
Cristina Nita-Rotaru

CS505: Distributed Systems

Distributed file systems.

REQUIRED READING

}  Design and Implementation or the Sun
Network File System, R. Sandberg , D.
Goldberg , S. Kleiman , D. Walsh, B. Lyon,
1985, http://www.stanford.edu/class/
cs240/readings/nfs.pdf

}  Scale and performance in a distributed
file system, J. Howard, M. Kazar, S.
Menees, D. Nichols, M. Satyanarayanan, R.
Sidebotham, and M. West, TOCS, 1988

}  Scalable, Secure, and Highly Available
Distributed File Access
M. Satyanarayanan, IEEE Computer
May 1990 DFS 2

1: Distributed file systems design

What is a File System?

}  File system: a method of organizing and storing
computer files and the data they contain to make it easy
to find and access them.

}  File systems are responsible of:
}  Organization
}  Storage
}  Retrieval
}  Naming
}  Sharing
}  Protection

DFS 4

Files and Directories

}  File: contains data and attributes - file
length, timestamps (create, read, write),
file type, owner, access control list

}  Directory: special type of file, provides
a mapping between file names and
internal file identifiers

}  Metadata: extra information stored and
needed for the management of files
(includes file attributes and directories)

}  UNIX file system operations: open,
create, close, read, write, lseek, link,
unlink, stat

DFS 5

Distributed File Systems

}  A Distributed File System (DFS) is a file system
that supports sharing of files and resources in
the form of persistent storage over a network

}  First file servers were developed in the 1970s
}  First widely used distributed file system was Sun's

Network File System (NFS) introduced in 1985
}  Examples of distributed file systems: Andrew File

System (CMU), CODA (CMU), Google File System
(Google)

DFS 6

Requirements for Distributed File Systems

}  A DFS should appear to its users to be a
conventional, centralized file system.

}  1) Transparency
}  2) File replication
•  3) Concurrent file updates
•  4) Hardware and operating systems

heterogeneity
•  5) Fault tolerance
•  6) Performance
•  7) Security

DFS 7

Transparency in Distributed Systems
}  Access transparency: local and remote resources are accessed

using identical operations
}  Location transparency: resources are accessed without knowledge

of their location
}  Concurrency transparency: several processes operate

concurrently using shared resources without interference between
them

}  Replication transparency: multiple replicas are used, users are not
aware of the replicas

}  Failure transparency: concealment of faults
}  Mobility transparency: movement of resources
}  Performance transparency: allows system to be reconfigured to

improve performance as load vary
}  Scaling transparency: system expands in scale without changing

the system structure

DFS 8

Transparency and File Systems

•  Access transparency: A single set of operations is
provided for access to local/remote files.

•  Location transparency: Client programs see a uniform
file name space. Name of a file doesn't need to be
changed when the file's physical location changes.

•  Mobility transparency: Neither client programs nor
system administration tables in client nodes need to be
changed when files are moved.

•  Performance transparency: clients should continue to
perform satisfactorily while the load on the system
varies in a specified range.

•  Scaling transparency: service can be expanded by
incremental growth with a wide range of loads and
network sizes.

DFS 9

More Requirements for DFS

•  2) File Replication: A file may be represented by several
copies for service efficiency and fault tolerance.

•  3) Concurrent File Updates:
}  Changes to a file by one client should not interfere with

the operation of other clients simultaneously accessing
the same file.

}  One-copy update semantics: the file contents seen
by all of the processes accessing or updating a given
file are those they would see if only a single copy of the
file existed.

DFS 10

More Requirements for DFS
•  4) Hardware and operating systems heterogeneity:

service interface should be defined so that client and
server software can be implemented for different
operating systems and platforms.

•  5) Fault Tolerance:
}  At most once invocation semantics.
}  At least once semantics with a server protocol

designed with idempotent operations (i.e., duplicated
requests do not result in invalid updates to files).

DFS 11

More Requirements for DFS

}  6) Performance: most important aspect is the time to
answer requests
}  Conventional systems: disk-access time and a small amount of

CPU-processing time.
}  DFS: additional overhead includes the time to deliver the request

to a server, as well as the time to get the response across the
network back to the client, CPU overhead of running the
communication protocol software.

