted
map

} Rows, column are arbitrary strings

} (row, column, timestamp) -> cell contents

BigTable. HBase. Spanner. Dynamo. Cassandra12

Data Model: Rows

} Arbitrary string
} Access to data in a row is atomic

} Row creation is implicit upon storing data
} Ordered lexicographically

BigTable. HBase. Spanner. Dynamo. Cassandra13

Rows (cont.)

} Rows close together lexicographically usually on one or a
small number of machines

} Reads of short row ranges are efficient and typically
require communication with a small number of machines

} Can exploit lexicographic order by selecting row keys so
they get good locality for data access

} Example:
} math.gatech.edu, math.uga.edu, phys.gatech.edu,

phys.uga.edu
} VS
} edu.gatech.math, edu.gatech.phys, edu.uga.math,

edu.uga.phys
BigTable. HBase. Spanner. Dynamo. Cassandra14

Data Model: Columns

} Two-level name structure: family: qualifier
} Column family:

} Is the unit of access control
} Has associated type information

} Qualifier gives unbounded columns
} Additional levels of indexing, if desired

BigTable. HBase. Spanner. Dynamo. Cassandra15

Data Model: Timestamps (64bit integers)

Store different versions of data in a
cell:

} New writes default to current
time, but timestamps for writes
can also be set explicitly by
clients

} Lookup options
} Return most recent K values
} Return all values

} Column families can be marked w/
attributes:
} Retain most recent K values in a cell
} Keep values until they are older

than K seconds

BigTable. HBase. Spanner. Dynamo. Cassandra16

Data Model: Tablet

} The row range for a table is dynamically partitioned
} Each row range is called a tablet (typically 10-100 bytes)
} Tablet is the unit for distribution and load balancing

BigTable. HBase. Spanner. Dynamo. Cassandra17

Storage: SSTable

} Immutable, sorted file of key-value pairs
} Optionally, SSTable can be completely mapped into

memory
} Chunks of data plus an index

} Index is of block ranges, not values
} Index is loaded into memory when SSTable is open

Index

64K
block

64K
block

64K
block

SSTable

BigTable. HBase. Spanner. Dynamo. Cassandra18

Tablet vs. SSTable

} Tablet is built out of multiple SSTables

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

BigTable. HBase. Spanner. Dynamo. Cassandra19

Table vs. Tablet vs. SSTable

} Multiple tablets make up the table
} SSTables can be shared
} Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat

BigTable. HBase. Spanner. Dynamo. Cassandra20

Example: WebTable

} Want to keep copy of a large collection of web pages and
related information

} Use URLs as row keys
} Various aspects of web page as column names
} Store contents of web pages in the contents: column

under the timestamps when they were fetched.
BigTable. HBase. Spanner. Dynamo. Cassandra21

Implementation

} Library linked into every client
} One master server responsible for:

} Assigning tablets to tablet servers
} Detecting addition and expiration of tablet servers
} Balancing tablet-server load
} Garbage collection
} Handling schema changes such as table and column family

creation
} Many tablet servers, each of them:

} Handles read and write requests to its table
} Splits tablets that have grown too large

} Clients communicate directly with tablet servers for reads and
writes. BigTable. HBase. Spanner. Dynamo. Cassandra22

Deployment

BigTable. HBase. Spanner. Dynamo. Cassandra23

More about Tablets

} Serving machine responsible for 10 - 1000
} Usually about 100 tablets

} Fast recovery:
} 100 machines each pick up 1 tablet for failed machine

} Fine-grained load balancing:
} Migrate tablets away from overloaded machine
} Master makes load-balancing decisions

BigTable. HBase. Spanner. Dynamo. Cassandra24

Tablet Location

} Since tablets move around from server to server, given a
row, how do clients find the right machine
} Find tablet whose row range covers the target row

} METADATA: Key: table id + end row, Data: location
} Aggressive caching and prefetching at client side

BigTable. HBase. Spanner. Dynamo. Cassandra25

Tablet Assignment

} Each tablet is assigned to one tablet server at a time.
} Master server

} Keeps track of the set of live tablet servers and current
assignments of tablets to servers.

} Keeps track of unassigned tablets.

