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BigTable

} Distributed storage system for managing structured data 
such as:
} URLs: contents, crawl metadata, links, anchors, pagerank
} Per-user data: user preference settings, recent queries/search 

results
} Geographic locations: physical entities (shops, restaurants, etc.), 

roads, satellite image data, user annotations, …

} Designed to scale to a very large size: petabytes of data 
distributed across thousands of servers

} Used for many Google applications
} Web indexing, Personalized Search, Google Earth, Google 

Analytics, Google Finance, … and more
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Why BigTable?

} Scalability requirements not met by existent commercial 
systems:
} Millions of machines
} Hundreds of millions of users
} Billions of URLs, many versions/page
} Thousands or queries/sec
} 100TB+ of satellite image data

} Low-level storage optimization helps performance 
significantly
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Goals

} Simpler model that supports dynamic control over data 
and layout format

} Want asynchronous processes to be continuously 
updating different pieces of data: access to most current 
data at any time

} Examine data changes over time: e.g. contents of a web 
page over multiple crawls

} Support for:
} Very high read/write rates (millions ops per second)
} Efficient scans over all or subsets of data
} Efficient joins of large one-to-one and one-to-many datasets
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Design Overview

} Distributed multi-level map
} Fault-tolerant, persistent
} Scalable

} Thousands of servers
} Terabytes of in-memory data
} Petabyte of disk-based data
} Millions of reads/writes per second, efficient scans

} Self-managing
} Servers can be added/removed dynamically
} Servers adjust to load imbalance
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Typical Google Cluster

Shared pool of machines that also run other distributed applications
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Building Blocks

} Google File System (GFS)
} Stores persistent data (SSTable file format)

} Scheduler
} Schedules jobs onto machines

} Chubby
} Lock service: distributed lock manager, master election, 

location bootstrapping

} MapReduce (optional)
} Data processing
} Read/write BigTable data
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Chubby

} {lock/file/name} service
} Coarse-grained locks

} Provides a namespace that consists of directories and small 
files. 

} Each of the directories or files can be used as a lock.

} Each client has a session with Chubby
} The session expires if it is unable to renew its session lease 

within the lease expiration time.

} 5 replicas Paxos, need a majority vote to be active
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Data Model

} A sparse, distributed persistent multi-dimensional sorted 
map

} Rows, column are arbitrary strings 

} (row, column, timestamp) -> cell contents
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Data Model: Rows

} Arbitrary string
} Access to data in a row is atomic

} Row creation is implicit upon storing data
} Ordered lexicographically
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Rows (cont.)

} Rows close together lexicographically usually on one or a 
small number of machines

} Reads of short row ranges are efficient and typically 
require communication with a small number of machines

} Can exploit lexicographic order by selecting row keys so 
they get good locality for data access

} Example: 
} math.gatech.edu, math.uga.edu, phys.gatech.edu, 

phys.uga.edu 
} VS 
} edu.gatech.math, edu.gatech.phys, edu.uga.math, 

edu.uga.phys
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Data Model: Columns

} Two-level name structure:  family: qualifier
} Column family:

} Is the unit of access control
} Has associated type information

} Qualifier gives unbounded columns
} Additional levels of indexing, if desired
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Data Model: Timestamps (64bit integers)

Store different versions of data in a 
cell:

} New writes default to current 
time, but timestamps for writes 
can also be set explicitly by 
clients

} Lookup options
} Return most recent K values
} Return all values

} Column families can be marked w/ 
attributes:
} Retain most recent K values in a cell
} Keep values until they are older 

than K seconds
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Data Model: Tablet

} The row range for a table is dynamically partitioned
} Each row range is called a tablet (typically 10-100 bytes)
} Tablet is the unit for distribution and load balancing
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Storage: SSTable

} Immutable, sorted file of key-value pairs
} Optionally, SSTable can be completely mapped into 

memory
} Chunks of data plus an index 

} Index is of block ranges, not values
} Index is loaded into memory  when SSTable is open

