
Cristina Nita-Rotaru

CS505: Distributed Systems

Gossip Protocols.

Slides prepared based on material by Prof. Ken Birman at Cornell
University, available at http://www.cs.cornell.edu/ken/book/

Required reading for this topic…

}  Bimodal multicast K. Birman, M.
HaydenO. Ozkasap, Z. Xiao, M.
Budiu, Y. Minsky

Gossip 2

Reliable Multicast

}  Ensures that a precise subset of processes/nodes in a
group delivers a message (ideally none of the other
processes receives the message)

}  System environment characteristics
}  Large number of processes
}  No global network-level multicast protocol

Gossip 3

Meaning of Reliability in Multicast

}  Integrity: A correct process p delivers a message m at
most once.

}  Validity: If a correct process multicasts message m, then it
will eventually deliver m.

}  Agreement: If a correct process delivers message m, then
all the other correct processes in the group will
eventually deliver m.

Gossip 4

Approaches

}  Deterministic schemes
}  With strong reliability guarantees do not scale well (e.g.,

O(n2) msgs)

}  Probabilistic, gossip-based, schemes
}  Every process periodically (every T ms) „talks” to a

subset of (Fanout, F) processes about some messages
}  Good trade-off between reliability and scalability
}  Very resilient to arbitrary crash failures

Gossip 5

Limitations of Classical Reliable
Multicast

}  With classical reliable
multicast, throughput
collapses as the system
scales up!

}  Even if we have just
one slow receiver… as
the group gets larger
(hence more healthy
receivers), impact of a
performance
perturbation is more
and more evident!

Gossip 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0

50

100

150

200

250 Virtually synchronous Ensemble multicast protocols

perturb rate

av
er

ag
e

th
ro

ug
hp

ut
 o

n
no

np
er

tu
rb

ed
 m

em
be

rs

group size: 32
group size: 64
group size: 96

32

96

Gossip Overview

Gossip 7

 “Did you hear that
Sally and John are
going out?”

l  Node A encounters “randomly selected” node B (might
not be totally random)
§  Push: A tells B something B doesn’t know
§  Pull: A asks B for something it is trying to “find”
§  Push-pull: Combines both mechanisms

Definition: A Gossip Protocol…

}  Uses random pairwise state merge
}  Runs at a steady rate (and this rate is much slower than

the network RTT)
}  Uses bounded-size messages
}  Does not depend on messages getting through reliably

Gossip 8

Gossip Benefits

}  Information flows around disruptions
}  Scales very well
}  Typically reacts to new events in log(N), N

is number of processes
}  Can be made self-repairing

Gossip 9

… and Limitations

}  Rather slow
}  Very redundant
}  Guarantees are at best probabilistic
}  Depends heavily on the randomness of the peer

selection

Gossip

Typical Push-Pull Protocol

}  Nodes have some form of database of participating
machines
}  Could have a hacked bootstrap, then use gossip to keep this

up to date!

}  Set a timer and when it goes off, select a peer
within the database
}  Send it some form of “state digest”
}  Peer responds with data you need and its own state digest
}  Respond with data peer needs

Gossip 11

Gossip Implementation

}  Recall that UDP is an “unreliable” datagram
protocol supported in internet
}  Unlike for TCP, data can be lost
}  Also packets have a maximum size, usually 4k or 8k bytes

(you can control this)
}  Larger packets are more likely to get lost!

}  What if a packet would get too large?
}  Gossip layer needs to pick the most valuable stuff to include,

and leave out the rest!

Gossip 12

Use of Gossip Protocols

}  Notify applications about some event
}  Track the status of applications in a system
}  Organize the nodes in some way (like into a tree, or even

sorted by some index)
}  Find “things” (like files)

Gossip 13

Probabilistic Multicast

}  Validity: If a correct process multicasts a message m, then some
correct process in Dest(m) eventually delivers m

}  Integrity: For any message m, every correct process p delivers
m at most once, and only if m was previously multicast by
Sender(m)

}  Probabilistic Agreement: If a correct process in Dest(m)
delivers message m, then every correct process in Dest(m)
eventually delivers m with known, high, probability ω.

Gossip 14

Scalable Reliable Multicast

}  Heartbeats: Each member periodically sends out a heartbeat
including the sequence number of the latest sent packet.
Members detect packet loss by comparing the sequence
number in the heartbeat and the sequence number of the last
data-packet received.

}  NACKS: When a packet is lost, a negative acknowledgment
(NACK) is sent to all members using the same method of
transportation as the original data.

}  Repair: Each member if he sees a NACK for a packet they have
in their cache, they retransmit that packet to the whole group
as a repair.

}  To minimize the number of NACKs and repairs, these two
operations are preceded by exponential back-off.

Gossip 15

Problems with ACK/NACK Schemes

}  As number of receivers gets large ACKS/NAKS pile
up (sender has more and more work to do)
}  Hence it needs longer to discover problems
}  And this causes it to buffer messages for longer and

longer… hence flow control kicks in!
}  So the whole group slows down

Gossip 16

Bimodal Multicast: First Phase

Gossip 17

}  Combines gossip with IP multicast
}  Start by using unreliable UDP multicast to rapidly

distribute the message.
}  Some messages may not get through, and some processes

may be faulty: initial state involves partial distribution of
multicast(s)

Finding out what is missing

Gossip 18

}  Periodically (e.g. every 100ms) each process sends a
digest describing its state to some randomly selected
group member. The digest identifies messages.

Soliciting missed messages

Gossip 19

}  Recipient checks the gossip digest against its own
history and solicits a copy of any missing message from
the process that sent the gossip

Sending out missed packets

Gossip 20

}  Processes respond to solicitations received during a
round of gossip by retransmitting the requested
message. The round lasts much longer than a typical
RPC time.

Delivery? Garbage Collection?

}  Deliver a message when it is in FIFO order
}  Report an unrecoverable loss if a gap persists for so long

that recovery is deemed “impractical”
}  Garbage collect a message when you believe that no “healthy”

process could still need a copy (we used to wait 10 rounds,
but now are using gossip to detect this condition)

}  Match parameters to intended environment

Gossip 21

Need to bound costs

}  Worries:
}  Someone could fall behind and never catch up, endlessly

loading everyone else
}  What if some process has lots of stuff others want and they

bombard him with requests?
}  What about scalability in buffering and in list of members of

the system, or costs of updating that list?

Gossip 22

Scalability

}  Protocol is scalable except for its use of the membership
of the full process group

}  Updates could be costly
}  Size of list could be costly
}  In large groups, would also prefer not to gossip over long

high-latency links

Gossip 23

Router Overload Problem

}  Random gossip can overload a central router
}  Yet information flowing through this router is of

diminishing quality as rate of gossip rises
}  Insight: constant rate of gossip is achievable and adequate

Gossip 24

Hierarchical Gossip

}  Weight gossip so that probability of gossip to a remote
cluster is smaller

}  Can adjust weight to have constant load on router
}  Now propagation delays rise… but just increase rate of

gossip to compensate

Gossip 25

How to Analyze such Protocols?

}  Can use the mathematics of epidemic theory to predict
reliability of the protocol

}  Assume an initial state
}  Now look at result of running B rounds of gossip:

converges exponentially quickly towards atomic delivery

Gossip 26

Summary

}  Gossip is a valuable tool for
addressing some of the needs of
modern autonomic computing

}  Often paired with other
mechanisms, eg anti-entropy
paired with UDP multicast

}  Solutions scale well (if well
designed!)

Gossip 27