} When a tablet is unassigned, master assigns the tablet to a
tablet server with sufficient room.

} It uses Chubby to monitor health of tablet servers, and
restart/replace failed servers.

BigTable. HBase. Spanner. Dynamo. Cassandra26

Tablet Assignment: Chubby

} Tablet server registers itself with Chubby by getting a
lock in a specific directory of Chubby

} Chubby gives �lease� on lock, must be renewed
periodically

} Server loses lock if it gets disconnected
} Master monitors this directory to find which servers

exist/are alive
} If server not contactable/has lost lock, master grabs lock and

reassigns tablets
} GFS replicates data. Prefer to start tablet server on same

machine that the data is already at

BigTable. HBase. Spanner. Dynamo. Cassandra27

API

} Metadata operations
} Create/delete tables, column families, change metadata

} Writes (atomic)
} Set(): write cells in a row
} DeleteCells(): delete cells in a row
} DeleteRow(): delete all cells in a row

} Reads
} Scanner: read arbitrary cells in a bigtable

} Each row read is atomic
} Can restrict returned rows to a particular range
} Can ask for just data from 1 row, all rows, etc.
} Can ask for all columns, just certain column families, or specific

columns BigTable. HBase. Spanner. Dynamo. Cassandra28

Refinements: Locality Groups

} Can group multiple column families into a locality group
} Separate SSTable is created for each locality group in each

tablet.

} Segregating columns families that are not typically
accessed together enables more efficient reads.
} In WebTable, page metadata can be in one group and contents

of the page in another group.

BigTable. HBase. Spanner. Dynamo. Cassandra29

Refinements: Compression

} Many opportunities for compression
} Similar values in the same row/column at different timestamps
} Similar values in different columns
} Similar values across adjacent rows

} Two-pass custom compressions scheme
} First pass: compress long common strings across a large

window
} Second pass: look for repetitions in small window

} Speed emphasized, but good space reduction (10-to-1)

BigTable. HBase. Spanner. Dynamo. Cassandra30

Refinements: Bloom Filters

} Read operation has to read from disk when desired
SSTable is not in memory

} Reduce number of accesses by specifying a Bloom filter:
} Allows to ask if a SSTable might contain data for a specified

row/column pair.
} Small amount of memory for Bloom filters drastically reduces

the number of disk seeks for read operations
} Results in most lookups for non-existent rows or columns not

needing to touch disk

BigTable. HBase. Spanner. Dynamo. Cassandra31

Real Applications

BigTable. HBase. Spanner. Dynamo. Cassandra32

Limitations

} No transactions supported
} Does not support full relational data model
} Achieved throughput is limited by GFS

BigTable. HBase. Spanner. Dynamo. Cassandra33

Lessons Learnt

} Large distributed systems vulnerable to many type of
failures
} Memory and network corruption
} Large clock skew
} Hung machines
} Extended and asymmetric network partitions
} Bugs in other systems

} Proper system-level monitoring critical
} Simple design better
} Do not add new features before they are needed

BigTable. HBase. Spanner. Dynamo. Cassandra34

2: HBase

HBase

} Open-source, distributed, versioned, column-oriented
data store, modeled after Google's Bigtable

} Random, real time read/write access to large data:
} Billions of rows, millions of columns
} Distributed across clusters of commodity hardware

BigTable. HBase. Spanner. Dynamo. Cassandra36

History

} 2006.11
} Google releases paper on BigTable

} 2007.2
} Initial HBase prototype created as Hadoop contrib.

} 2007.10
} First useable HBase

} 2008.1
} Hadoop become Apache top-level project and HBase becomes

subproject

} Current stable release 1.4.3 / 3 April 2018

BigTable. HBase. Spanner. Dynamo. Cassandra37

HBase Is Not …

} Tables have one primary index, the row key.
} No join operators.
} Scans and queries can select a subset of available columns.
} There are three types of lookups:

} Fast lookup using row key and optional timestamp.
} Full table scan
} Range scan from region start to end.

BigTable. HBase. Spanner. Dynamo. Cassandra38

HBase Is Not …(2)

} Limited atomicity and transaction support.
} HBase supports multiple batched mutations of single rows only.
} Data is unstructured and untyped.

