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Required reading for this topic…

} Non-Blocking Commit Protocols, D. 
Skeen, SIGMOD 1981
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Distributed Commit Problem

} Some applications perform operations on multiple 
databases

} We would like a guarantee that either all the 
databases get updated, or none does

} Distributed Commit Problem:
} Operation is committed when all participants can 

perform it
} Once a commit decision is reached, this requirement 

holds even if some participants fail and later recover
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ACID Properties

} Transaction behaves as one operation
} (Failure) Atomicity: all or none, if transaction failed then no 

changes apply to the database 
} Consistency: there is no violation of the database integrity 

constraints
} Isolation (Atomicity): partial results are hidden
} Durability: the effects of transactions that were committed 

are permanent
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Example

} Either p succeeds, and both tables get updated, or 
something fails and neither does
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p

CERIAS Student
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Coffee
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Create new 
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Add to CERIAS 
coffee fund



What Can Go Wrong?

} Process p could crash during the execution
} … a database could throw an exception, e.g. �invalid 

SSN� or �duplicate record�
} … a database could crash, then restart, and may have 
�forgotten� uncommitted updates (presumed abort)
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2PC Overview

} Assumes a coordinator that initiates the commit/abort
} Each database votes if it is ready to commit

} Until the commit actually occurs, the update is considered 
temporary

} Database is permitted to discard a pending update until all 
servers vote �ok� a database can abort

} Coordinator decides outcome and informs all databases
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2PC: More Details

} Operates in rounds
} Coordinator assigns unique identifiers for each protocol 

run. How? Use logical clocks: run identifier can be process 
ID and the value of logical clock

} Messages carry the identifier of protocol run they are 
part of

} Since lots of messages must be stored, a garbage 
collection must be performed, the challenge is to 
determine when it is safe to remove the information
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2PC Simplified Version: No Failures 

Coordinator:
Multicast ready_to_commit
Collect replies

All Ok => send commit
Else => send abort

Participant receives:
ready_to_commit => save to temp 
area and reply Ok
commit => make changes 
permanent
abort => delete temp area 
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Participant States

} Initial state: pi is not aware that 
protocol started, ends when pi
received  ready_to_commit and it 
is ready to send its Ok 

} Prepared to commit: pi sent 
its Ok, saves in temp area and 
waits for the final decision 
(commit or abort) from 
coordinator

} Commit or abort: pi knows 
the final decision, it must execute 
it
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Failures: Participant

} Initial state: if pi crashes before receiving 
ready_to_commit, it does not send its Ok back, the 
coordinator will abort the protocol (not enough Oks are 
received). 

} Prepared to commit: if pi crashes before it learns the 
outcome, resources remained blocked. It is critical that a 
crashed participant learns the outcome of pending 
operations when it comes back: need logging system.

} Commit or abort: pi crashes before executing, it must 
complete the commit or abort repeatedly in spite of 
being interrupted by failures. 
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How to Fix It?

} A process that crashed and 
recovered
} Must remember in what state it 

was before crashing.
} Must find out the outcome of a 

decision (by contacting the 
coordinator).

} The coordinator 
} Must keep track of pending 

protocols
} Must find out when a process 

indeed completed the decision
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2PC: Overcoming Participant Failures

Coordinator:
Multicast ready_to_commit
Collect replies

All OK => log �commit� to �outcomes� table and send commit

Else => send abort
Collect acknowledgments

Garbage-collect protocol ‘outcomes’ information

Participant:
Receives:

ready_to_commit => save to temp area and reply OK

commit => make changes permanent, send acknowledgment
abort => delete temp area 

After recovering from failure:

For each pending protocol: contact coordinator to learn outcome
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Failures: Coordinator

} If coordinator crashed during first phase when collecting 
Oks: 
} Some participants will be ready to commit (they sent Ok)
} Others will not be able to (they voted on abort)
} Others may not know the state

} If coordinator crashed during its decision or before 
sending it out: 
} Some processes will be in prepare to commit state
} Others will know the outcome

Distributed commit.14



Modifications …

} If coordinator fails, processes are blocked waiting for it to 
recover 

} After the coordinator recovers, there are pending 
protocols that must be finished

} Coordinator must 
} remember its state before crashing (write commit or abort on 

permanent storage before sending commit or abort decision 
to other processes) 

} push pending operations through

} Participants may see duplicated messages
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2PC Overcoming Coordinator Failures: 
Coordinator

Multicast ready_to_commit
Collect replies

All OK => log �commit� to �outcomes� table, wait until safe on 
persistent storage and send commit
Else => send abort

Collect acknowledgments
Garbage collect protocol outcome information

After failure:

For each pending protocol in `outcomes’ table
Send outcome (commit or abort)
Wait for acknowledgments
Garbage collect outcome information
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2PC Overcoming Coordinator Failures: 
Participant

First time message received

ready_to_commit
save to temp area and reply OK

commit 
make changes permanent

abort
delete temp area 

Message is a duplicate (because of a recovering coordinator)
Send acknowledgment

After failure:
For each pending protocol: 

contact coordinator to learn outcome
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Allowing Progress…

} WHAT IF THE COORDINATOR DOES NOT 
RECOVER? HOW CAN WE ALLOW PROGRESS? 

} One option instead of blocking is to allow the other 
participants to complete the protocol on their own.

} Caveat:  Any participant taking over will not be able to 
safely conclude that the coordinator actually failed. WHY?

} Timeout expired at a participant that is in the prepare-to-
commit state: 
} The process can send out the first phase message, querying the 

state at other processes to learn outcome 
} Continue with second phase
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Allowing Progress (cont.)

