
Cristina Nita-Rotaru

CS505: Distributed Systems

Leader election. Membership. Reliable Multicast. Virtual Synchrony

}  Socket programming is required for this class

}  When posting – give details about what is the error,
screen printouts, code, etc

}  Keep track of what you change and how
}  Backup your code

Election. Membership. Reliable multicast. VS 2

How to work

}  Make sure you understand the assignment
}  Identify messages and write a state machine
}  Identify data structures, they also capture state machine

and the functionality based on the role of the process
}  !!!!! Identify the data related to the communication

between processes, sockets, ports, queues, timeouts!!!!
}  Check the return code of any single function, write debug

messages (have your code written so you can enable/
disable the debug messages)

}  Handle errors properly – if opening the socket failed you
should not continue

Election. Membership. Reliable multicast. VS 3

}  Buffers and data sent over the network– pay great
attention to every single byte

}  Typical mistakes: not counting properly what is sent
received, reading in a buffer too small

}  Don’t rely on string functions, always know how many
bytes each structure, item, buffer, has

}  Pay great attention to pointers

Election. Membership. Reliable multicast. VS 4

}  Your main goal should be to have a working project
}  Turret is not for developing your code is for testing

everybody’s code in the same setup
}  We give you some of the testcases so you can see how

we will test your code and to help you

}  FIRST HAVE A WORKING PROJECT

Election. Membership. Reliable multicast. VS 5

Required reading for this topic…

}  An improved algorithm for
decentralized extrema-finding in
circular elections of processes, E.
Chang and R. Roberts,
Communications of the ACM, 1979.

}  Elections in a distributed computing
system, H. Garcia-Molina, IEEE
Transactions on Computers, 1982.

Election. Membership. Reliable multicast. VS 6

1: Leader Election: Ring Algorithm

Leader Election

}  Algorithm to select a single process as the coordinator of
some task distributed among several processes.

}  Corectness: When the election algorithm terminates a
single process has been selected and every process knows
its identity.
}  Safety: any process selects as leader the non-faulty process

with the best attribute value (usually highest id) or no leader is
selected

}  Liveness: any instance of the election algorithm terminates and
any non-faulty process has selected a leader

Election. Membership. Reliable multicast. VS 8

Leader Election - Challenges

}  Nodes do not know apriori who is the leader
}  Any process can start an election
}  Processes communicate through messages, messages can

be lost, delayed, network can be partitioned
}  Processes can crash, new leader needed
}  Previously crashed process recovers may need new

election
}  Processes can crash during leader election
}  All nodes must agree on when election is over and who

the new coordinator is

Election. Membership. Reliable multicast. VS 9

Leader Election Algorithms - Model

}  Each process has a unique number
}  One process per machine
}  Processes know each other’s process number
}  Processes do not know the status of the other processes,

i.e. up or down
}  Different network topologies, different algorithms for

different topologies
}  Goal : In general, the process with the highest ID number

will be the new coordinator.

Election. Membership. Reliable multicast. VS 10

Ring Algorithm

}  Assumes that the processes are arranged in a logical ring
and each process knows the order of the ring of
processes (unidirectional).
}  All messages are sent clockwise around the ring.

}  Faulty processes are those that don’t respond in a fixed
amount of time.

}  Even if two ELECTIONS started at once, everyone will
pick same leader since the node with highest identifier is
picked.

}  Messages go around the ring till they return to the
initiator.

Election. Membership. Reliable multicast. VS 11

Ring Algorithm

}  When a process notices that current leader failed:
}  Sends an ELECTION message to start the algorithm to its successor;

It contains its own id.
¨  (if successor is down, sender skips until a running process is located).

}  When a process receives an ELECTION message:
}  process adds its own id to the list and sends to successor.

}  When ELECTION message gets back to the initiator (process
recognizes the message that contains its own id):
}  Sends a LEADER message that announces the new leader and

contains: id of new leader (list member with highest number); List of
the members of the new ring. Message circulates around the ring.