} No accessed or manipulated via SQL.
} Programmatic access via Java, REST, or Thrift APIs.
} Scripting via JRuby.

BigTable. HBase. Spanner. Dynamo. Cassandra39

3: Spanner

Limitations of BigTable

} Difficult to use for applications that
} have complex, evolving schemas,
} want strong consistency in the presence of wide-area

replication

BigTable. HBase. Spanner. Dynamo. Cassandra41

What is Spanner

} Scalable, multi-version, globally- distributed, and
synchronously-replicated database

} Distribute data at global scale and support externally-
consistent distributed transactions.

} Features:
} non- blocking reads in the past
} lock-free read-only transactions
} atomic schema changes

} Scale up to
} millions of machines
} hundreds of datacenters
} trillions of database rows

BigTable. HBase. Spanner. Dynamo. Cassandra42

What is Spanner

} Applications can control replication configurations for
data

} Applications can specify constraints
} to control which datacenters contain which data, how far data

is from its users (to control read latency)
} how far replicas are from each other (to control write latency)
} how many replicas are maintained (to control durability,

availability, and read performance).

} Data can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters

BigTable. HBase. Spanner. Dynamo. Cassandra43

Spanner – key idea

} Consistent reads and writes
} How:

} use global commit timestamps to transactions, even though
transactions may be distributed.

} timestamps represent serialization order
} provide such guarantees at global scale

} How to get the global timestamps: TrueTime
} Relies on existing algorithms such as Paxos and 2PC

BigTable. HBase. Spanner. Dynamo. Cassandra44

Architecture

} Instance – it’s called universe; examples: test, deployment,
production
} Universe master
} Placement master

} handles automated movement of data across zones on the timescale
of minutes

} periodically communicates with the spanservers to find data that
needs to be moved, either to meet updated replication constraints or
to balance load.

} Universe consists of zones
} Denotes physical isolation
} Several zones can be in a datacenter

BigTable. HBase. Spanner. Dynamo. Cassandra45

Architecture

BigTable. HBase. Spanner. Dynamo. Cassandra46

Zones

} Zonemaster
} assigns the data to span servers

} Spanservers
} hundreds to thousands
} store data
} responsible for between 100 and 1000 instances of a data

structure called a tablet (different from the BigTable tablet)
} each data has a timestamp

} Location proxies
} used by clients to locate the spanservers assigned to serve

their data

BigTable. HBase. Spanner. Dynamo. Cassandra47

Replication

BigTable. HBase. Spanner. Dynamo. Cassandra48

More about replication

} Directory – analogous to bucket in BigTable
} Smallest unit of data placement
} Smallest unit to define replication properties

} 2PC and Paxos-based replication
} Back End: Colossus (successor to GFS)
} Paxos State Machine on top of each tablet stores meta

data and logs of the tablet.
} Leader among replicas in a Paxos group is chosen and all

write requests for replicas in that group initiate at leader.
} Transaction Leader

} Is Paxos Leader if transaction involves one Paxos group
BigTable. HBase. Spanner. Dynamo. Cassandra49

TrueTime

} Leverages hardware features like GPS and Atomic Clocks
} Implemented via TrueTime API

} Key method being now() which not only returns current
system time but also another value (ε) which tells the
maximum uncertainty in the time returned

} Set of time master server per datacenters and time slave
daemon per machines

} Majority of time masters are GPS fitted and few others
are atomic clock fitted (Armageddon masters)

} Daemon polls variety of masters and reaches a consensus
about correct timestamp

BigTable. HBase. Spanner. Dynamo. Cassandra50

TrueTime

} TrueTime uses both GPS and Atomic clocks since they
are different failure rates and scenarios

} Two other boolean methods in API are
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} TrueTime uses these methods in concurrency control and
to serialize transactions

BigTable. HBase. Spanner. Dynamo. Cassandra51

TrueTime

} After() is used for Paxos Leader Leases
} Uses after(Smax) to check if Smax is passed so that Paxos

Leader can abdicate its slaves.

} Paxos Leaders can not assign timestamps(Si) greater than
Smax for transactions(Ti) and clients can not see the data
commited by transaction Ti till after(Si) is true.
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} Replicas maintain a timestamp tsafe which is the
maximum timestamp at which that replica is up to date.