Index

64K 
block

64K 
block

64K 
block

SSTable
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Tablet vs. SSTable 

} Tablet is built out of multiple SSTables

Index

64K 
block

64K 
block

64K 
block

SSTable

Index

64K 
block

64K 
block

64K 
block

SSTable

Tablet Start:aardvark End:apple
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Table vs. Tablet vs. SSTable

} Multiple tablets make up the table
} SSTables can be shared
} Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat
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Example: WebTable

} Want to keep copy of a large collection of web pages and 
related information

} Use URLs as row keys
} Various aspects of web page as column names
} Store contents of web pages in the contents: column 

under the timestamps when they were fetched.
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Implementation

} Library linked into every client
} One master server responsible for:

} Assigning tablets to tablet servers
} Detecting addition and expiration of tablet servers
} Balancing tablet-server load
} Garbage collection
} Handling schema changes such as table and column family 

creation
} Many tablet servers, each of them:

} Handles read and write requests to its table
} Splits tablets that have grown too large

} Clients communicate directly with tablet servers for reads and 
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Deployment
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More about Tablets

} Serving machine responsible for 10 - 1000
} Usually about 100 tablets

} Fast recovery:
} 100 machines each pick up 1 tablet for failed machine

} Fine-grained load balancing:
} Migrate tablets away from overloaded machine
} Master makes load-balancing decisions
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Tablet Location

} Since tablets move around from server to server, given a 
row, how do clients find the right machine
} Find tablet whose row range covers the target row

} METADATA: Key: table id + end row,   Data: location
} Aggressive caching and prefetching at client side
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Tablet Assignment

} Each tablet is assigned to one tablet server at a time.
} Master server 

} Keeps track of the set of live tablet servers and current 
assignments of tablets to servers. 

} Keeps track of unassigned tablets.

} When a tablet is unassigned, master assigns the tablet to a 
tablet server with sufficient room.

} It uses Chubby to monitor health of tablet servers, and 
restart/replace failed servers.
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Tablet Assignment: Chubby

} Tablet server registers itself with Chubby by getting a 
lock in a specific directory of Chubby

} Chubby gives �lease� on lock, must be renewed 
periodically

} Server loses lock if it gets disconnected
} Master monitors this directory to find which servers 

exist/are alive
} If server not contactable/has lost lock, master grabs lock and 

reassigns tablets
} GFS replicates data. Prefer to start tablet server on same 

machine that the data is already at
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API

} Metadata operations
} Create/delete tables, column families, change metadata

} Writes (atomic)
} Set(): write cells in a row
} DeleteCells(): delete cells in a row
} DeleteRow(): delete all cells in a row

} Reads
} Scanner: read arbitrary cells in a bigtable

} Each row read is atomic
} Can restrict returned rows to a particular range
} Can ask for just data from 1 row, all rows, etc.
} Can ask for all columns, just certain column families, or specific 
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Refinements: Locality Groups

} Can group multiple column families into a locality group
} Separate SSTable is created for each locality group in each 

tablet.

} Segregating columns families that are not typically 
accessed together enables more efficient reads.
} In WebTable, page metadata can be in one group and contents 

of the page in another group.
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Refinements: Compression

} Many opportunities for compression
} Similar values in the same row/column at different timestamps
} Similar values in different columns
} Similar values across adjacent rows

} Two-pass custom compressions scheme
} First pass: compress long common strings across a large 

window
} Second pass: look for repetitions in small window

} Speed emphasized, but good space reduction (10-to-1)
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Refinements: Bloom Filters

} Read operation has to read from disk when desired 
SSTable is not in memory

} Reduce number of accesses by specifying a Bloom filter:
} Allows to ask if a SSTable might contain data for a specified 

row/column pair.
} Small amount of memory for Bloom filters drastically reduces 

the number of disk seeks for read operations
} Results in most lookups for non-existent rows or columns not 

needing to touch disk
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Real Applications
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Limitations