} Can a process always determine the outcome?
} Example: all processes are in prepared-to-commit state 

with the exception of one process let�s say pj, which can 
not be reached

} Only the coordinator and pj can determine the outcome
} If the coordinator is itself a participant, only one failure 

blocks the protocol
} All participants must now maintain information about the 

outcome of the protocol until they are sure that all 
participants learnt the outcome 
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Garbage Collection

} Add a third phase from the coordinator to all participants, 
tell participants that it is safe to garbage collect the 
protocol information

} If coordinator fails: 
} If a participant in final state but did not see the garbage collect 

message, it will send again the commit or abort message
} All participants will acknowledge when they executed 
} Once all participants acknowledged the message, garbage 

collection message can be sent out and garbage collection can 
be performed.

} Garbage collection can be run periodically
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2PC Final Version: Coordinator

Multicast: ready_to_commit

Collect replies
All OK => log �commit� to �outcomes� table, wait until safe on 

persistent storage and send commit
Else => send abort

Collect acknowledgments

After failure:
For each pending protocol in outcomes table

Send outcome (commit or abort)
Wait for acknowledgments

Periodically

Query each process: terminated protocols?

Determine fully terminated protocols to garbage collect 

protocol outcome information
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2PC Final Version: Participant

First time message received
ready_to_commit

save to temp area and reply OK

commit 

Log outcome, make changes permanent

abort

Log outcome, delete temp area

Message is a duplicate (recovering coordinator)
Send acknowledgment

After failure:
For each pending protocol: 

contact coordinator to learn outcome

After timeout in prepare to commit state:

Query other participants about state

If outcome can be deduced: Run coordinator-recovery protocol

If outcome uncertain: must wait
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2PC: Summary

} Message complexity O(n2)
} Worst case: network disrupts the 

communication in each phase
} Pure 2PC will always block if 

coordinator fails
} Final version provides increased 

availability but can still block if a 
failure occurs at a critical stage: will 
be unable to terminate if both 
coordinator and a participant fail 
during the decision stage
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} Three-Phase Commit
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3 PC Overview

} Guarantees that the protocol will not block when only 
fail-stop failures occur

} A process fails only by crashing, crashes are accurately 
detectable

} Model is not realistic, but still interesting to look at
} Requires a fourth round for garbage collection
} Remember that 2 PC blocks when coordinator and one 

more participant fail
} Fundamental problem: coordinator will make a decision 

which will be known and acted upon for some process, 
while other processes will not know it 
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3 PC Key Idea

} Introduces an additional round of communication and 
delays to prepare-to-commit state to ensure that the 
state of the system can always be deduced by a subset of 
alive processes that can communicate with each other
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before the commit, coordinator tells all
participants that everyone sent OKs



3PC Simplified Version: No Failures 

Coordinator:
Multicast ready_to_commit
Collect OKs

All Ok => send precommit
Else => send abort

Collect ACKs
All ACK => send commit

Participant receives:
ready_to_commit => save to temp 
area and reply Ok
Precommit => send ACK
commit => make changes 
permanent
abort => delete temp area 
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What happens in case of failures?

} Alive processes (pi) will select a new coordinator and try 
to complete transaction, based on their current states

} New coordinator selection: membership is static, 
detection is accurate, alive process with lowest id is 
selected

} If crashed nodes committed or aborted, then survivors 
should not contradict, otherwise, survivors can do as they 
decide
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3PC: Coordinator

Multicast ready_to_commit
Collect replies

All OK => log �precommit� and send precommit
Else => send abort

Collect acks from non-failed participants
All ack => log commit and send commit

Collect acknowledgements that operation was finished
Garbage collect protocol outcome information
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3PC: Participant

Participant logs state on each message
ready_to_commit

save to temp area and reply OK

precommit
Enter precommit state, send ack

commit 
make changes permanent

abort
delete temp area 

After failure:
Collect participant state information 
All precommit or any commit, push forward the commit
Else, push back the abort
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3PC and Network Partitions

} Consider the case when a network partition separates  
the processes in two groups: 
} One group sees that they are prepared to commit and go and 

terminate the protocol by commit
} The other group sees a state that is ok to commit and would 

consider the safe decision to be abort

} 3PC does not work in case of network partitions
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Things go wrong…
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3PC

} Requires 3 phases (4 with garbage 
collection)

} Works only under fail-stop (model 
unrealistic)

} Does not work if network partitions 
happen
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CAP Theorem

} States that any networked shared-data system can have at 
most two of three desirable properties:
} consistency (C) equivalent to having a single up-to-date copy of 

the data;
} high availability (A) of that data (for updates);
} tolerance to network partitions (P).

} During a network partition and recovery from partition 
one can not have perfect availability and consistency 

} Modern CAP goal should be to maximize combinations of 
consistency and availability that make sense for a specific 
application

CAP Twelve Years Later: How the "Rules" Have Changed, E. Brewer
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Beyond CAP: PACELC Theorem

} States that:
} In case of network partitioning (P) in one has to choose 

between availability (A) and consistency (C)
} but else (E), even when the system is running normally in the 

absence of partitions, one has to choose between latency (L) 
and consistency (C).

} Address the fact that CAP does not capture the 
consistency/latency tradeoff of replicated systems present at 
all times during system operation

} Example: Dynamo, Cassandra, and Riak are PA/EL systems if a 
partition occurs, they give up consistency for availability, and 
under normal operation they give up consistency for lower 
latency.
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