BigTable. HBase. Spanner. Dynamo. Cassandra52

TrueTime

} Read-Write – requires lock.
} Read-Only – lock free.

} Requires declaration before start of transaction.
} Reads information that is up to date

} Snapshot Read – Read information from past by specifying
a timestamp or bound
} Use specifies specific timestamp from past or timestamp bound

so that data till that point will be read.

BigTable. HBase. Spanner. Dynamo. Cassandra53

Applications

} Google advertising backend application – F1
} Replicated across 5 datacenters spread across US

BigTable. HBase. Spanner. Dynamo. Cassandra54

4: Dynamo

Dynamo: Amazon’s Highly Available Key-value Store Giuseppe
DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels. SOSP 2007.
Slides taken from www.slideworld.com created by paper authors

http://www.slideworld.com/

CAP

} States that any networked shared-data system can have at
most two of three desirable properties:
} consistency (C) –
} high availability (A) of that data (for updates);
} tolerance to network partitions (P).

} During a network partition and recovery from partition
one can not have perfect availability and consistency

} Modern CAP goal should be to maximize combinations of
consistency and availability that make sense for a specific
application

56 BigTable. HBase. Spanner. Dynamo. Cassandra

PACELC

} States that:
} In case of network partitioning (P) one has to choose between

availability (A) and consistency (C)
} but else (E), even when the system is running normally in the

absence of partitions, one has to choose between latency (L)
and consistency (C).

} Addresses the fact that CAP does not capture the
consistency/latency tradeoff of replicated systems present at
all times during system operation

} Example: Dynamo, Cassandra are PA/EL systems if a partition
occurs, they give up consistency for availability, and under
normal operation they give up consistency for lower latency.

57 BigTable. HBase. Spanner. Dynamo. Cassandra

Motivation

} Even the slightest outage has significant financial
consequences and impacts customer trust.

} The platform is implemented on top of an infrastructure
of tens of thousands of servers and network components
located in many datacenters around the world.

} Persistent state is managed in the face of these failures -
drives the reliability and scalability of the software
systems

Dynamo: Motivation

} Build a distributed storage system:
} Scale
} Simple: key-value
} Highly available
} Guarantee Service Level Agreements (SLA)

BigTable. HBase. Spanner. Dynamo. Cassandra59

} Query Model: simple read and write operations to a data item that is

uniquely identified by a key.
} ACID Properties: Atomicity, Consistency, Isolation, Durability.

} Efficiency: latency requirements which are in general measured at the
99.9th percentile of the distribution.

} Other Assumptions: operation environment is assumed to be non-
hostile and there are no security related requirements such as
authentication and authorization.

BigTable. HBase. Spanner. Dynamo. Cassandra60

System Assumptions and Requirements

Service Level Agreements (SLA)

BigTable. HBase. Spanner. Dynamo. Cassandra61

} Application can deliver its
functionality in abounded time:
Every dependency in the platform needs
to deliver its functionality with even
tighter bounds.

} Example: service guaranteeing that it
will provide a response within 300ms for
99.9% of its requests for a peak client
load of 500 requests per second.

Service-oriented architecture
of Amazon’s platform

Design Consideration

} Sacrifice strong consistency for availability
} Conflict resolution is executed during read instead of
write, i.e. “always writeable”.

} Other principles:
} Incremental scalability.
} Symmetry: Every node in Dynamo should have the same set

of responsibilities as its peers.
} Decentralization: In the past, centralized control has resulted

in outages and the goal is to avoid it as much as possible.
} Heterogeneity: This is essential in adding new nodes with

higher capacity without having to upgrade all hosts at once.

BigTable. HBase. Spanner. Dynamo. Cassandra62

Design Consideration (Cont’d)

} “always writeable” data store where no updates are
rejected due to failures or concurrent writes.

} an infrastructure within a single administrative domain
where all nodes are assumed to be trusted.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation
during reads

Version size is decoupled from
update rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and
durability guarantee when some of

the replicas are not available.

Recovering from permanent failures Anti-entropy using Merkle trees Synchronizes divergent replicas in
the background.

