
Cristina Nita-Rotaru

7610: Distributed Systems

Distributed commit. 2PC. 3PC

Required reading for this topic…

} Non-Blocking Commit Protocols, D.
Skeen, SIGMOD 1981

Distributed commit.2

Distributed Commit Problem

} Some applications perform operations on multiple
databases

} We would like a guarantee that either all the
databases get updated, or none does

} Distributed Commit Problem:
} Operation is committed when all participants can

perform it
} Once a commit decision is reached, this requirement

holds even if some participants fail and later recover

Distributed commit.3

ACID Properties

} Transaction behaves as one operation
} (Failure) Atomicity: all or none, if transaction failed then no

changes apply to the database
} Consistency: there is no violation of the database integrity

constraints
} Isolation (Atomicity): partial results are hidden
} Durability: the effects of transactions that were committed

are permanent

Distributed commit.4

Example

} Either p succeeds, and both tables get updated, or
something fails and neither does

Distributed commit.5

p

CERIAS Student
database

Coffee
fund

Create new
CERIAS Student

Add to CERIAS
coffee fund

What Can Go Wrong?

} Process p could crash during the execution
} … a database could throw an exception, e.g. �invalid

SSN� or �duplicate record�
} … a database could crash, then restart, and may have
�forgotten� uncommitted updates (presumed abort)

Distributed commit.6

2PC Overview

} Assumes a coordinator that initiates the commit/abort
} Each database votes if it is ready to commit

} Until the commit actually occurs, the update is considered
temporary

} Database is permitted to discard a pending update until all
servers vote �ok� a database can abort

} Coordinator decides outcome and informs all databases

Distributed commit.7

SOUNDS EASY!

2PC: More Details

} Operates in rounds
} Coordinator assigns unique identifiers for each protocol

run. How? Use logical clocks: run identifier can be process
ID and the value of logical clock

} Messages carry the identifier of protocol run they are
part of

} Since lots of messages must be stored, a garbage
collection must be performed, the challenge is to
determine when it is safe to remove the information

Distributed commit.8

2PC Simplified Version: No Failures

Coordinator:
Multicast ready_to_commit
Collect replies

All Ok => send commit
Else => send abort

Participant receives:
ready_to_commit => save to temp
area and reply Ok
commit => make changes
permanent
abort => delete temp area

Distributed commit.9

p0 p1 p2Ready to
Commit?

Save to
temp area

OK
OK

Commit! Make
permanent

Participant States

} Initial state: pi is not aware that
protocol started, ends when pi
received ready_to_commit and it
is ready to send its Ok

} Prepared to commit: pi sent
its Ok, saves in temp area and
waits for the final decision
(commit or abort) from
coordinator

} Commit or abort: pi knows
the final decision, it must execute
it

Distributed commit.10

p0 p1 p2Ready to
Commit?

Save to
temp area

OK
OK

Commit! Make
permanent

Failures: Participant

} Initial state: if pi crashes before receiving
ready_to_commit, it does not send its Ok back, the
coordinator will abort the protocol (not enough Oks are
received).

} Prepared to commit: if pi crashes before it learns the
outcome, resources remained blocked. It is critical that a
crashed participant learns the outcome of pending
operations when it comes back: need logging system.

} Commit or abort: pi crashes before executing, it must
complete the commit or abort repeatedly in spite of
being interrupted by failures.

Distributed commit.11

How to Fix It?

} A process that crashed and
recovered
} Must remember in what state it

was before crashing.
} Must find out the outcome of a

decision (by contacting the
coordinator).

