
Cristina Nita-Rotaru

CS505: Distributed Systems

Ordering events. Lamport and vector clocks. Global states.
Detecting failures.

Required reading for this topic…

}  Leslie Lamport,"Time, Clocks, and the
Ordering of Events in a Distributed
System,” 1978

}  Colin J. Fidge "Timestamps in
Message-Passing Systems That
Preserve the Partial Ordering,” 1988

}  K. Mani Chandy and Leslie Lamport,
``Distributed Snapshots: Determining
Global States of Distributed Systems,’’
1985

Ordering. Global states. Failures. 2

When things go wrong…

CLIENT

CLIENT

CLIENT

CLIENT
CLIENT

BACKUP

PRIMARY

I am the new
Primary !!!!

I am still the
Primary

 Swich to backup

Oops, no
Service !

Ordering. Global states. Failures. 3

1: Clock synchronization

System Model Dimensions

}  Non-deterministic processes
}  Communication is through messages
}  Network packets can be lost, duplicated, delivered very

late or out of order, spied upon, replayed, corrupted,
source or destination can lie

}  Communication can be authenticated or not
}  Execution model can be

}  Asynchronous: no synchronized clocks or time-bounds on
message delays.

}  Synchronous: execution is partitioned in rounds, all messages
send in a round are delivered in that round

Ordering. Global states. Failures. 5

Execution, Configuration, Events

}  Participants: set of processes pi, each process with a
state si

}  Configuration Ct: set of state of each process at some
moment

}  Events: send or deliver a message, events can change the
state at a process

}  Execution: sequence of configuration and events

Ordering. Global states. Failures. 6

Safety and Liveness

}  Safety: a condition that must hold in every finite prefix of
a sequence (from an execution)

 “nothing bad happens”

}  Liveness: a condition that must hold a certain number of
times

 “something good happens”

Ordering. Global states. Failures. 7

Example

}  Successfully passing the exam for this course
}  Safety: in case you take the exam, do not fail it
}  Liveness: you eventually have to take the exam

Ordering. Global states. Failures. 8

Ordering of Events

}  Single process: follow the sequence of events, each event
has a timestamp and the causality relation between events
is given by time

}  Distributed processes: many events generated at different
processes, how to order events?

}  Time is essential for ordering events in a distributed
system
}  Physical time: local clock; global clock
}  Logical time: partial ordering, total ordering

Ordering. Global states. Failures. 9

What is Time?

}  The second is the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the
two hyperfine levels of the ground state at the
temperature of 0 K of the caesium 133 atom.

}  Unit for measuring time

Ordering. Global states. Failures. 10

World Time

}  International Atomic Time (TAI): is a continuous count of
seconds based on atomic clocks around the world.

}  Coordinated Universal Time (UTC): since January 1, 1972,
it has been defined to follow TAI with an exact offset of
an integer number of seconds, changing only when a leap
second is added to keep clock time synchronized with the
rotation of the Earth.

Ordering. Global states. Failures. 11

Using Real Clocks to Order Events

}  Global clock: processes have access to a central global
clock, each event will carry a timestamp

}  Local clock: each process has its own clock
}  What if the clocks are not synchronized
}  What if events happened at the same time?

Ordering. Global states. Failures. 12

Clocks in Computers

}  Real-time Clock: CMOS clock (counter) circuit driven by
a quartz oscillator with battery backup to continue
measuring time when power is off

}  OS generally programs a timer circuit to generate an
interrupt periodically
}  e.g., 60, 100, 250, 1000 interrupts per second

(Linux 2.6+ adjustable up to 1000 Hz)
}  Programmable Interval Timer (PIT) – Intel 8253, 8254
}  Interrupt service procedure adds 1 to a counter in memory

}  Quartz oscillators oscillate at slightly different
frequencies, clocks do not agree in general

Ordering. Global states. Failures. 13

Synchronizing Physical Clocks

}  External synchronization: Consider the source S and
the synchronization bound B > 0, then none of the clocks
drift with more than B from S, at any time

}  Internal synchronization: Consider the
synchronization bound B>0, then at any time, the
difference between any two clocks is within B

}  Skew: the instantaneous difference between (the readings
of) two clocks

}  Drift rate: the difference between the clock and a nominal
perfect reference clock per unit of time

}  Networks are asynchronous and unreliable

Ordering. Global states. Failures. 14

Cristian’s Algorithm

}  Assumes a time server has the accurate time and client
synchronizes with it

}  How it works:
}  Client asks the time server for time
}  Server sends its time Tserver
}  Client estimates how long it takes to receive answer from

server as RTT/2 where:
}  RTT = (Tclient_receive – Tclient_send)
}  Client adjusts its clock

Tclient = Tserver + (RTT / 2) !