Membership and failure detection Gossip-based membership protocol
and failure detection.

Preserves symmetry and avoids
having a centralized registry for
storing membership and node

liveness information.

BigTable. HBase. Spanner. Dynamo. Cassandra64

Summary of techniques used in
Dynamo and their advantages

BigTable. HBase. Spanner. Dynamo. Cassandra65

} Consistent hashing: the
output range of a hash
function is treated as a fixed
circular space or “ring”.

} ”Virtual Nodes”: Each
node can be responsible for
more than one virtual node.

Partition Algorithm

Advantages of using virtual nodes

BigTable. HBase. Spanner. Dynamo. Cassandra66

} If a node becomes unavailable the load
handled by this node is evenly
dispersed across the remaining available
nodes.

} When a node becomes available again,
the newly available node accepts a
roughly equivalent amount of load from
each of the other available nodes.

} The number of virtual nodes that a
node is responsible can decided based
on its capacity, accounting for
heterogeneity in the physical
infrastructure.

Replication

BigTable. HBase. Spanner. Dynamo. Cassandra67

} Each data item is
replicated at N hosts.

} “preference list”: The list of
nodes that is responsible
for storing a particular key.

Data Versioning

} A put() call may return to its caller before the update has
been applied at all the replicas

} A get() call may return many versions of the same object.
} Challenge: an object having distinct version sub-histories, which the

system will need to reconcile in the future.

} Solution: uses vector clocks in order to capture causality between
different versions of the same object.

BigTable. HBase. Spanner. Dynamo. Cassandra68

Vector Clock

} A vector clock is a list of (node, counter) pairs.
} Every version of every object is associated with one

vector clock.
} If the counters on the first object’s clock are less-than-or-equal

to all of the nodes in the second clock, then the first is an
ancestor of the second and can be forgotten.

BigTable. HBase. Spanner. Dynamo. Cassandra69

Vector clock example

BigTable. HBase. Spanner. Dynamo. Cassandra70

Vector clock

} In case of network partitions or multiple server failures, write
requests may be handled by nodes that are not in the top N
nodes in the preference list causing the size of vector clock to
grow.

} Dynamo stores a timestamp that indicates the last time the
node updated the data item.

} When the number of (node, counter) pairs in the vector clock
reaches a threshold (say 10), the oldest pair is removed from
the clock.

Execution of get () and put () operations

1. Route its request through a generic load balancer that
will select a node based on load information.

1. Advantage: client does not have to link any code specific to
Dynamo in its application

2. Use a partition-aware client library that routes requests
directly to the appropriate coordinator nodes.

1. Advantage: can achieve lower latency because it skips a
potential forwarding step.

BigTable. HBase. Spanner. Dynamo. Cassandra72

Temporary failures: Sloppy Quorum

} R/W is the minimum number of nodes that must
participate in a successful read/write operation.

} Setting R + W > N yields a quorum-like system.
} In this model, the latency of a get (or put) operation is

dictated by the slowest of the R (or W) replicas. For this
reason, R and W are usually configured to be less than N,
to provide better latency.

BigTable. HBase. Spanner. Dynamo. Cassandra73

Hinted handoff

BigTable. HBase. Spanner. Dynamo. Cassandra74

} Assume N = 3. When A is
temporarily down or
unreachable during a write,
send replica to D.

} D is hinted that the replica
is belong to A and it will
deliver to A when A is
recovered.

} Again: “always writeable”

Other techniques

} Replica synchronization:
} Merkle hash tree.

} Membership and Failure Detection:
} Gossip

BigTable. HBase. Spanner. Dynamo. Cassandra75

Replica synchronization

} Merkle tree:
} a hash tree where leaves are hashes of the values of individual

keys.
} Parent nodes higher in the tree are hashes of their respective

children.

} Advantage of Merkle tree:
} Each branch of the tree can be checked independently without

requiring nodes to download the entire tree.
} Help in reducing the amount of data that needs to be

transferred while checking for inconsistencies among replicas.

Implementation

} Java
} Local persistence component allows for different storage

engines to be plugged in:
} Berkeley Database (BDB) Transactional Data Store: object of tens

of kilobytes

} MySQL: object of > tens of kilobytes

} BDB Java Edition, etc.