} The coordinator
} Must keep track of pending

protocols
} Must find out when a process

indeed completed the decision

Distributed commit.12

2PC: Overcoming Participant Failures

Coordinator:
Multicast ready_to_commit
Collect replies

All OK => log �commit� to �outcomes� table and send commit

Else => send abort
Collect acknowledgments

Garbage-collect protocol ‘outcomes’ information

Participant:
Receives:

ready_to_commit => save to temp area and reply OK

commit => make changes permanent, send acknowledgment
abort => delete temp area

After recovering from failure:

For each pending protocol: contact coordinator to learn outcome

Distributed commit.13

Failures: Coordinator

} If coordinator crashed during first phase when collecting
Oks:
} Some participants will be ready to commit (they sent Ok)
} Others will not be able to (they voted on abort)
} Others may not know the state

} If coordinator crashed during its decision or before
sending it out:
} Some processes will be in prepare to commit state
} Others will know the outcome

Distributed commit.14

Modifications …

} If coordinator fails, processes are blocked waiting for it to
recover

} After the coordinator recovers, there are pending
protocols that must be finished

} Coordinator must
} remember its state before crashing (write commit or abort on

permanent storage before sending commit or abort decision
to other processes)

} push pending operations through

} Participants may see duplicated messages

Distributed commit.15

2PC Overcoming Coordinator Failures:
Coordinator

Multicast ready_to_commit
Collect replies

All OK => log �commit� to �outcomes� table, wait until safe on
persistent storage and send commit
Else => send abort

Collect acknowledgments
Garbage collect protocol outcome information

After failure:

For each pending protocol in `outcomes’ table
Send outcome (commit or abort)
Wait for acknowledgments
Garbage collect outcome information

Distributed commit.16

2PC Overcoming Coordinator Failures:
Participant

First time message received

ready_to_commit
save to temp area and reply OK

commit
make changes permanent

abort
delete temp area

Message is a duplicate (because of a recovering coordinator)
Send acknowledgment

After failure:
For each pending protocol:

contact coordinator to learn outcome

Distributed commit.17

Allowing Progress…

} WHAT IF THE COORDINATOR DOES NOT
RECOVER? HOW CAN WE ALLOW PROGRESS?

} One option instead of blocking is to allow the other
participants to complete the protocol on their own.

} Caveat: Any participant taking over will not be able to
safely conclude that the coordinator actually failed. WHY?

} Timeout expired at a participant that is in the prepare-to-
commit state:
} The process can send out the first phase message, querying the

state at other processes to learn outcome
} Continue with second phase

Distributed commit.18

Allowing Progress (cont.)

} Can a process always determine the outcome?
} Example: all processes are in prepared-to-commit state

with the exception of one process let�s say pj, which can
not be reached

} Only the coordinator and pj can determine the outcome
} If the coordinator is itself a participant, only one failure

blocks the protocol
} All participants must now maintain information about the

outcome of the protocol until they are sure that all
participants learnt the outcome

Distributed commit.19

Garbage Collection

} Add a third phase from the coordinator to all participants,
tell participants that it is safe to garbage collect the
protocol information

} If coordinator fails:
} If a participant in final state but did not see the garbage collect

message, it will send again the commit or abort message
} All participants will acknowledge when they executed
} Once all participants acknowledged the message, garbage

collection message can be sent out and garbage collection can
be performed.

} Garbage collection can be run periodically

Distributed commit.20

2PC Final Version: Coordinator

Multicast: ready_to_commit

Collect replies
All OK => log �commit� to �outcomes� table, wait until safe on

persistent storage and send commit
Else => send abort

Collect acknowledgments

After failure:
For each pending protocol in outcomes table

Send outcome (commit or abort)
Wait for acknowledgments

Periodically

Query each process: terminated protocols?

Determine fully terminated protocols to garbage collect

protocol outcome information

Distributed commit.21

2PC Final Version: Participant

First time message received
ready_to_commit

save to temp area and reply OK

commit

Log outcome, make changes permanent

abort

Log outcome, delete temp area

Message is a duplicate (recovering coordinator)
Send acknowledgment

After failure:
For each pending protocol:

contact coordinator to learn outcome

After timeout in prepare to commit state:

Query other participants about state

If outcome can be deduced: Run coordinator-recovery protocol

If outcome uncertain: must wait
Distributed commit.22

2PC: Summary

} Message complexity O(n2)
} Worst case: network disrupts the

communication in each phase
} Pure 2PC will always block if

coordinator fails
} Final version provides increased

availability but can still block if a
failure occurs at a critical stage: will
be unable to terminate if both
coordinator and a participant fail
during the decision stage