Ordering. Global states. Failures. 15

Cristian’s Algorithm Accuracy

}  Assumes that it takes the same amount of time to send
the request and receive the answer

}  Minimum time to transmit a message one-way: min
}  Time to receive the server’s message is [min, RTT – min]
}  Time at client [Tserver + min, Tserver + RTT – min]

accuracy is ±(RTT /2 - min)!

Ordering. Global states. Failures. 16

Berkeley Algorithm

}  Assumes no machine has an accurate time source; uses an
elected master to synchronize

}  Master coordinates:
}  queries the clients for their local time
}  estimates the clients’ local time (similar to Cristian’s

Algorithm)
}  averages all times including its own, excluding the ones that are

too drifted
}  tells each client the offset with each they need to adjust

}  Some systems use multiple time servers
}  Time is more accurate, but still drifts

Ordering. Global states. Failures. 17

Network Time Protocol (NTP)

}  NTP is a distributed service that synchronizes a
computer clock to other computers on the Internet or
local time sources

}  Has the goal of synchronizing clocks to less than a
millisecond or two relative to Coordinated Universal
Time (UTC)

}  Trivia:
}  the most widely-used time synchronization protocol on the

Internet today
}  there are over 2,000 NTP servers on the Internet today for

public use
}  uses UDP as a transport protocol

Ordering. Global states. Failures. 18

NTP
server

client
T1

T2 T3

T4

On-the-wire Protocol

}  Client initiates request by recording timestamp T1, placing in
packet, then sending to NTP server

}  NTP Server records timestamp T2 when receiving request
packet (and can do other processing if needed)

}  When ready to send a reply, the NTP server records
timestamp T3, places T1, T2, T3 in reply and sends back to
client

}  Client receives reply and records timestamp T4

T1

T1
T2
T3

Ordering. Global states. Failures. 19

Updating the Clock

}  Client calculates offset between his clock and server’s
clock, and updates his clock by that amount

}  To synchronize exactly, client needs to know one-way
delay between server and client
}  This is difficult in practice to ascertain, so NTP assumes path is

symmetrical and one-way delay is half of round trip time
}  Offset is calculated to be: ½ [(T2 - T1) + (T3 - T4)]

Ordering. Global states. Failures. 20

Reference Clocks

}  Many NTP servers synchronize directly to UTC using
specialized equipment
}  Atomic clocks: Ultimately are the root source of time in NTP
}  Global Positioning System (GPS): can synchronize with a

satellite’s atomic clock
}  Code Division Multiple Access (CDMA): can synchronize with

a local wireless provider (who in turn most likely synchronizes
using GPS)

}  Radio signals: similar to CDMA, can synchronize with time/
frequency radio stations

Ordering. Global states. Failures. 21

From Physical Clocks to Logical Clocks

}  Synchronized clocks are great if we have them
}  Why do we need the time anyway?
}  In distributed systems we care about ‘what happened

before what’

Ordering. Global states. Failures. 22

2: Lamport clocks

``HAPPENED BEFORE’’

}  If events a and b take place at the same process and a
occurs before b then a → b

}  If a is a send event of m at p1 and b is a deliver event of
the same m at p2, p1 ≠ p2 then a → b

}  If a → b and b → c then a → c

p2	

p3	

p1	

p4	

Ordering. Global states. Failures. 24

Reminder: Partial and Total Order

}  Definition: A relation R over a set S is a partial order iff
for each a, b, and c in S:
}  aRa (reflexive).
}  aRb ∧ bRa ⇒ a = b (antisymmetric).
}  aRb ∧ bRc ⇒ aRc (transitive).

}  Definition: A relation R over a set S is total order if for
each distinct a and b in S, R is antisymmetric, transitive
and either aRb or bRa (completeness).

