Cristina Nita-Rotaru

CS505: Distributed Systems

Gossip Protocols.

Slides prepared based on material by Prof. Ken Birman at Cornell
University, available at http://www.cs.cornell.edu/ken/book/

Required reading for this topic...

» Bimodal multicast K. Birman, M.
HaydenO. Ozkasap, Z. Xiao, M.
Budiu, Y. Minsky

2 Gossip

Reliable Multicast

» Ensures that a precise subset of processes/nodes in a
group delivers a message (ideally none of the other
processes receives the message)

» System environment characteristics

Large number of processes

No global network-level multicast protocol

3 Gossip

Meaning of Reliability in Multicast

» Integrity: A correct process p delivers a message m at
most once.

» Validity: If a correct process multicasts message m, then it
will eventually deliver m.

» Agreement: If a correct process delivers message m, then
all the other correct processes in the group will
eventually deliver m.

4 Gossip

Approaches

» Deterministic schemes
With strong reliability guarantees do not scale well (e.g.,
O(n2) msgs)

» Probabilistic, gossip-based, schemes

Every process periodically (every T ms) ,,talks” to a
subset of (Fanout, F) processes about some messages

Good trade-off between reliability and scalability

Very resilient to arbitrary crash failures

Gossip

Limitations of Classical Reliable

Multicast

» With classical reliable
multicast, throughput
collapses as the system
scales up!

» Even if we have just
one slow receiver... as
the group gets larger
(hence more healthy
receivers), impact of a
performance
perturbation is more
and more evident!

average throughput on nonperturbed members

Virtually synchronous Ensemble multicast protocols

250

=—©— group size: 32
=== group size: 64
—H— group size: 96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
perturb rate

Gossip

Gossip Overview

o Node A encounters “randomly selected” node B (might
not be totally random)

= Push:A tells B something B doesn’ t know
= Pull:A asks B for something it is trying to “find”
" Push-pull: Combines both mechanisms

7 Gossip

Definition: A Gossip Protocol...

» Uses random pairwise state merge

» Runs at a steady rate (and this rate is much slower than
the network RTT)

» Uses bounded-size messages

» Does not depend on messages getting through reliably

8 Gossip

Gossip Benetfits

» Information flows around disruptions
» Scales very well

» Typically reacts to new events in log(N), N
is number of processes

» Can be made self-repairing

9 Gossip

... and Limitations

» Rather slow
» Very redundant
» Guarantees are at best probabilistic

» Depends heavily on the randomness of the peer
selection

Gossip

Typical Push-Pull Protocol

» Nodes have some form of database of participating
machines
Could have a hacked bootstrap, then use gossip to keep this
up to date!
» Set a timer and when it goes off, select a peer
within the database
Send it some form of “state digest”

Peer responds with data you need and its own state digest
Respond with data peer needs

11 Gossip

Gossip Implementation

» Recall that UDP is an “unreliable” datagram
protocol supported in internet
Unlike for TCP, data can be lost

Also packets have a maximum size, usually 4k or 8k bytes
(you can control this)

Larger packets are more likely to get lost!

» What if a packet would get too large!

Gossip layer needs to pick the most valuable stuff to include,
and leave out the rest!

12 Gossip

Use of Gossip Protocols

» Notify applications about some event
» Track the status of applications in a system

» Organize the nodes in some way (like into a tree, or even
sorted by some index)

» Find “things” (like files)

13 Gossip

Probabilistic Multicast

14

Validity: If a correct process multicasts a message m, then some
correct process in Dest(m) eventually delivers m

Integrity: For any message m, every correct process p delivers
m at most once, and only if m was previously multicast by
Sender(m)

Probabilistic Agreement: If a correct process in Dest(m)
delivers message m, then every correct process in Dest(m)
eventually delivers m with known, high, probability w.

Gossip

Scalable Reliable Multicast

» Heartbeats: Each member periodically sends out a heartbeat
including the sequence number of the latest sent packet.
Members detect packet loss by comparing the sequence
number in the heartbeat and the sequence number of the last
data-packet received.

» NACKS:When a packet is lost, a negative acknowledgment
(NACK) is sent to all members using the same method of
transportation as the original data.

» Repair: Each member if he sees a NACK for a packet they have
in their cache, they retransmit that packet to the whole group
as a repair.

» To minimize the number of NACKSs and repairs, these two
operations are preceded by exponential back-off.

15 Gossip

Problems with ACK/NACK Schemes

» As number of receivers gets large ACKS/NAKS pile
up (sender has more and more work to do)
Hence it needs longer to discover problems

And this causes it to buffer messages for longer and
longer... hence flow control kicks in!

So the whole group slows down

16 Gossip

Bimodal Multicast: First Phase

» Combines gossip with IP multicast

» Start by using unreliable UDP multicast to rapidly
distribute the message.

» Some messages may not get through, and some processes
may be faulty: initial state involves partial distribution of
multicast(s)

)

|

v

§
\Qb\b

§

17 Gossip

Finding out what is missing

» Periodically (e.g. every 100ms) each process sends a
digest describing its state to some randomly selected
group member. The digest identifies messages.

4/
\\
— =T

-~

18

Gossip

Soliciting missed messages

» Recipient checks the gossip digest against its own
history and solicits a copy of any missing message from
the process that sent the gossip

4/
\\
%bb\b

~

19 Gossip

Sending out missed packets

» Processes respond to solicitations received during a
round of gossip by retransmitting the requested
message. The round lasts much longer than a typical

RPC time.

4/
\\
%bb\b

~

20 Gossip

Delivery? Garbage Collection?

» Deliver a message when it is in FIFO order

Report an unrecoverable loss if a gap persists for so long
that recovery is deemed “impractical”

» Garbage collect a message when you believe that no “healthy”
process could still need a copy (we used to wait |0 rounds,
but now are using gossip to detect this condition)

» Match parameters to intended environment

21 Gossip

Need to bound costs

» Worries:

Someone could fall behind and never catch up, endlessly
loading everyone else

What if some process has lots of stuff others want and they
bombard him with requests!?

What about scalability in buffering and in list of members of
the system, or costs of updating that list?

22 Gossip

Scalability

» Protocol is scalable except for its use of the membership
of the full process group

» Updates could be costly
» Size of list could be costly

» In large groups, would also prefer not to gossip over long
high-latency links

23 Gossip

Router Overload Problem

» Random gossip can overload a central router

» Yet information flowing through this router is of
diminishing quality as rate of gossip rises

» Insight: constant rate of gossip is achievable and adequate

24 Gossip

Hierarchical Gossip

» Weight gossip so that probability of gossip to a remote
cluster is smaller

» Can adjust weight to have constant load on router

» Now propagation delays rise... but just increase rate of
gossip to compensate

25 Gossip

How to Analyze such Protocols?

» Can use the mathematics of epidemic theory to predict
reliability of the protocol

» Assume an initial state

» Now look at result of running B rounds of gossip:
converges exponentially quickly towards atomic delivery

26 Gossip

Summary

» Gossip is a valuable tool for
addressing some of the needs of
modern autonomic computing

» Often paired with other
mechanisms, eg anti-entropy
paired with UDP multicast

» Solutions scale well (if well
designed!)

27 Gossip