}  The performance of an ideal DFS would be comparable
to that of a conventional file system.

DFS 12

More Requirements for DFS

•  7) Security: for file systems
most critical security services
are:
}  Access Control: per object, list of

allowed users and access allowed
to each

}  Client Authentication: need to
authenticate client requests so that
access control at the server is
based on correct client/user
identifiers

DFS 13

Semantics of File Sharing
}  UNIX semantics: value read is the value stored by last

write; Writes to an open file are visible immediately to
others that have this file opened at the same time.

}  Session semantics: Write to an open file by a user is
not visible immediately by other users that have files
opened already; Once a file is closed, the changes
made by it are visible by sessions started later.

}  Immutable-Shared-Files semantics: A sharable file
cannot be modified. File names cannot be reused and
its contents may not be altered. Simple to implement.

}  Transactions: All changes have all-or-nothing
property.

DFS 14

Stateful vs. Stateless Design
}  Stateful: server keeps track of info about client requests.

}  what files are opened by a client, connection identifiers,
server caches

}  increased performance
}  if server crashes, it looses all its volatile state information
}  if client crash, the server needs to know to claim state

space
}  Stateless: each client request provides complete information

needed by the server (i.e., filename, file offset)
}  server can maintain information on behalf of the client, but

it is not required
}  server failure is identical to slow server (client retries...)
}  each request must be idempotent

DFS 15

Stateful vs. Stateless Design
}  Stateful: server keeps track of info about client requests.

}  what files are opened by a client, connection identifiers,
server caches

}  increased performance
}  if server crashes, it looses all its volatile state information
}  if client crashes, the server needs to know to claim state

space
}  Stateless: each client request provides complete information

needed by the server (i.e., filename, file offset)
}  server can maintain information on behalf of the client, but

it is not required
}  server failure is identical to slow server (client retries...)
}  each request must be idempotent

DFS 16

Stateful vs. Stateless Design
}  Stateful: server keeps track of info about client requests.

}  what files are opened by a client, connection identifiers,
server caches

}  increased performance
}  if server crashes, it looses all its volatile state information
}  if client crashes, the server needs to know to claim state

space
}  Stateless: each client request provides complete information

needed by the server (i.e., filename, file offset)
}  server can maintain information on behalf of the client, but

it is not required
}  server failure is identical to slow server (client retries...)
}  each request must be idempotent

DFS 17

Where to Cache?
}  Server’s disk: slow performance
}  Server main memory: cache management issue,

how much to cache, replacement strategy; used in
high-performance web-search engine servers

}  Client main memory: faster to access from main
memory than disk; Compete with the virtual memory
system for physical memory space

}  Client-cache on a local disk: large files can be
cached; the virtual memory management is simpler; a
workstation can function even when it is disconnected
from the network

DFS 18

Client Caching

•  Write-through: all writes are carried out
immediately

•  Delayed-write: delays writing at the server
•  Write-on-close: delay writing until the file is closed

at the client

DFS 19

2: Network File System (NFS)

Network File System (NFS)
}  Originally developed by Sun Microsystems, introduced in 1985
}  To encourage its adoption, the definition of the key interfaces were

placed in the public domain
}  Communication:

}  Version 2 of the protocol originally operated entirely over UDP
}  Sun Microsystems added support for TCP as a transport for NFS

at the same time it added support for Version 3
}  State maintained by the server:

}  Version 2 and 3 stateless, version 4 introduced stateful protocols

DFS 21

NFS Architecture

Client computer	
 Server computer	

UNIX	

file	

system	

NFS	

client	

NFS	

server	

UNIX	

file	

system	

Application	

program	
 Application	

program	

Virtual file system	
Virtual file system	

O
th

er

 fi
le

 s
ys

te
m
	

UNIX kernel	

system calls	

NFS
protocol

(remote operations)	

UNIX	

Operations
on local files	

Operations
on

remote files	

Application	

program	

NFS
Client	

Kernel	
 Application	

program	

NFS
Client	

Client computer	

DFS 22

NFS Architecture Implementation

•  Some NFS clients and servers implementation run at
application-level as libraries or processes (e.g. early
Windows and MacOS implementations)

•  Unix kernel implementation have advantages:
§  Binary code compatible - no need to recompile applications;

Standard system calls that access remote files can be routed
through the NFS client module by the kernel

§  Shared cache of recently-used blocks at client
§  Kernel-level server can access i-nodes and file blocks directly but

a privileged (root) application program could do almost the same.