}  When the LEADER message gets back to initiator:
}  Election is over if id of new leader is in ring id-list.
}  Else the algorithm is repeated (handles election failure).

Election. Membership. Reliable multicast. VS 12

Example: Ring Election
 "

Election: 2!

Election:
2,3,4,0,1!

Election: 2,3!

Leader(4):
2!

Leader(4):
2,3!

Leader(4):
2,3,0,1!

Election: 2!

Election: 2,3!

Election:
2,3,0!

Election:
2,3,0,1!

Leader(3):
2!

Leader(3): 2,3!

Leader(3):
2,3,0!

Leader(3):
2,3,0,1!

P1!

P2!

P3!

P4!

P0!

P5!

1. P2 initiates election"

P1!

P2!

P3!
P4!

P0!

P5!

2. P2 receives “election”, "P4 dies"

P1!

P2!

P3!
P4!

P0!

P5!

3. P2 selects 4 and
announces the result"

P1!

P2!

P3!
P4!

P0!

P5!

4. P2 receives “Coord”, but P4 is
not included"

P1!

P2!

P3!
P4!

P0!

P5!

5. P2 re-initiates election"

P1!

P2!

P3!
P4!

P0!

P5!

6. P3 is finally elected"

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS 13

Ring Algorithm Analysis

}  Worst case 2(N-1) messages are passed (when does this
happen?)
}  One round for the ELECTION message
}  One round for the LEADER
}  Assumes that only a single process starts an election.

}  Multiple elections cause an increase in messages

Election. Membership. Reliable multicast. VS 14

1: Leader Election: Bully Algorithm

Bully Algorithm In a Nutshell

}  Model
}  Synchronous model
}  Processes know each other’s ids
}  A process can detect that another process failed based on

message transmission time and processing time

}  Process p starts election
}  When it detected that the coordinator has failed
}  When it recovered from a crash

}  High-numbered processes “bully” low-numbered
processes out of the election, until only one process
remains.

Election. Membership. Reliable multicast. VS 16

Bully Algorithm

}  A process starts the algorithm by sending ELECTION
message to only the nodes that have a higher id than itself
}  If no answer OK is received, then it announces itself as the

new leader to the lower processes, with a LEADER message
}  If any OK is received, then there is a process with a higher id,

wait for the LEADER message; if none received start a new
election algorithm

}  If a process received an ELECTION message, sends an
OK and then starts a new election, unless is has already

}  If a process detects that the leader has failed and it has
the highest id, then sends a LEADER message to all
processes with lower identifiers

Election. Membership. Reliable multicast. VS 17

Bully Algorithm Message Cost

}  Best case: The node with second highest identifier
detects failure and elects itself
}  Total messages = N-2

}  One message for each of the other processes indicating the process
with the second highest identifier is the new coordinator

}  Worst case: The node with lowest identifier detects
failure
}  Total messages = O(N2)

}  requires N-1 processes to initiate the election algorithm each sending
messages to processes with higher identifiers

Election. Membership. Reliable multicast. VS 18

Example Bully Election

OK!
OK!

P1!

P2!

P3!

P4!

P0!

P5!

1. P2 initiates election" 2. P2 receives “replies"

P1!

P2!

P3!

P4!

P0!

P5!

3. P3 & P4 initiate election"

P1!

P2!

P3!

P4!

P0!

P5!

P1!

P2!

P3!

P4!

P0!

P5!

4. P3 receives reply"

OK!

Election!Election!

Election!

Election!
Election!

Election!

P1!

P2!

P3!

P4!

P0!

P5!

5. P4 receives no reply"

P1!

P2!

P3!

P4!

P0!

P5!

5. P4 announces itself "

Leader!