} No transactions supported
} Does not support full relational data model
} Achieved throughput is limited by GFS
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Lessons Learnt

} Large distributed systems vulnerable to many type of 
failures
} Memory and network corruption
} Large clock skew
} Hung machines
} Extended and asymmetric network partitions
} Bugs in other systems

} Proper system-level monitoring critical
} Simple design better
} Do not add new features before they are needed
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2: HBase



HBase

} Open-source, distributed, versioned, column-oriented 
data store, modeled after Google's Bigtable

} Random, real time read/write access to large data:
} Billions of rows,  millions of columns
} Distributed across clusters of commodity hardware

BigTable. HBase. Spanner. Dynamo. Cassandra36



History

} 2006.11
} Google releases paper on BigTable

} 2007.2
} Initial HBase prototype created as Hadoop contrib.

} 2007.10
} First useable HBase

} 2008.1
} Hadoop become Apache top-level project and HBase becomes 

subproject

} Current stable release 1.4.3 / 3 April 2018
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HBase Is Not …

} Tables have one primary index, the row key.
} No join operators.
} Scans and queries can select a subset of available columns.
} There are three types of lookups:

} Fast lookup using row key and optional timestamp.
} Full table scan
} Range scan from region start to end.
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HBase Is Not …(2)

} Limited atomicity and transaction support.
} HBase supports multiple batched mutations of single rows only.
} Data is unstructured and untyped.

} No accessed or manipulated via SQL.
} Programmatic access via Java, REST, or Thrift APIs.
} Scripting via JRuby.
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3: Spanner



Limitations of BigTable

} Difficult to use for applications that 
} have complex, evolving schemas, 
} want strong consistency in the presence of wide-area 

replication
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What is Spanner

} Scalable, multi-version, globally- distributed, and 
synchronously-replicated database

} Distribute data at global scale and support externally-
consistent distributed transactions. 

} Features: 
} non- blocking reads in the past
} lock-free read-only transactions
} atomic schema changes 

} Scale up to 
} millions of machines 
} hundreds of datacenters 
} trillions of database rows 
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What is Spanner 

} Applications can control replication configurations for 
data 

} Applications can specify constraints 
} to control which datacenters contain which data, how far data 

is from its users (to control read latency)
} how far replicas are from each other (to control write latency)
} how many replicas are maintained (to control durability, 

availability, and read performance). 

} Data can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters
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Spanner – key idea

} Consistent reads and writes
} How: 

} use global commit timestamps to transactions, even though 
transactions may be distributed. 

} timestamps represent serialization order
} provide such guarantees at global scale 

} How to get the global timestamps: TrueTime
} Relies on existing algorithms such as Paxos and 2PC
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Architecture

} Instance – it’s called universe; examples: test, deployment, 
production
} Universe master
} Placement master

} handles automated movement of data across zones on the timescale 
of minutes

} periodically communicates with the spanservers to find data that 
needs to be moved, either to meet updated replication constraints or 
to balance load.

} Universe consists of zones 
} Denotes physical isolation
} Several zones can be in a datacenter
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Architecture
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Zones

} Zonemaster
} assigns the data to span servers

} Spanservers
} hundreds to thousands
} store data
} responsible for between 100 and 1000 instances of a data 

structure called a tablet (different from the BigTable tablet)
} each data has a timestamp 

} Location proxies
} used by clients to locate the spanservers assigned to serve 

their data
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Replication
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More about replication

} Directory – analogous to bucket in BigTable
} Smallest unit of data placement
} Smallest unit to define replication properties

} 2PC and Paxos-based replication
} Back End: Colossus (successor to GFS)
} Paxos State Machine on top of each tablet stores meta 

data and logs of the tablet.
} Leader among replicas in a Paxos group is chosen and all 

write requests for replicas in that group initiate at leader.
} Transaction Leader

} Is Paxos Leader if transaction involves one Paxos group
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TrueTime

} Leverages hardware features like GPS and Atomic Clocks
} Implemented via TrueTime API