Ordering. Global states. Failures. 25

Logical Clocks: Lamport Clocks

}  Each process maintains his own clock Ci (a counter)
}  Clock Condition: for any events a and b in process pi

 if a → b then Ci(a) < Ci(b)

}  Implementation:
}  each process pi increments Ci between any successive events
}  on sending a message m, attach to the message local clock

 Tm = Ci(a)

}  on receiving of message m process pk sets Ck to
 Ck = max(Ck ,Tm) + 1

Ordering. Global states. Failures. 26

Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8
7

Ck = max(Ck ,Tm) + 1

Ordering. Global states. Failures. 27

Lamport Clocks: Total Order

}  Logical Clocks only provide partial order
}  Create Total Order by breaking the ties
}  Example to break ties, use process identifiers, have an

order on process identifiers:
}  If a is event in pi and b is event in p then
 a → b iff
}  Ci(a) < Cj(b) or
}  Ci(a) = Cj(b) and pi < pj

Ordering. Global states. Failures. 28

Concurrent Events

}  Concurrent events:
 If a →b and b →a then a and b are concurrent

}  Logical clocks assign order to events that are causally
independent, in other words events that are causally
independent appear as if they happened in a certain order

}  For some applications (e.g. debugging) it is important to
capture independence

Ordering. Global states. Failures. 29

3: Vector clocks

Vector Clocks

}  Independently developed by Colin Fidge and Friedemann
Mattern in 1988.

}  Each process maintains a vector Ci
 Ci = [0, 0, ..., 0].

}  When pi executes an event, it increments its own clock Ci[i]
}  When pi sends a message m to pj, it attaches its vector Ci on m.
}  When pi receives a message m,increments its own clock and

updates the clock for the other processes as follows
∀ j: 1 ≤ j ≤ n, j ≠ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.

Ordering. Global states. Failures. 31

Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

M1[010]

M2[210]
M6[512]

M3[212] M4[213]

M5[412]

Ordering. Global states. Failures. 32

How to Order with Vector Clocks

}  Given two events a and b, a → b if and only if

}  V(a) is less than or equal to V(b) for all process indices,
and at least one of those relationships is strictly smaller.

}  a → b ≡ ∀ i: 1 ≤ i ≤ n: V(a)[i] ≤ V(b)[i]
 ∧ ∃ i: 1 ≤ i ≤ n: V(a)[i] < V(b)[i]

}  a || b ≡ ∃ i: 1 ≤ i ≤ n: V(a)[i] < V(b)[i]
∧ ∃ j: 1 ≤ j ≤ n: V(b)[j] < V(a)[j]

Ordering. Global states. Failures. 33

What Events Are Independent?

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

m1

m2
m6

m
3

m
4

m
5

Ordering. Global states. Failures. 34

3: Determining global states

Ordering Events in Distributed Systems

}  Time is essential for ordering events in a distributed
system
}  Physical time: local clock; global clock
}  Logical time: Lamport clocks, vector clocks

Ordering. Global states. Failures. 36

History of Events: Some Definitions

}  Given a process pi

}  Event ei
j is the event j at process i

}  History of process pi, hi is a sequence of events that
happened at pi

}  hi = <ei
0, ei

1, … >

}  Prefix history at pi up to k, is the history of pi up to the
kth event

}  hi
k = <ei

0, ei
1, …,ei

k >
}  State Si

k is the state of process pi immediately before the
kth event

Ordering. Global states. Failures. 37

History of Events: More Definitions

}  Given a set of processes
}  Global history: the set of all processes’ histories

}  H = ∪i (hi)

}  Global state: the set of states at each process
}  S = ∪i (Si

ki)
}  Cut: a set of prefix histories

}  C ⊆ H = h1
c1 ∪ h2

c2 ∪ … ∪ hn
cn

}  Frontier of a cut: the set of last event that happened in
each prefix history

}  C = {ei
ci, i = 1,2, … n}

Ordering. Global states. Failures. 38

Consistent Cuts

p2	

p1	

1

1 2

2

3

4 3

4

Consistent cut Inconsistent cut

Definition: A cut C is consistent if for any event e in the cut,
if an event f ‘happened before’ e, then f is also in the cut C

 ∀e ∈ C (if f → e then f ∈ C)

Ordering. Global states. Failures. 39

Global States: More Definitions

}  Consistent global state: a global state that
corresponds to a consistent cut

}  Run: a total ordering of events in history H that is
consistent with each process history hi’s ordering

}  Linearization: a run consistent with happens-before
relation in H; Linearizations pass through consistent global
states

}  Reachability: a global state Sk is reachable from global
state Si, if there is a linearization, L, that passes through Si
and then through Sk.