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS 19

2: Membership

Membership Service

}  Needed for distributed protocols that require knowledge
of alive processes
}  Static: list is known before, track processes that crash
}  Dynamic: processes can join, leave and crash

}  Need to detect failures (Remember ! we know we can
not do it accurately)

}  Need to agree on the current list of processes

Election. Membership. Reliable multicast. VS 21

A Membership Protocol

}  Leader: one of the processes (oldest) will act as leader
}  Each process: maintains a list with alive processes (list has

to be the same)
}  All processes: track each other (ping or I am alive)

}  If timeout occurs - process that did not answer is considered
crashed, he will have to rejoin with another identifier

}  Two cases:
}  leader is alive (normal-case)
}  leader fails

Election. Membership. Reliable multicast. VS 22

Normal-Case

}  Leader detects a failure or receives a join, he starts a two-
phase protocol to ensure the list of alive members is
updated consistently

}  Phase 1: leader sends all add and delete events to
everybody
}  Every process acknowledges
}  Leader must wait for a majority of acknowledgements

}  Phase 2: If leader receives majority, then sends the
modifications (may include any failure detected during
first phase)

Election. Membership. Reliable multicast. VS 23

Leader Fails

}  If a process detects that the leader failed, second process
on the list becomes the leader, three phase protocol

}  Phase 1: new leader informs the other processes that
leader has failed, asks for pending add/delete operations,
collects acknowledgments and current membership
information

}  Phase 2 and 3 similar with normal case

Election. Membership. Reliable multicast. VS 24

3: Reliable multicast

Unicast, Broadcast, Multicast

}  Unicast: Messages are sent from exactly one process to
one process

}  Broadcast: Messages are sent from exactly one process
to all processes on the network

}  Multicast: Messages are sent from exactly one process
to several processes (referred as group) on the network

Election. Membership. Reliable multicast. VS 26

Reliable Communication

}  Unicast: one sender and one receiver
}  Multicast: one sender and many receivers
}  Reliable unicast: guarantees delivery of messages, if the

other party fails, there is no service
}  Reliable multicast: ? What is the meaning of reliable

multicast in the context of process failures?

Election. Membership. Reliable multicast. VS 27

Naïve Approach

}  Use a reliable one-to-one send operation:
}  A basic multicast primitive guarantees a correct (non-

faulty) process will eventually deliver the message, as long
as the sender does not crash.

}  What if the sender crashes after he sent the message and
some processes received the message and some other
did not?

Election. Membership. Reliable multicast. VS 28

Meaning of Reliability in Multicast

}  Integrity: A correct process p delivers a message m at
most once.

}  Validity: If a correct process multicasts message m, then
it will eventually deliver m.
}  Each process delivers its own messages

}  Agreement: If a correct process delivers message m,
then all the other correct processes in the group will
eventually deliver m.

Election. Membership. Reliable multicast. VS 29

Ordered Multicast

}  FIFO ordering: If a correct process multicasts m and
then multicasts m’, then every correct process that
delivers m’ will have already delivered m.

}  Causal ordering: If multicast m à multicast m’ then
any correct process that delivers m’ will have already
delivered m.

}  Total ordering: If a correct process delivers message m
before m’, then any other correct process that delivers
m’ will have already delivered m.

Election. Membership. Reliable multicast. VS 30

Message Processing

Delivery
queue Hold-back

queue

deliver

Incoming
messages

When ordering
delivery guarantees
are met, message is
moved to delivery
queue

Election. Membership. Reliable multicast. VS 31

FIFO Reliable Multicast Algorithm

}  Sp
G: count of messages p has sent to group G.

}  Rq
G: the sequence of the latest message that p has delivered from q to the

group G.

}  When seding: p multicasts message m to group G
}  Sp

G = Sp
G + 1

}  Sp
G is included with m

}  When receiving: p receives message m from q with
sequence number S for group G:
}  If S = Rq

G+1, p delivers m and Rq
G = Rq

G + 1
}  If S > Rq

G+1, p places the message in the hold-back queue
(need to send other messages first)

}  If S < Rq
G+1, p drops the message (old message)

Election. Membership. Reliable multicast. VS 32

FIFO Example

P1

P2

P3

0 0 0 1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 1 2 2 1

1

Reject: 1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer hold-back
 2 > 0 + 1