} Key method  being now() which not only returns current 
system time but also another value (ε) which tells the 
maximum uncertainty in the time returned

} Set of time master server per datacenters and time slave 
daemon per machines

} Majority of time masters are GPS fitted and few others 
are atomic clock fitted (Armageddon masters)

} Daemon polls variety of masters and reaches a consensus 
about correct timestamp
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TrueTime

} TrueTime uses both GPS and Atomic clocks since they 
are different failure rates and scenarios

} Two other boolean methods in API are
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} TrueTime uses these methods in concurrency control and 
to serialize transactions
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TrueTime

} After() is used for Paxos Leader Leases 
} Uses after(Smax) to check if Smax  is passed so that Paxos 

Leader can abdicate its slaves.

} Paxos Leaders can not assign timestamps(Si) greater than 
Smax for transactions(Ti) and clients can not see the data 
commited by transaction Ti till after(Si) is true.
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} Replicas maintain a timestamp tsafe which is the 
maximum timestamp at which that replica is up to date. 
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TrueTime

} Read-Write – requires lock.
} Read-Only – lock free. 

} Requires declaration before start of transaction. 
} Reads information that is up to date

} Snapshot Read – Read information from past by specifying 
a timestamp or bound
} Use specifies specific timestamp from past or timestamp bound 

so that data till that point will be read.
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Applications

} Google advertising backend application – F1
} Replicated across 5 datacenters spread across US
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4: Dynamo

Dynamo: Amazon’s Highly Available Key-value Store Giuseppe 
DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan 
Sivasubramanian, Peter Vosshall and Werner Vogels. SOSP 2007. 
Slides taken from www.slideworld.com created by paper authors

http://www.slideworld.com/


CAP  

} States that any networked shared-data system can have at 
most two of three desirable properties:
} consistency (C) –
} high availability (A) of that data (for updates);
} tolerance to network partitions (P).

} During a network partition and recovery from partition 
one can not have perfect availability and consistency 

} Modern CAP goal should be to maximize combinations of 
consistency and availability that make sense for a specific 
application
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PACELC 

} States that:
} In case of network partitioning (P) one has to choose between 

availability (A) and consistency (C)
} but else (E), even when the system is running normally in the 

absence of partitions, one has to choose between latency (L) 
and consistency (C).

} Addresses the fact that CAP does not capture the 
consistency/latency tradeoff of replicated systems present at 
all times during system operation

} Example: Dynamo, Cassandra are PA/EL systems if a partition 
occurs, they give up consistency for availability, and under 
normal operation they give up consistency for lower latency.
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Motivation

} Even the slightest outage has significant financial 
consequences and impacts customer trust.

} The platform is implemented on top of an infrastructure 
of tens of thousands of servers and network components 
located in many datacenters around the world.

} Persistent state is managed in the face of these failures -
drives the reliability and scalability of the software 
systems



Dynamo: Motivation

} Build a distributed storage system:
} Scale
} Simple: key-value
} Highly available
} Guarantee Service Level Agreements (SLA)
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} Query Model: simple read and write operations to a data item that is 

uniquely identified by a key.
} ACID Properties: Atomicity, Consistency, Isolation, Durability.

} Efficiency: latency requirements which are in general measured at the 
99.9th percentile of the distribution.

} Other Assumptions: operation environment is assumed to be non-
hostile and there are no security related requirements such as 
authentication and authorization.
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System Assumptions and Requirements



Service Level Agreements (SLA)
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} Application can deliver its 
functionality in abounded time: 
Every dependency in the platform needs 
to deliver its functionality with even 
tighter bounds.

} Example: service guaranteeing that it 
will provide a response within 300ms for 
99.9% of its requests for a peak client 
load of 500 requests per second.

Service-oriented architecture 
of Amazon’s platform



Design Consideration

} Sacrifice strong consistency for availability
} Conflict resolution is executed during read instead of 
write, i.e. “always writeable”.