DFS 23

NFS Server Operations (simplified)

•  read(fh, offset, count) -> attr, data	

•  write(fh, offset, count, data) -> attr	

•  create(dirfh, name, attr) -> newfh, attr	

•  remove(dirfh, name) status	

•  getattr(fh) -> attr	

•  setattr(fh, attr) -> attr	

•  lookup(dirfh, name) -> fh, attr	

•  rename(dirfh, name, todirfh, toname)	

•  link(newdirfh, newname, dirfh, name)	

•  readdir(dirfh, cookie, count) -> entries	

•  symlink(newdirfh, newname, string) ->

status	

•  readlink(fh) -> string	

•  mkdir(dirfh, name, attr) -> newfh, attr	

•  rmdir(dirfh, name) -> status	

•  statfs(fh) -> fsstats	
 DFS 24

NFS Access Control and Authentication

}  Stateless server, so the user's identity and
access rights must be checked by the server on
each request.
}  In the local file system they are checked only on

open()
}  Every client request is accompanied by the userID

and groupID
}  Server is exposed to impersonation attacks unless

the userID and groupID are protected by encryption
}  Kerberos has been integrated with NFS to provide a

stronger and more comprehensive security solution.

DFS 25

Overview of Kerberos

DFS 26

Goal: Obtain Ticket-Granting Ticket

C → AS: IDc || IDtgs || TS1
AS → C: EKc [Kc,tgs|| IDtgs || TS2 || Lifetime2 || Tickettgs]

Tickettgs = EKtgs [Kc,tgs || IDC || ADC || IDtgs || TS2 || Lifetime2]

IDtgs denotes the identifier of the Ticket Granting Server (TGS)
TS1 and TS2 are timestamps
KC is the key shared by the AS and client C
KC, tgs is the key shared by the TGS and client C
Ktgs key known by AS and the TGS
Tickettgs …is the ticket
Lifetime is the validity of the ticket
AD is address identifier

V4: Authentication Service Exchange

DFS 27

Goal: Obtain Service-Granting Ticket

C → TGS: IDS || Tickettgs || AuthenticatorC

TGS → C: EKc,tgs [KC,S || IDS || TS4 || TicketS]

Tickettgs = EKtgs [KC,tgs || IDC || ADC || IDtgs || TS2 || Lifetime2]

TicketS = EKS [KC,S || IDC || ADC || IDs || TS4 || Lifetime4]

AuthenticatorC = EKC, tgs [IDC || ADC || TS3]

KS is the key shared by the TGS and server S

V4: Ticket-Granting Service Exchange

DFS 28

Goal: Obtain Service

C → S: TicketS || AuthenticatorC

S → C: EKC,S [TS5 + 1]

TicketS = EKS [KC,S || IDC || ADC || IDs || TS4 || Lifetime4]

AuthenticatorC = EKC, S [IDC || ADC || TS5]

V4: Client-Server Authentication Exchange

DFS 29

Kerberized NFS

}  Kerberos is too costly to apply on each file access
request

}  Kerberos is used in the mount service to
authenticate the user's identity
}  User's UserID and GroupID are stored at the server with the

client's IP address
}  For each file request UserID, GroupID and IP address sent

must match those stored at the server

}  Disadvantages of this approach:
}  Cannot accommodate multiple users sharing the same

client computer
}  All remote filestores must be mounted each time a user

logs in

What are the disadvantages of this approach?