Accept: 1 = 0 + 1
2 0 0

Accept in deliver
buffer

2 = 1 + 1

Accept 1 = 0 + 1

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS 33

Example of FIFO ordering - 2

4 1 1 3 3 2

2 4

p1

p2

p3

P1 will deliver, 1, 2, 3, 4,
P2 will deliver 1, 2, 3, 4
P3 will deliver 2, 1, 3, 4

Messages from different senders
can be interleaved, as long as FIFO
is enforced for each sender

Election. Membership. Reliable multicast. VS 34

Example of FIFO ordering - 3

4 1 1
3 3 2

2 4

p1

p2

p3

P1 will deliver, 1, 3, 2, 4,
P2 will deliver 1, 2, 3, 4
P3 will deliver 2, 1, 3, 4

Election. Membership. Reliable multicast. VS 35

Causal ordering

1

2

p1

p2

p3

What can you say about
messages 1 and 2?
Can p3 deliver 2 is he wants to
preserve causal ordering?

Causal ordering: If multicast m à multicast m’ then
any correct process that delivers m’ will have already
delivered m.

1

2

p1

p2

p3

Can p3 deliver 2 is he wants
to preserve causal ordering?

Election. Membership. Reliable multicast. VS 36

Causal Multicast Algorithm

}  Use vector clocks:
 V(a) < V(b) iff a happens before b

}  Each process maintains a vector clock per group
l  VG

i[j] counts the number of group G messages from process j
to process I delivered to the application

}  When process i receives a <m,VG
j> from j, then

}  VG
i[k] = max(VG

i[k], VG
j[k]) if k ≠ i

}  VG
i[k] = VG

i[k] + 1 if k = i

Election. Membership. Reliable multicast. VS 37

Causal Reliable Multicast

}  Initialize VG
i [j] = 0, j = 1, 2, …N processes

}  When sending: process i to group G
}  VG

i [i] = VG
i [i] + 1 (increment state of i)

}  Send message with entire vector VG
i

}  When receiving: process i received m from process j
for group G
}  Put m, VG

j in hold-back queue
}  Wait till causality is met VG

j [j] = VG
i [j] + 1 and VG

j [k] ≤ VG
i

[k], any k ≠ j
 then deliver m and VG

i [j] = VG
i [j] + 1

Election. Membership. Reliable multicast. VS 38

Example

P1

P2

P3
(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer missing P1(1)
(1,1,0) >(0,1,0)

1,1,0

1,1,0

1,1,0

Accept

1,0,0

Accept in
deliver buffer

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

Causality is met VG
j [j] = VG

i [j] + 1 and VG
j [k] ≤ VG

i [k], any k ≠ j

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS 39

Vector Clocks vs Total Order

p1

p2

p3

p4

2 and 3 are not causally related !!!!!

P1 will deliver, 1, 2, 3
P2 will deliver 1, 2, 3
P3 will deliver 1, 3, 2
P4 will deliver 1, 3, 2

1
2

3

Election. Membership. Reliable multicast. VS 40

ISIS

}  Toolkit for distributed programming
}  Useful for managing replicated data, synchronizing

distributed computations, automating recovery, and
dynamically reconfiguring a system to accommodate
changing workloads

}  Developed at Cornell

Election. Membership. Reliable multicast. VS 41

ISIS Total Ordered Multicast

}  Uses sequences associated with each message and ID of
processes to determine order

}  Each process maintains a queue with messages received
}  Messages can be ready to deliver or not based on what a

process knows about what other processes did (the
sequence)

Election. Membership. Reliable multicast. VS 42

ISIS Total Ordered Multicast (cont)

Sender multicasts the message to everyone
Upon receiving a message M each receiver Ri

1.  Adds M to the queue
2.  Marks the message undeliverable
3.  Sends ack to the sender with a sequence number seq that is the latest

sequence number received + 1, suffixed with the Ri’s ID.

Sender collects all acks from the receivers
1.  calculates final_seq = maximum ({seqi})
2.  multicasts final_seq to all processes

Upon receiving final seq each receiver
1.  marks M as deliverable,
2.  reorders the queue based on seq
3.  delivers the set of messages with lower seq and marked as deliverable.