} Other principles:
} Incremental scalability.
} Symmetry: Every node in Dynamo should have the same set 

of responsibilities as its peers.
} Decentralization: In the past, centralized control has resulted 

in outages and the goal is to avoid it as much as possible.
} Heterogeneity: This is essential in adding new nodes with 

higher capacity without having to upgrade all hosts at once.
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Design Consideration  (Cont’d)

} “always writeable” data store where no updates are 
rejected due to failures or concurrent writes. 

} an infrastructure within a single administrative domain 
where all nodes are assumed to be trusted. 



Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation 
during reads

Version size is decoupled from 
update rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and 
durability guarantee when some of 

the replicas are not available.

Recovering from permanent failures Anti-entropy using Merkle trees Synchronizes divergent replicas in 
the background.

Membership and failure detection Gossip-based membership protocol 
and failure detection.

Preserves symmetry and avoids 
having a centralized registry for 
storing membership and node 

liveness information.

BigTable. HBase. Spanner. Dynamo. Cassandra64

Summary of techniques used in 
Dynamo and their advantages
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} Consistent hashing: the 
output range of a hash 
function is treated as a fixed 
circular space or “ring”.

} ”Virtual Nodes”: Each 
node can be responsible for 
more than one virtual node.

Partition Algorithm



Advantages of using virtual nodes
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} If a node becomes unavailable the load 
handled by this node is evenly 
dispersed across the remaining available 
nodes.

} When a node becomes available again, 
the newly available node accepts a 
roughly equivalent amount of load from 
each of the other available nodes.

} The number of virtual nodes that a 
node is responsible can decided based 
on its capacity, accounting for 
heterogeneity in the physical 
infrastructure.



Replication
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} Each data item is 
replicated at N hosts.

} “preference list”: The list of 
nodes that is responsible 
for storing a particular key.



Data Versioning

} A put() call may return to its caller before the update has 
been applied at all the replicas

} A get() call may return many versions of the same object.
} Challenge: an object having distinct version sub-histories, which the 

system will need to reconcile in the future.

} Solution: uses vector clocks in order to capture causality between 
different versions of the same object.
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Vector Clock

} A vector clock is a list of (node, counter) pairs.
} Every version of every object is associated with one 

vector clock.
} If the counters on the first object’s clock are less-than-or-equal 

to all of the nodes in the second clock, then the first is an 
ancestor of the second and can be forgotten.
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Vector clock example
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Vector clock

} In case of network partitions or multiple server failures, write 
requests may be handled by nodes that are not in the top N 
nodes in the preference list causing the size of vector clock to 
grow.

} Dynamo stores a timestamp that indicates the last time the 
node updated the data item.

} When the number of (node, counter) pairs in the vector clock 
reaches a threshold (say 10), the oldest pair is removed from 
the clock.



Execution of get () and put () operations

1. Route its request through a generic load balancer that 
will select a node based on load information.

1. Advantage: client does not have to link any code specific to 
Dynamo in its application

2. Use a partition-aware client library that routes requests 
directly to the appropriate coordinator nodes.

1. Advantage: can achieve lower latency because it skips a 
potential forwarding step.
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Temporary failures: Sloppy Quorum

} R/W is the minimum number of nodes that must 
participate in a successful read/write operation.

} Setting R + W > N yields a quorum-like system.
} In this model, the latency of a get (or put) operation is 

dictated by the slowest of the R (or W) replicas. For this 
reason, R and W are usually configured to be less than N, 
to provide better latency.
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Hinted handoff
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} Assume N = 3. When A is 
temporarily down or 
unreachable during a write, 
send replica to D.

} D is hinted that the replica 
is belong to A and it will 
deliver to A when A is 
recovered.

} Again: “always writeable”



Other techniques

} Replica synchronization: 
} Merkle hash tree.

} Membership and Failure Detection: 
} Gossip
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Replica synchronization 

} Merkle tree:
} a hash tree where leaves are hashes of the values of individual 

keys.
} Parent nodes higher in the tree are hashes of their respective 

children. 