Distributed commit.23

} Three-Phase Commit

Distributed commit.24

3 PC Overview

} Guarantees that the protocol will not block when only
fail-stop failures occur

} A process fails only by crashing, crashes are accurately
detectable

} Model is not realistic, but still interesting to look at
} Requires a fourth round for garbage collection
} Remember that 2 PC blocks when coordinator and one

more participant fail
} Fundamental problem: coordinator will make a decision

which will be known and acted upon for some process,
while other processes will not know it

Distributed commit.25

3 PC Key Idea

} Introduces an additional round of communication and
delays to prepare-to-commit state to ensure that the
state of the system can always be deduced by a subset of
alive processes that can communicate with each other

Distributed commit.26

before the commit, coordinator tells all
participants that everyone sent OKs

3PC Simplified Version: No Failures

Coordinator:
Multicast ready_to_commit
Collect OKs

All Ok => send precommit
Else => send abort

Collect ACKs
All ACK => send commit

Participant receives:
ready_to_commit => save to temp
area and reply Ok
Precommit => send ACK
commit => make changes
permanent
abort => delete temp area

Distributed commit.27

p0 p1 p2
Ready to
Commit?

Save to
temp area

OK OK

Commit!

Make
permanent

Prepare to
Commit?

ACK ACK

What happens in case of failures?

} Alive processes (pi) will select a new coordinator and try
to complete transaction, based on their current states

} New coordinator selection: membership is static,
detection is accurate, alive process with lowest id is
selected

} If crashed nodes committed or aborted, then survivors
should not contradict, otherwise, survivors can do as they
decide

Distributed commit.28

3PC: Coordinator

Multicast ready_to_commit
Collect replies

All OK => log �precommit� and send precommit
Else => send abort

Collect acks from non-failed participants
All ack => log commit and send commit

Collect acknowledgements that operation was finished
Garbage collect protocol outcome information

Distributed commit.29

3PC: Participant

Participant logs state on each message
ready_to_commit

save to temp area and reply OK

precommit
Enter precommit state, send ack

commit
make changes permanent

abort
delete temp area

After failure:
Collect participant state information
All precommit or any commit, push forward the commit
Else, push back the abort

Distributed commit.30

3PC and Network Partitions

} Consider the case when a network partition separates
the processes in two groups:
} One group sees that they are prepared to commit and go and

terminate the protocol by commit
} The other group sees a state that is ok to commit and would

consider the safe decision to be abort

} 3PC does not work in case of network partitions

Distributed commit.31

Things go wrong…

Distributed commit.32

CLIENT 3

CLIENT 4

CLIENT 5

CLIENT 2

CLIENT 1

BACKUP

PRIMARY

Primary is down

The backup
is down

Primary is down

Primary is
down

3PC

} Requires 3 phases (4 with garbage
collection)

} Works only under fail-stop (model
unrealistic)

} Does not work if network partitions
happen

Distributed commit.33

CAP Theorem

} States that any networked shared-data system can have at
most two of three desirable properties:
} consistency (C) equivalent to having a single up-to-date copy of

the data;
} high availability (A) of that data (for updates);
} tolerance to network partitions (P).

} During a network partition and recovery from partition
one can not have perfect availability and consistency

} Modern CAP goal should be to maximize combinations of
consistency and availability that make sense for a specific
application

CAP Twelve Years Later: How the "Rules" Have Changed, E. Brewer
Distributed commit.34

Beyond CAP: PACELC Theorem

} States that:
} In case of network partitioning (P) in one has to choose

between availability (A) and consistency (C)
} but else (E), even when the system is running normally in the

absence of partitions, one has to choose between latency (L)
and consistency (C).

} Address the fact that CAP does not capture the
consistency/latency tradeoff of replicated systems present at
all times during system operation

} Example: Dynamo, Cassandra, and Riak are PA/EL systems if a
partition occurs, they give up consistency for availability, and
under normal operation they give up consistency for lower
latency.

Distributed commit.35