BigTable. HBase. Spanner. Dynamo. Cassandra77

Performance
} Guarantee Service Level

Agreements (SLA)
} the latencies exhibit a clear

diurnal pattern (incoming
request rate)

} write operations always results
in disk access.

} affected by several factors such
as variability in request load,
object sizes, and locality
patterns

Improvement

} A few customer-facing services required higher levels of
performance.

} Each storage node maintains an object buffer in its main
memory.

} Each write operation is stored in the buffer and gets
periodically written to storage by a writer thread.

} Read operations first check if the requested key is
present in the buffer

Improvement (Cont’d)

} lowering the 99.9th
percentile latency by a
factor of 5 during peak
traffic

} write buffering smoothes
out higher percentile
latencies

Improvement (Cont’d)

} A server crash can result in missing writes that were
queued up in the buffer.

} To reduce the durability risk, the write operation is
refined to have the coordinator choose one out of the N
replicas to perform a “durable write”

} Since the coordinator waits only for W responses, the
performance of the write operation is not affected by the
performance of the durable write operation

Balance

} out-of-balance
} If the node’s request load deviates from the average load by a value

more than a certain threshold (here 15%)

} Imbalance ratio decreases with increasing load

} under high loads, a large number of popular keys are accessed and the
load is evenly distributed

Partitioning and placement of key

The space needed to
maintain the membership at
each node increases linearly
with the number of nodes in
the system

Partitioning and placement of key
(cont’d)

} divides the hash space into Q
equally sized partitions

} The primary advantages of this
strategy are:

1. decoupling of partitioning and
partition placement,

2. enabling the possibility of
changing the placement
scheme at runtime.

Partitioning and placement of key
(cont’d)

} divides the hash space into Q
equally sized partitions

} each node is assigned Q/S
tokens where S is the number
of nodes in the system.

} When a node leaves the system,
its tokens are randomly
distributed to the remaining
nodes

} when a node joins the system it
"steals" tokens from nodes in
the system

Load Balancing Efficiency

} Strategy 3 achieves better efficiency
} Faster bootstrapping/recovery:

} Since partition ranges are fixed, they can be stored in separate files, meaning a partition can be relocated
as a unit by simply transferring the file (avoiding random accesses needed to locate specific items).

} Ease of archival
} Periodical archiving of the dataset is a mandatory requirement for most of Amazon storage services.
} Archiving the entire dataset stored by Dynamo is simpler in strategy 3 because the partition files can be

archived separately.

Coordination

} Dynamo has a request coordination component that uses
a state machine to handle incoming requests. Client
requests are uniformly assigned to nodes in the ring by a
load balancer.

} An alternative approach to request coordination is to
move the state machine to the client nodes. In this
scheme client applications use a library to perform
request coordination locally.

Coordination

} The latency improvement is because the client-driven
approach eliminates the overhead of the load balancer and
the extra network hop that may be incurred when a
request is assigned to a random node.

Conclusion

} Dynamo is a highly available and scalable data store for
Amazon.com’s e-commerce platform.

} Dynamo has been successful in handling server failures,
data center failures and network partitions.

} Dynamo is incrementally scalable and allows service
owners to scale up and down based on their current
request load.

} Dynamo allows service owners to customize their
storage system by allowing them to tune the parameters
N, R,and W.

5: Cassandra

Slides by Indranil Gupta, UIUC
Based mostly on
•Cassandra NoSQL presentation
•Cassandra 1.0 documentation at datastax.com
•Cassandra Apache project wiki
•HBase

http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://www.datastax.com/docs/1.0/index
http://wiki.apache.org/cassandra/ArchitectureOverview
http://hbase.apache.org/book/

Cassandra

} Originally designed at Facebook
} Open-sourced
} Some of its myriad users:

BigTable. HBase. Spanner. Dynamo. Cassandra91

Why Key-value Store?