} Advantage of Merkle tree:
} Each branch of the tree can be checked independently without 

requiring nodes to download the entire tree.
} Help in reducing the amount of data that needs to be 

transferred while checking for inconsistencies among replicas.



Implementation

} Java
} Local persistence component allows for different storage 

engines to be plugged in:
} Berkeley Database (BDB) Transactional Data Store: object of tens 

of kilobytes

} MySQL: object of > tens of kilobytes

} BDB Java Edition, etc.
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Performance
} Guarantee Service Level 

Agreements (SLA)
} the latencies exhibit a clear 

diurnal pattern (incoming 
request rate)

} write operations always results 
in disk access.

} affected by several factors such 
as variability in request load, 
object sizes, and locality 
patterns



Improvement

} A few customer-facing services required higher levels of 
performance.

} Each storage node maintains an object buffer in its main 
memory. 

} Each write operation is stored in the buffer and gets 
periodically written to storage by a writer thread. 

} Read operations first check if the requested key is 
present in the buffer



Improvement (Cont’d)

} lowering the 99.9th 
percentile latency by a 
factor of 5 during peak 
traffic

} write buffering smoothes 
out higher percentile 
latencies



Improvement (Cont’d)

} A server crash can result in missing writes that were 
queued up in the buffer. 

} To reduce the durability risk, the write operation is 
refined to have the coordinator choose one out of the N 
replicas to perform a “durable write”

} Since the coordinator waits only for W responses, the 
performance of the write operation is not affected by the 
performance of the durable write operation



Balance

} out-of-balance
} If the node’s request load deviates from the average load by a value 

more  than a certain threshold (here 15%)

} Imbalance ratio decreases with increasing load

} under high loads, a large number of popular keys are accessed and the 
load is evenly distributed



Partitioning and placement of key

The space needed to 
maintain the membership at 
each node increases linearly
with the number of nodes in 
the system



Partitioning and placement of key 
(cont’d)

} divides the hash space into Q 
equally sized partitions

} The primary advantages of this 
strategy are: 

1. decoupling of partitioning and 
partition placement,

2. enabling the possibility of 
changing the placement 
scheme at runtime.



Partitioning and placement of key 
(cont’d)

} divides the hash space into Q 
equally sized partitions

} each node is assigned Q/S 
tokens where S is the number 
of nodes in the system. 

} When a node leaves the system, 
its tokens are randomly 
distributed to the remaining 
nodes 

} when a node joins the system it 
"steals" tokens from nodes in 
the system



Load Balancing Efficiency

} Strategy 3 achieves better efficiency
} Faster bootstrapping/recovery:

} Since partition ranges are fixed, they can be stored in separate files, meaning a partition can be relocated 
as a unit by simply transferring the file (avoiding random accesses needed to locate specific items). 

} Ease of archival
} Periodical archiving of the dataset is a mandatory requirement for most of Amazon storage services.
} Archiving the entire dataset stored by Dynamo is simpler in strategy 3 because the partition files can be 

archived separately.



Coordination

} Dynamo has a request coordination component that uses 
a state machine to handle incoming requests. Client 
requests are uniformly assigned to nodes in the ring by a 
load balancer.

} An alternative approach to request coordination is to 
move the state machine to the client nodes. In this 
scheme client applications use a library to perform 
request coordination locally.



Coordination

} The latency improvement is because the client-driven 
approach eliminates the overhead of the load balancer and 
the extra network hop that may be incurred when a 
request is assigned to a random node.



Conclusion

} Dynamo is a highly available and scalable data store for 
Amazon.com’s e-commerce platform. 

} Dynamo has been successful in handling server failures, 
data center failures and network partitions. 

} Dynamo is incrementally scalable and allows service 
owners to scale up and down based on their current 
request load.

} Dynamo allows service owners to customize their 
storage system by allowing them to tune the parameters 
N, R,and W.