Election. Membership. Reliable multicast. VS 43

Example Total Order

P1

P2

P3

M1,1

Messages are also causally ordered
What are the changes if P1 receives Ack1 before M2?
What are the changes is P2 receives m1 after sending mM?

M2,3

M2,3

Ack1, 2 Ack1, 5
5

Max(2,5)

4

4
M1,1

Ack2, 4

Ack2, 4
Max(4,4)

5

Election. Membership. Reliable multicast. VS 44

TOTEM: The single-ring protocol

}  Uses a circulating token containing among others:
}  A seq field with the sequence number of the last message that

was sent
}  An aru field with the sequence number of the last message that

has been received by all processors, replaces acks

}  Only the processor that holds the token can send a
message

Election. Membership. Reliable multicast. VS 45

Meaning of SEQ and ARU

}  Provides total order on message
}  Used to detect gaps and request retransmissions through

a field in the token
}  After a full token rotation process can determine all

processes have received all message with lower sequence
numbers

Election. Membership. Reliable multicast. VS 46

Using the aru

}  If token.aru = token.seq and have all the messages then
the process should set aru higher and seq when sending
new messages

}  If missed a message with m.seq smaller than then should
set token.aru = m.seq

}  If is the one that lowered the aru and the token.aru is still
the same, should set token.aru = local.aru

Election. Membership. Reliable multicast. VS 47

Safe Delivery

}  Consistent with Total/Agreed order.

}  Message is delivered after received by all processors.

Election. Membership. Reliable multicast. VS 48

TOTEM: The single-ring protocol (II)

}  aru field used to implement safe delivery:
}  Tells processors which messages have been received by every

processor in the ring

}  Token also provides information about the aggregate
message backlog of the processors on the ring
}  Results in a fairer bandwidth allocation among processors

Election. Membership. Reliable multicast. VS 49

Membership and Reliable Multicast

}  Message delivery
}  Group membership changes
}  They are interleaved
}  Does this matter?

Election. Membership. Reliable multicast. VS 50

Summary

}  Leader election algorithms: usually
select the process with the highest id,
network topology determines
complexity in terms of number of
messages

}  Membership services must take into
account leader failures

}  Meaning of reliable muticast is more
complex than for reliable unicast,
different ordering guarantees: FIFO,
causal, total order

Election. Membership. Reliable multicast. VS 51

3: Virtual Synchrony

Required reading for this topic…

}  Exploiting virtual synchrony in distributed
systems, K Birman and T. Joseph, SOSP 1987

}  Extended Virtual Synchrony, L. E. Moser , Y.
Amir , P. M. Melliar-Smith , D. A. Agarwal,
DISC 1994

}  Chapter 18, the book
}  Group Communication Specifications: A

Comprehensive Study. Gregory V. Chockler,
Idit Keidar, and Roman Vitenberg. ACM
Computing Surveys, 2001.

Election. Membership. Reliable multicast. VS 53

Systems …

}  www.spread.org
}  http://www.cs.huji.ac.il/labs/transis/lab-

projects/guide/intro.html
}  http://www.cs.huji.ac.il/labs/transis/lab-

projects/guide/chap3.html
}  http://www.cs.cornell.edu/Info/Projects/ISIS/

Election. Membership. Reliable multicast. VS 54

Process Groups

}  One way of building distributed fault-tolerant systems by
organizing them in a group and ensuring group
membership and group multicast, with different ordering
properties.

}  Easier to work with when providing in the form of a
toolkit.

Election. Membership. Reliable multicast. VS 55

Implementation

}  Reliable and ordered message delivery (unicast and broadcast)
}  Group membership service may support process failures, network

partitions and merges

Group A

Group B

w  Either client-server (as in the picture) - servers perform the
distributed protocols, clients and groups are lightweight

w  Or completely distributed, limited scalability

Election. Membership. Reliable multicast. VS 56

Semantics

}  View: list of group members at a
certain time

}  Semantics: define how the
membership and the messages are
interleaved and what is the service
provided to the applications

}  Useful for implementing other
distributed applications such as: state
transfer, replicated data, load
balancing.