} (Business) Key -> Value
} (twitter.com) tweet id -> information about tweet
} (kayak.com) Flight number -> information about flight,

e.g., availability
} (yourbank.com) Account number -> information about it
} (amazon.com) item number -> information about it

} Search is usually built on top of a key-value store

BigTable. HBase. Spanner. Dynamo. Cassandra92

Relational databases

} Relational Databases
(RDBMSs) have been
around for ages

} MySQL is the most
popular among them

} Data stored in tables

} Schema-based, i.e.,
structured tables

} Queried using SQL

BigTable. HBase. Spanner. Dynamo. Cassandra93

SQL queries: SELECT user_id from users WHERE
username = �jbellis�

Example�s Source

http://www.datastax.com/docs/1.0/ddl/about-data-model

Issues with today�s workloads

} Data: Large and unstructured
} Lots of random reads and writes
} Foreign keys rarely needed
} Need

} Incremental Scalability
} Speed
} No Single point of failure
} Low TCO and admin
} Scale out, not up

BigTable. HBase. Spanner. Dynamo. Cassandra94

Cassandra Data Model

} Column Families:
} Like SQL tables

} but may be
unstructured (client-
specified)

} Can have index tables

} Hence �column-
oriented databases�/
�NoSQL�
} No schemas
} Some columns missing

from some entries

} “Not Only SQL”

} Supports get(key) and
put(key, value)
operations

} Often write-heavy
workloads

BigTable. HBase. Spanner. Dynamo. Cassandra95

96

N80

0Say m=7

N32

N45

Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without routing

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

Coordinator (typically one per DC)

BigTable. HBase. Spanner. Dynamo. Cassandra

Writes

} Need to be lock-free and fast (no reads or disk seeks)

} Client sends write to one front-end node in Cassandra cluster
(Coordinator)

} Which (via Partitioning function) sends it to all replica nodes
responsible for key
} Always writable: Hinted Handoff

} If any replica is down, the coordinator writes to all other replicas,
and keeps the write until down replica comes back up.

} When all replicas are down, the Coordinator (front end) buffers
writes (for up to an hour).

} Provides Atomicity for a given key (i.e., within ColumnFamily)

} One ring per datacenter
} Coordinator can also send write to one replica per remote

datacenter

BigTable. HBase. Spanner. Dynamo. Cassandra97

Writes at a replica node

On receiving a write

}1. log it in disk commit log

}2. Make changes to appropriate memtables
} In-memory representation of multiple key-value pairs

}Later, when memtable is full or old, flush to disk
} Data File: An SSTable (Sorted String Table) – list of key value pairs,

sorted by key
} Index file: An SSTable – (key, position in data sstable) pairs

} And a Bloom filter

}Compaction: Data udpates accumulate over time and sstables and logs
need to be compacted

} Merge key updates, etc.

}Reads need to touch log and multiple SSTables
} May be slower than writes

BigTable. HBase. Spanner. Dynamo. Cassandra98

Bloom Filter

} Compact way of representing a set of items
} Checking for existence in set is cheap
} Some probability of false positives: an item not in set may

check true as being in set
} Never false negatives Large Bit Map

0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all
hashed bits.

On check-if-present,
return true if all
hashed bits set.
• False positives

False positive rate
low
• k=4 hash

functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

BigTable. HBase. Spanner. Dynamo. Cassandra99

Deletes and Reads

} Delete: don’t delete item right away
} Add a tombstone to the log
} Compaction will remove tombstone and delete item

} Read: Similar to writes, except
} Coordinator can contact closest replica (e.g., in same rack)
} Coordinator also fetches from multiple replicas

} check consistency in the background, initiating a read-repair if any two
values are different

} Makes read slower than writes (but still fast)
} Read repair: uses gossip

BigTable. HBase. Spanner. Dynamo. Cassandra100

Cassandra uses Quorums

} Reads
} Wait for R replicas (R specified by clients)
} In background check for consistency of remaining N-R

replicas, and initiate read repair if needed (N = total number
of replicas for this key)

} Writes come in two flavors
} Block until quorum is reached
} Async: Write to any node

} Quorum Q = N/2 + 1
} R = read replica count, W = write replica count
} If W+R > N and W > N/2, you have consistency
} Allowed (W=1, R=N) or (W=N, R=1) or (W=Q, R=Q)BigTable. HBase. Spanner. Dynamo. Cassandra101

Cassandra uses Quorums

} In reality, a client can choose one of these levels for a
read/write operation:
} ANY: any node (may not be replica)
} ONE: at least one replica
} QUORUM: quorum across all replicas in all datacenters
} LOCAL_QUORUM: in coordinator’s DC
} EACH_QUORUM: quorum in every DC
} ALL: all replicas all DCs

BigTable. HBase. Spanner. Dynamo. Cassandra102

Cluster Membership

BigTable. HBase. Spanner. Dynamo. Cassandra103

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip

their membership list

•On receipt, the local

membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership

Cluster Membership, contd.