5: Cassandra

Slides by Indranil Gupta, UIUC
Based mostly on 
•Cassandra NoSQL presentation
•Cassandra 1.0 documentation at datastax.com
•Cassandra Apache project wiki
•HBase

http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://www.datastax.com/docs/1.0/index
http://wiki.apache.org/cassandra/ArchitectureOverview
http://hbase.apache.org/book/


Cassandra

} Originally designed at Facebook
} Open-sourced 
} Some of its myriad users:
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Why Key-value Store?

} (Business) Key -> Value
} (twitter.com) tweet id -> information about tweet
} (kayak.com) Flight number -> information about flight, 

e.g., availability
} (yourbank.com) Account number -> information about it
} (amazon.com) item number -> information about it

} Search is usually built on top of a key-value store
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Relational databases

} Relational Databases 
(RDBMSs) have been 
around for ages

} MySQL is the most 
popular among them

} Data stored in tables

} Schema-based, i.e., 
structured tables

} Queried using SQL
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SQL queries: SELECT user_id from users WHERE 
username = �jbellis�

Example�s Source

http://www.datastax.com/docs/1.0/ddl/about-data-model


Issues with today�s workloads 

} Data: Large and unstructured
} Lots of random reads and writes
} Foreign keys rarely needed
} Need

} Incremental Scalability
} Speed
} No Single point of failure
} Low TCO and admin
} Scale out, not up
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Cassandra Data Model 

} Column Families:  
} Like SQL tables

} but may be 
unstructured (client-
specified)

} Can have index tables

} Hence �column-
oriented databases�/ 
�NoSQL�
} No schemas
} Some columns missing 

from some entries

} “Not Only SQL”

} Supports get(key) and 
put(key, value) 
operations

} Often write-heavy 
workloads
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96

N80

0Say m=7

N32

N45

Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without routing

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

Coordinator (typically one per DC)
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Writes 

} Need to be lock-free and fast (no reads or disk seeks)

} Client sends write to one front-end node in Cassandra cluster 
(Coordinator)

} Which (via Partitioning function) sends it to all replica nodes 
responsible for key
} Always writable: Hinted Handoff

} If any replica is down, the coordinator writes to all other replicas, 
and keeps the write until down replica comes back up.

} When all replicas are down, the Coordinator (front end) buffers 
writes (for up to an hour). 

} Provides Atomicity for a given key (i.e., within ColumnFamily)

} One ring per datacenter
} Coordinator can also send write to one replica per remote 

datacenter

BigTable. HBase. Spanner. Dynamo. Cassandra97



Writes at a replica node

On receiving a write

}1. log it in disk commit log

}2. Make changes to appropriate memtables
} In-memory representation of multiple key-value pairs

}Later, when memtable is full or old, flush to disk
} Data File: An SSTable (Sorted String Table) – list of key value pairs, 

sorted by key
} Index file: An SSTable – (key, position in data sstable) pairs

} And a Bloom filter

}Compaction: Data udpates accumulate over time and sstables and logs 
need to be compacted

} Merge key updates, etc.

}Reads need to touch log and multiple SSTables
} May be slower than writes
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Bloom Filter

} Compact way of representing a set of items
} Checking for existence in set is cheap
} Some probability of false positives: an item not in set may 

check true as being in set
} Never false negatives Large Bit Map

0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all 
hashed bits.

On check-if-present, 
return true if all 
hashed bits set.
• False positives

False positive rate 
low
• k=4 hash 

functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.
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Deletes and Reads 

} Delete: don’t delete item right away
} Add a tombstone to the log 
} Compaction will remove tombstone and delete item

} Read: Similar to writes, except
} Coordinator can contact closest replica (e.g., in same rack)
} Coordinator also fetches from multiple replicas

} check consistency in the background, initiating a read-repair if any two 
values are different

} Makes read slower than writes (but still fast)
} Read repair: uses gossip 
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Cassandra uses Quorums