Ordering. Global states. Failures. 40

Global State Predicate

}  How do we use global states to reason about distributed
systems?

}  Global state predicate: a function from the set of global
states to {TRUE, FALSE}

}  Stable global state predicate: one that once it becomes
true, it remains true in all future states reachable from
that state.

}  Examples:
}  “the system is deadlocked”
}  “all tokens in a token ring have disappeared”
}  “the computation has finished”

Ordering. Global states. Failures. 41

Remember Safety and Liveness

}  Safety: a condition that must hold in every finite prefix of
a sequence (from an execution)

 “nothing bad happens”
}  Liveness: a condition that must hold a certain number of

times
 “something good happens”

Ordering. Global states. Failures. 42

Stable Global States and Safety

}  Look for undesirable properties, “bad things”
}  Assume that a ‘bad thing’ BT (for example deadlock) is a

global state predicate and S0 is the initial state of the
system, then

 “Safety with respect to BT” means
 ∀S reachable from S0, BT(S) = FALSE

Ordering. Global states. Failures. 43

Stable Global States and Liveness

}  Look for desirable properties, “good things”
}  Assume that a “good think” GT (for example reaching

termination) is a global-state-predicate and S0 is the initial
state of the system then
Liveness with respect to GT means:
For any linearization L starting at S0 ∃ state,SL reachable from S0
such that GT(SL) = TRUE

Ordering. Global states. Failures. 44

Determining Global States

}  If synchronized clocks are available, each process records
its state at a known time t

}  How to obtain the state of the messages that transit the
channels?

}  What if synchronized clocks are not available?

Ordering. Global states. Failures. 45

Recording Global States

}  How to distinguish between the messages to be recorded
in the snapshot from those not to be recorded?

}  How to determine when a process takes its snapshot?

Ordering. Global states. Failures. 46

Chandy-Lamport Algorithm: Model

}  Records a consistent global state of an asynchronous
system.

}  System model:
}  No failures and all messages arrive intact and only once
}  Communication channels are unidirectional and FIFO ordered
}  There is a communication path between any two processes

}  Other assumptions
}  Any process may initiate the snapshot algorithm
}  The snapshot algorithm does not interfere with the normal

execution of the processes
}  Each process in the system records its local state and the state

of its incoming channels
Ordering. Global states. Failures. 47

Chandy-Lamport Algorithm

}  Uses a control message, marker, to separate messages in
the channels between those to be included in the
snapshot from those not to be recorded in the snapshot.

}  After a process has recorded its snapshot, it sends a
marker before sending out any more messages.

}  A process must record its snapshot no later than when it
receives a marker on any of its incoming channels.

Ordering. Global states. Failures. 48

Chandy-Lamport Algorithm

}  Can be initiated by any process by executing the “Marker
Sending Rule”

}  A process executes the “Marker Receiving Rule” on
receiving a marker. If the process has not yet recorded its
local state, it records the state of the channel on which
the marker is received as empty and executes the
“Marker Sending Rule” to record its local state.

}  The algorithm terminates after each process has received
a marker on all of its incoming channels.

}  All the local snapshots get disseminated to all other
processes and all the processes can determine the global
state.

Ordering. Global states. Failures. 49

Chandy/Lamport Snapshot Algorithm

}  Marker-sending rule for a process p:
}  Saves its own local state
}  Sends a marker to all other processes on their corresponding

channels before sending any other message

}  Marker-receiving rule for a process q
}  If q has not recorded its state then

}  q records records its state
}  q record the state of incoming channel c as “empty”
}  turn on recording of messages over other incoming channels
}  for each outgoing channel c, send a marker on c

}  else
}  q records the state of incomming channel c as all the messages

received over c after q recorded its state and before q received the
marker along c Ordering. Global states. Failures. 50

Example of Chandy-Lamport Algorithm

Ordering. Global states. Failures. 51

}  Three processes p, q and r. Communications chanels, c1
(p to q), c2 (q to p), c3 (q to r), and c4 (r to p).They all
start with state = $500 and the channels are empty. The
stable property is that the total amount of money is
$1500.