} Suspicion mechanisms
} Accrual detector: FD outputs a value (PHI) representing

suspicion
} Apps set an appropriate threshold
} PHI = 5 => 10-15 sec detection time
} PHI calculation for a member

} Inter-arrival times for gossip messages
} PHI(t) = - log(CDF or Probability(t_now – t_last))/log 10
} PHI basically determines the detection timeout, but is sensitive

to actual inter-arrival time variations for gossiped heartbeats

BigTable. HBase. Spanner. Dynamo. Cassandra104

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership

Vs. SQL

} MySQL is the most popular (and has been for a while)
} On > 50 GB data
} MySQL

} Writes 300 ms avg
} Reads 350 ms avg

} Cassandra
} Writes 0.12 ms avg
} Reads 15 ms avg

BigTable. HBase. Spanner. Dynamo. Cassandra105

Cassandra Summary

} While RDBMS provide ACID (Atomicity Consistency
Isolation Durability)

} Cassandra provides BASE
} Basically Available Soft-state Eventual Consistency
} Prefers Availability over consistency

} Other NoSQL products
} MongoDB, Riak (look them up!)

} Next: HBase
} Prefers (strong) Consistency over Availability

BigTable. HBase. Spanner. Dynamo. Cassandra106

HBas
e

} Google’s BigTable was first “blob-based” storage system
} Yahoo! Open-sourced it -> HBase
} Major Apache project today
} Facebook uses HBase internally
} API

} Get/Put(row)
} Scan(row range, filter) – range queries
} MultiPut

BigTable. HBase. Spanner. Dynamo. Cassandra107

HBase
Architecture

Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
Zab, a Paxos-like protocol

HDFS

BigTable. HBase. Spanner. Dynamo. Cassandra108

HBase Storage
hierarchy

} HBase Table
} Split it into multiple regions: replicated across servers

} One Store per ColumnFamily (subset of columns with similar query
patterns) per region
¨ Memstore for each Store: in-memory updates to Store; flushed to disk

when full
¨ StoreFiles for each store for each region: where the data lives

- Blocks

} HFile
} SSTable from Google’s BigTable

BigTable. HBase. Spanner. Dynamo. Cassandra109

HFil
e

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-00-0000

(For a census table example)

Demographic
Ethnicity

BigTable. HBase. Spanner. Dynamo. Cassandra110

Strong Consistency: HBase Write-Ahead
Log

Write to HLog before writing to MemStore
Can recover from failure

Source: http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html
BigTable. HBase. Spanner. Dynamo. Cassandra111

Log Replay

} After recovery from failure, or upon bootup
(HRegionServer/HMaster)
} Replay any stale logs (use timestamps to find out where the

database is w.r.t. the logs)
} Replay: add edits to the MemStore

} Why one HLog per HRegionServer rather than per
region?
} Avoids many concurrent writes, which on the local file system

may involve many disk seeks

BigTable. HBase. Spanner. Dynamo. Cassandra112

Cross-data center
replication HLog

Zookeeper actually a file
system for control information
1. /hbase/replication/state
2. /hbase/replication/peers

/<peer cluster number>
3. /hbase/replication/rs/<hlog>

BigTable. HBase. Spanner. Dynamo. Cassandra113

Summar
y

} Key-value stores and NoSQL faster but provide weaker
guarantees

} MP3: By now, you must have a basic working system (may
not yet satisfy all the requirements)

} HW3: due next Tuesday

} Free Flu shot in Grainger Library today 3.30-6.30 pm –
take your id card

BigTable. HBase. Spanner. Dynamo. Cassandra114