}  Two models: Virtual
Synchrony Model (VS) and
Extended Virtual Synchrony
Model (EVS)

Viewt1: {A, B, C}

Viewt2: {A, B}

Viewt3: {A, B, D}

Ti
m

e

C crashes

D joins

Election. Membership. Reliable multicast. VS 57

Ordered Multicast

}  FIFO ordering: If a correct process multicasts m and
then multicasts m’, then every correct process that
delivers m’ will have already delivered m.

}  Causal ordering: If multicast m à multicast m’ then
any correct process that delivers m’ will have already
delivered m.

}  Total ordering: If a correct process delivers message m
before m’, then any other correct process that delivers
m’ will have already delivered m.

Election. Membership. Reliable multicast. VS 58

Safe Delivery

}  Consistent with Total/Agreed order.

}  Message is delivered after received by all processes
(processes send ack) .

Election. Membership. Reliable multicast. VS 59

Why Virtual Synchrony?

}  Ideally: events are in the same order for any two
processes, messages delivers to all process at the same
moment …

}  Impossible
}  Events need to be synchronized only to the degree

application is sensitive to ordering

Election. Membership. Reliable multicast. VS 60

Virtual Synchrony Model

}  The model relates to message and view delivery, and
relationship between messages and views.

}  Views consist of list of members, have unique identifiers.
}  Membership changes are totally ordered with respect to

all regular messages that pass in the system.
}  The order of the regular messages is determined by the

delivery service (fifo, causal, agreed).

Election. Membership. Reliable multicast. VS 61

Processes that move together through the same views,
deliver the same set of messages.

Virtual Synchrony Model

}  1. Self Inclusion
 If process p installs a view v then p is a member of v.

}  2. Local Monotonicity
 If process p installs a view v after installing a view v' then the
identifier id of v is greater than the identifier id' of v'.

}  3. Self Delivery
 If process p sends a message m, then p delivers m unless it
crashes.

}  4. Delivery Integrity
 If process p delivers a message m in a view v, then there exists a
process q that sent m in v causally before p delivered m.

}  5. No Duplication
 A message is sent only once. A message is delivered only once to
the same process.

Election. Membership. Reliable multicast. VS 62

Virtual Synchrony Model

}  6. Sending View Delivery
 A message is delivered in the view that it was sent in.

}  7. Virtual Synchrony
 Two processes that move together through two
consecutive views deliver the same set of messages in the
former view.

Election. Membership. Reliable multicast. VS 63

Virtual Synchrony Model

}  8. Causal Delivery
If message m causally precedes message m', and both are
sent in the same view, then any process q that delivers m'
delivers m before m'.

}  9. Agreed Delivery
 - Agreed delivery maintains causal delivery guarantees.
 - If agreed messages m and m' are delivered at process p
in this order, and m and m' are delivered by process q,
then m is delivered before m' by q.

Election. Membership. Reliable multicast. VS 64

How to Provide Virtual Synchrony?

}  Messages can be lost
}  Before moving into new view, exchange message to flush

all the messages from previous view
}  Application message are blocked during view change
}  Joins are not allowed during view change

Election. Membership. Reliable multicast. VS 65

Virtual Synchrony and Network
Partitions

}  Virtual Synchrony was introduced in a model that did not
consider network partitions, fail stop failure (ISIS)

}  Later extended to network partitions (TRANSIS, SPREAD)
}  Allows operation to be partitionable in order to support crash

recoveries and network partitions:
}  If a process group partitions into subsets that cannot

communicate with each other, each subset continues observing
the (partitionable) Virtual Synchrony model separately.

}  Upon re-merging, the merged set will be virtually synchronized
from the merging membership change message.

Election. Membership. Reliable multicast. VS 66

Extended Virtual Synchrony (EVS)

}  Major difference is
}  6. Sending View Delivery

 A message is delivered in the view that it was sent in.

}  6. Same View Delivery
 A message is delivered in the same view.