} Reads
} Wait for R replicas (R specified by clients)
} In background check for consistency of remaining N-R 

replicas, and initiate read repair if needed (N = total number 
of replicas for this key)

} Writes come in two flavors
} Block until quorum is reached
} Async: Write to any node

} Quorum Q = N/2 + 1
} R = read replica count, W = write replica count
} If W+R > N and W > N/2, you have consistency
} Allowed (W=1, R=N) or (W=N, R=1) or (W=Q, R=Q)BigTable. HBase. Spanner. Dynamo. Cassandra101



Cassandra uses Quorums

} In reality, a client can choose one of these levels for a 
read/write operation:
} ANY: any node (may not be replica)
} ONE: at least one replica
} QUORUM: quorum across all replicas in all datacenters
} LOCAL_QUORUM: in coordinator’s DC
} EACH_QUORUM: quorum in every DC
} ALL: all replicas all DCs
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Cluster Membership 
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1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol: 

•Nodes periodically gossip 

their membership list

•On receipt, the local 

membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership



Cluster Membership, contd.

} Suspicion mechanisms
} Accrual detector: FD outputs a value (PHI)  representing 

suspicion
} Apps set an appropriate threshold
} PHI = 5 => 10-15 sec detection time
} PHI calculation for a member

} Inter-arrival times for gossip messages
} PHI(t) = - log(CDF or Probability(t_now – t_last))/log 10
} PHI basically determines the detection timeout, but is sensitive 

to actual inter-arrival time variations for gossiped heartbeats

BigTable. HBase. Spanner. Dynamo. Cassandra104

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership



Vs. SQL

} MySQL is the most popular (and has been for a while)
} On > 50 GB data
} MySQL 

} Writes 300 ms avg
} Reads 350 ms avg

} Cassandra 
} Writes 0.12 ms avg
} Reads 15 ms avg
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Cassandra Summary

} While RDBMS provide ACID (Atomicity Consistency 
Isolation Durability)

} Cassandra provides BASE
} Basically Available Soft-state Eventual Consistency
} Prefers Availability over consistency

} Other NoSQL products
} MongoDB, Riak (look them up!)

} Next: HBase
} Prefers (strong) Consistency over Availability
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HBas
e

} Google’s BigTable was first “blob-based” storage system
} Yahoo! Open-sourced it -> HBase
} Major Apache project today
} Facebook uses HBase internally
} API

} Get/Put(row)
} Scan(row range, filter) – range queries
} MultiPut
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HBase 
Architecture

Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
Zab, a Paxos-like protocol

HDFS
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HBase Storage 
hierarchy

} HBase Table
} Split it into multiple regions: replicated across servers

} One Store per ColumnFamily (subset of columns with similar query 
patterns) per region
¨ Memstore for each Store: in-memory updates to Store; flushed to disk 

when full
¨ StoreFiles for each store for each region: where the data lives

- Blocks

} HFile
} SSTable from Google’s BigTable
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HFil
e

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-00-0000

(For a census table example)

Demographic
Ethnicity
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Strong Consistency: HBase Write-Ahead 
Log

Write to HLog before writing to MemStore
Can recover from failure

Source: http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html
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Log Replay

} After recovery from failure, or upon bootup 
(HRegionServer/HMaster)
} Replay any stale logs (use timestamps to find out where the 

database is w.r.t. the logs)
} Replay: add edits to the MemStore

} Why one HLog per HRegionServer rather than per 
region?
} Avoids many concurrent writes, which on the local file system 

may involve many disk seeks
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Cross-data center 
replication HLog

Zookeeper actually a file 
system for control information
1. /hbase/replication/state
2. /hbase/replication/peers

/<peer cluster number>
3. /hbase/replication/rs/<hlog>
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Summar
y

} Key-value stores and NoSQL faster but provide weaker 
guarantees

} MP3: By now, you must have a basic working system (may 
not yet satisfy all the requirements)

} HW3: due next Tuesday

} Free Flu shot in Grainger Library today 3.30-6.30 pm –
take your id card
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