}  Process p sends $10 to q and then starts the snapshot
algorithm: records its current state 490 and sends out a
marker on c1.

}  Meanwhile q has sent $20 to p along c2 and 10 to r along
c3.

Ordering. Global states. Failures. 52

Ordering. Global states. Failures. 53

Ordering. Global states. Failures. 54

4: Detecting failures

Detecting failures

}  Impossibility result: it is impossible to design an
asynchronous fault-tolerant consensus algorithm, even
when only one process can crash. (FLP85)

}  Proof Idea: It is shown how an infinite sequence of events
can be constructed such that the algorithm never
terminates (stays indecisive forever).

}  The impossibility comes from the fact that in an
asynchronous system, it is impossible to distinguish
between a faulty-process and a slow process.

}  We will come back to the proof

Ordering. Global states. Failures. 56

Failure Detectors as an Abstraction

}  Failure detector: distributed oracle that makes guesses
about process failures

}  Accuracy: the failure detector makes no mistakes when
labeling processes as faulty

}  Completeness: the failure detector “eventually” (after
some time) suspects every process that actually crashes

}  Detectors classified based on their properties
}  Used to solve different distributed systems problems

Ordering. Global states. Failures. 57

Completeness

}  Strong Completeness: There is a time after which every
process that crashes is suspected by EVERY correct
process.

}  Weak Completeness: There is a time after which every
process that crashes is suspected by SOME correct
process.

Ordering. Global states. Failures. 58

Accuracy

}  Strong Accuracy: No process is suspected before it
crashes.

}  Weak Accuracy: Some correct process is never suspected.
(at least one correct process is never suspected)

}  Eventual Strong Accuracy: There is a time after which
correct processes are not suspected by any correct
process.

}  Eventual Weak Accuracy: There is a time after which some
correct process is never suspected by any correct
process.

Ordering. Global states. Failures. 59

Perfect Failure Detector

}  A perfect failure detector has strong accuracy and strong
completeness

}  THIS IS AN ABSTRACTION
}  IT IS IMPOSSIBLE TO HAVE A PERFECT FAILURE

DETECTOR
}  We have to live with … unreliable failures detectors…

Ordering. Global states. Failures. 60

Unreliable Failure Detectors

}  Unreliable failure detectors can make mistakes !!!
}  A process is suspected that it was faulty, that can be true

or false, if false the list of alive processes is modified.
}  Failure detectors can add/remove processes from the list

of suspects; different processes have different lists.
}  The assumptions are that:

}  After a while the network becomes stable so the failure
detector does not make mistakes anymore.

}  In the unstable period, the failure detector can make mistakes.

Ordering. Global states. Failures. 61

Failure Detection Implementation

}  Push: processes keep sending heartbeats “I am alive” to
the monitor. If no message is received for awhile from
some process, that process is suspected as being dead
(faulty).

}  Pull: monitor asks the processes “Are you alive?”, and
process will respond “Yes, I am alive”. If no answer is
received from some process, the process is suspected as
being dead (faulty).

}  What are advantages and disadvantages of these two
approaches?

Ordering. Global states. Failures. 62

Failure Detectors Implementation (2)

}  Every process must know about who failed
}  How to disseminate the information
}  How about if not every node can communicate directly

with another node?
}  Centralized
}  All-to-All
}  Gossip based: provides probabilistic guarantees

Ordering. Global states. Failures. 63

Metrics for Failure Detectors

}  Detection time
}  Mistake recurrence time
}  Mistake duration
}  Average mistake rate
}  Query accuracy probability
}  Good period duration
}  Network load

Ordering. Global states. Failures. 64

Summary

}  Ordering events with logical clocks
}  Lamport clocks uses a single clock per process
}  Vector clocks – each process maintains a clock

for all the other processes

}  Determining global states
}  Chandi-Lamprt algorithm for asynchronous

systems, no failures and communication FIFO
unidirectional.

}  Detecting failures
}  There are no perfect failure detectors,

both accurate and complete

Ordering. Global states. Failures. 65