}  Better performance, message can be delivered faster.
}  Delivery view is not necessary the same as sending view

Election. Membership. Reliable multicast. VS 67

EVS: Main Idea

}  While noticing a membership change, the new view is not
immediately delivered to the application
}  System switches into a transitional phase trying to

}  recover lost messages from the current view
}  achieve consistency among configuration members that are still

connected.

}  New messages from the application are buffered until the
transitional phase ends and a new view is reached.

}  The new membership is delivered to the application
}  Previously buffered messages are multicast and processed

together with new messages from the applications.

Election. Membership. Reliable multicast. VS 68

FIFO and EVS

}  Assume a membership change takes place and some process p in
the current view notices it missed a message
}  p requests the missed message.
}  If p is still connected to other members of the configuration, and

some received that message, he will receive the lost message
}  If there is no connected member that received this message - then

this does not contradict the virtual synchrony or FIFO

}  When we can not deliver messages?
}  If all connected members received the ith message m’ from process

p, but missed the (i-1)th message m from p, and p is no longer
reachable, then m’ could not be delivered because it would
contradict the FIFO mode guarantees.

}  Note that the delivery view will not necessary be the same as the
sending view.

Election. Membership. Reliable multicast. VS 69

Causal and EVS

}  Similar to FIFO in recovering lost messages if possible.
}  When we can not deliver a message?:

}  If all connected members have received the ith message m from process
p that is no longer reachable, but missed the message m’ that could be
the (i-1)th message from that same process p, or the jth message from
another process q that is also no longer reachable, then m could not be
delivered because the causality principle is violated.

}  Notice that if the network partitions and several detached
components of the same configuration are created, then each
could deliver a different set of messages, depending on the
knowledge of the component members.
}  if p is in another component, then this component will deliver m (unless

causality is contradicted by a former lost message m’). This will not
contradict the Virtual Synchrony model's guarantees since the following
membership change message each component delivers is different.

Election. Membership. Reliable multicast. VS 70

Agreed and EVS

}  Lost messages are recovered if possible
}  Messages that may contradict the causality principle are

not delivered.
}  For example a message m that causally follows a lost message

m’ can not be delivered because it will contradict causality.

}  (C1) Every process must deliver its own messages;
however, although they are buffered, they can not be
delivered before they are totally ordered.

}  Messages may be lost, or become undeliverable
after a membership change. A lost or an
undeliverable message creates a hole in the total
order.

Election. Membership. Reliable multicast. VS 71

Agreed and EVS (cont.)

}  Consider the case that a message m sent by process p is totally
ordered after a hole that stands for message m’.
}  If message m is not delivered, C1 is contradicted.
}  If message m is delivered in the current configuration, then total order is

not kept throughout the configuration, since in another component
message m' may be accessible, and will be delivered before message m.

}  Solution: Use a transitional configuration which contains
members of the current regular configuration that are still
connected
}  It begins when a membership change starts, and lasts until it is

completed and a membership change is delivered to the application.

}  Messages such as m are delivered in the transitional
configuration.

Election. Membership. Reliable multicast. VS 72

Safe and EVS

}  A safe message may only be delivered to the application when all
other processes in the configuration have acked that message.

}  Consider the case when some process does not ack, or if that
ack did not reach all processors just before a membership change
started
}  If some of the connected processors received the ack, they can

retransmit it, and that message could be delivered as part of the current
(unchanged) configuration.

}  If a processor did not ack, or the ack was lost by all connected members
of the configuration, then the message cannot be delivered as safe in the
current configuration C.

}  The solution is to use a transitional configuration. In this
configuration, messages receive acks from all members, and
therefore can be delivered as safe in this context.

Election. Membership. Reliable multicast. VS 73

EVS: Regular Configuration

}  Regular configuration is the configuration in which regular
messages are sent and delivered. FIFO (atomic) and
causal communication modes need to use only this
configuration type in order to deliver messages.