DFS 30

Kerberized NFS

}  Kerberos is too costly to apply on each file
access request

}  Kerberos is used in the mount service to
authenticate the user's identity
}  User's UserID and GroupID are stored at the server

with the client's IP address
}  For each file request UserID, GroupID and IP address

sent must match those stored at the server
}  Disadvantages of this approach:

}  Cannot accommodate multiple users sharing the
same client computer

}  All remote filestores must be mounted each time a
user logs in

DFS 31

Mount Service
}  Clients use the UNIX Mount operation:

 mount(remotehost, remotedirectory, localdirectory)
}  The mount command communicates with the mount service process

on the remote host via RPC.
}  The RPC operation takes the directory pathname and returns the

file handle of the specified directory.
}  The location of the server (IP address and port number) and the

file handle for the remote directory are passed on to the VFS
module and the NFS client.

}  On each server, there is a file with a well-known name (/etc/exports)
containing the names of local filesystems that are available for
remote mounting.

}  Server maintains a table of clients who have mounted filesystems at
that server

}  Each client maintains a table of mounted file systems holding:
 < IP address, port number, file handle>	

DFS 32

Local and Remote File Systems

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

DFS 33

NFS Server Caching

}  Similar to UNIX file caching for local files:
}  Pages (blocks) from disk are held in a main memory buffer cache until the

space is required for newer pages. Read-ahead and delayed-write
optimizations.

}  For local files, writes are deferred to next sync event (30 second intervals).
}  Works well in local context, where files are always accessed through the

local cache, but in the remote case it doesn't offer necessary
synchronization guarantees to clients.

}  NFS v3 servers offers two strategies for updating the disk:
}  write-through - altered pages are written to disk as soon as they are

received at the server. When a write() RPC returns, the NFS client knows
that the page is on the disk.

}  delayed commit - pages are held only in the cache until a commit() call is
received for the relevant file. This is the default mode used by NFS v3
clients. A commit() is issued by the client whenever a file is closed.

DFS 34

NFS Client Caching

}  Server caching does nothing to reduce traffic between client and
server
}  further optimization is essential to reduce server load in large networks
}  NFS client module caches the results of read, write, getattr, lookup and

readdir operations
}  synchronization of file contents (one-copy semantics) is not

guaranteed when two or more clients are sharing the same file.
}  Timestamp-based validity check

}  reduces inconsistency, but doesn't eliminate it
}  validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)	

}  t is configurable (per file) but is typically set to

 3 seconds for files and 30 secs. for directories
}  it remains difficult to write distributed

applications that share files with NFS

DFS 35

Automounter
}  NFS client catches attempts to access 'empty' mount points

and routes them to the Automounter
}  Automounter has a table of mount points and multiple candidate

serves for each
}  It sends a probe message to each candidate server and then uses

the mount service to mount the filesystem at the first server to
respond

}  Keeps the mount table small
}  Provides a simple form of replication for read-only

filesystems
}  E.g. if there are several servers with identical copies of /usr/lib

then each server will have a chance of being mounted at some
clients.

DFS 36

NFS Summary

}  Access: Excellent, the API is the UNIX system call
interface for both local and remote files.

}  Location: Not guaranteed but normally achieved;
naming of filesystems is controlled by client mount
operations, but transparency can be ensured by an
appropriate system configuration.

}  Concurrency: Limited but adequate for most
purposes; when read-write files are shared
concurrently between clients, consistency is not
perfect.

}  Replication: Limited to read-only file systems; for
writable files, the SUN Network Information Service
(NIS) runs over NFS and is used to replicate essential
system files.

DFS 37

NFS Summary

}  Failure: Limited but effective; service is suspended if a
server fails. Recovery from failures is aided by the simple
stateless design.

}  Mobility: Hardly achieved; relocation of files is not possible,
relocation of filesystems is possible, but requires updates to
client configurations.

}  Performance: Good; multiprocessor servers achieve very
high performance, but for a single filesystem it's not possible
to go beyond the throughput of a multiprocessor server.

}  Scaling: Good; filesystems (file groups) may be subdivided
and allocated to separate servers. Ultimately, the
performance limit is determined by the load on the server
holding the most heavily-used filesystem (file group).