Election. Membership. Reliable multicast. VS 74

EVS: Transitional Configuration
}  Used to correctly define and implement total order and safe

communication modes in a partitionable environment. The
transitional configuration consists of members that come directly
from the same regular configuration and that will also be members of
the same future regular configuration.
}  allows delivery of messages following holes multicast in the prior regular

configuration.
}  A regular configuration may be followed by several transitional

configurations (when several components detach), and preceded by
several transitional configurations (when several components
merge). A transitional configuration, in contrast, is immediately
preceded and followed by a single regular configuration.

Election. Membership. Reliable multicast. VS 75

Transitional Configuration

}  11. Transitional Set
 - Every process is part of its transitional set for a view v.
 - If two processes p and q install the same view, and q is included in p's
transitional set for this view then p's previous view was identical to q's
previous view.
- If two processes p and q install the same view v, and q is included in p's
transitional set for v then p and q have the same transitional set for v.

}  12. Transitional Signal
 - Each process delivers exactly one transitional signal per view.
 - If two processes p and q install the same view v and q is included in p's
transitional set for v then p and q deliver the same set of agreed messages
before and after the transitional signal.

Election. Membership. Reliable multicast. VS 76

Agreed and Transitional Configuration

}  9. Agreed Delivery
 - Agreed delivery maintains causal delivery guarantees.
 - If agreed messages m and m' are delivered at process p
in this order, and m and m' are delivered by process q,
then m is delivered before m' by q.
 - If agreed messages m and m' are delivered by process p
in view v in this order, and m' is delivered by process q in
v before a transitional signal, then q delivers m. If
messages m and m' are delivered by process p in view v in
this order, and m' is delivered by process q in v after a
transitional signal, then q delivers m if r, the sender of m,
belongs to q's transitional set.

} 

Election. Membership. Reliable multicast. VS 77

Safe and Transitional Configuration

}  10. Safe Delivery
- Safe delivery maintains agreed delivery guarantees.
- If process p delivers a safe message m in view v before
the transitional signal, then every process q of view v
delivers m unless it crashes. If process p delivers a safe
message m in view v after the transitional signal, then
every process q that belongs to p's transitional set
delivers m after the transitional signal unless it crashes.

Election. Membership. Reliable multicast. VS 78

Systems Providing Virtual Synchrony

}  Isis: Introduced VS and no longer widely used
}  Developed at Cornell
}  Very successful; has major roles in NYSE, Swiss Exchange, French Air

Traffic Control system (two major subsystems of it), US AEGIS Naval
warship

}  Also was first to offer a publish-subscribe interface that mapped topics
to groups

}  Totem and Transis
}  Totem (UCSB) went on to become Eternal and was the basis of

the CORBA fault-tolerance standard
}  Transis (Hebrew University) became a specialist in tolerating

partitioning failures

Election. Membership. Reliable multicast. VS 79

Systems Providing Virtual Synchrony
}  Horus and Ensemble

}  Developed at Cornell: successors to Isis
}  Both focus on flexible protocol stack linked directly into

application address space
}  A stack is a pile of micro-protocols
}  Can assemble an optimized solution fitted to specific needs of

the application by plugging together “properties this application
requires”, lego-style

}  The system is optimized to reduce overheads of this
compositional style of protocol stack

}  Ensemble is relatively popular and supported by a user
community. Horus works well but is not widely used.

Election. Membership. Reliable multicast. VS 80

Systems Providing Virtual Synchrony

}  Spread Toolkit
}  Developed at John Hopkins
}  Very simple architecture and system
}  Fairly fast, easy to use, rather popular
}  Supports one large group within which user sees many

small “lightweight” subgroups that seem to be free-
standing

}  Protocols implemented by Spread servers that relay
messages to clients

Election. Membership. Reliable multicast. VS 81

Summary

}  Virtual Synchrony: Processes that
move together through the same
views, deliver the same set of
messages.

}  Virtual synchrony blocks application
from sending messages

}  Both crash failure and network
partition supported

}  Extended Virtual Synchrony, improved
performance, more complexity, uses a
transitional configuration

Election. Membership. Reliable multicast. VS 82