DFS 38

3: Andrew File System

Andrew File System (AFS)

}  Developed by CMU as part of the Andrew Project. It is
named for Andrew Carnegie and Andrew Mellon

}  Supported and developed as a product by Transarc
Corporation (now IBM Pittsburgh Labs).

}  IBM branched the source of the AFS product, and made
a copy of the source available for community
development and maintenance, the release is called
OpenAFS.

DFS 40

Andrew File System (AFS)

}  Provides access to remote shared files for
UNIX, compatible with NFS

}  Design motivation:
1.  Most file accesses are by a single user
2.  Most files are small
3.  Even a client cache as “large” as 100MB is

supportable (e.g., in RAM)
4.  File reads are much more often that file writes, and

typically sequential not random
5.  Files are accessed in bursts

DFS 41

Design Characteristics

}  Design and implementation supports information
sharing on a large scale (thousands of workstations).

}  Whole-file serving: entire contents of directories and
files are transmitted to client computers by AFS
servers

}  Whole-file caching: once a copy of a file or a chunk
has been transferred to a client computer it is stored
in a cache or local disk;
}  Cache is permanent (survives reboots) and contains several

hundred of the files most recently used from that computer.

DFS 42

Example

}  User in a client computer issues an open system call:
}  there is no current copy of the file in the local cache
}  the server holding the file is located and is sent a request for a

copy of the file
}  The copy is stored in the local UNIX file system in the

client computer, opened and the corresponding file
descriptor is returned to the client

}  Subsequent operations on the file by processes in the
client computer are applied to the local copy

}  User in the client computer issues a close system call:
}  If the local copy has been updated its contents are sent back to

the server. The server updates the file contents and the
timestamps on the file.

}  The copy on the client’s local disk us retained in case it is
needed again by a user-level process on the same computer

DFS 43

AFS Architecture

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Vice and Venus "
are Unix processes"

DFS 44

AFS Architecture

}  Clients have a partitioned space of file names:
a local name space and a shared name space

}  Dedicated servers, called Vice, present the shared
name space to the clients as an homogeneous,
identical, and location transparent file hierarchy

}  Workstations, called Venus, run the Virtue protocol
to communicate with Vice.

}  Are required to have local disks where they store
their local name space

}  Servers collectively are responsible for the storage
and management of the shared name space

DFS 45

System Call Interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

Modified version of BSD, designed to "
intercept open, close, and some other file"
system calls."

DFS 46

File System Calls in AFS

User process UNIX kernel Venus Net Vice
open(FileName,

mode)
If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

DFS 47

AFS Security

}  AFS uses Kerberos for
authentication, and implements
access control lists on
directories for users and
groups.

DFS 48

4: CODA

CODA
}  Coda is a Distributed File System developed as a research project at

Carnegie Mellon University since 1987, descended directly from an
older version of AFS (AFS-2)

}  Features
}  disconnected operation for mobile computing
}  high performance through client side persistent caching
}  server replication
}  security model for authentication, encryption and access control
}  continued operation during partial network failures in server network
}  network bandwidth adaptation
}  good scalability
}  well defined semantics of sharing, even in the presence of network

failures

DFS 50

Access in the Presence of Failures

}  Normal operation: a user reads and writes to the file
system, the client fetches the data the user wants in
the event of network disconnection.

}  Network connection lost: the client's local cache
serves data from this cache and logs all updates.

}  Network reconnection: client transitions from
disconnected operation to a transient "reintegration"
state where logged updates are sent back to the
servers. When all updates are reintegrated, the client
transitions back to normal operation mode.

DFS 51

Replication

}  AFS: one read/write server receive updates and all
other servers act as read-only replicas. Can not
handle network partitions.

}  CODA: all servers can receive updates, greater
availability in the event of network partitions.

}  Local/global conflict: While disconnected the local
updates can potentially clash with other users'
updates on the same objects.

}  Server/server conflict: Optimistic replication can
potentially cause concurrent updates to different
servers on the same object.

}  Coda has extensive repair tools, (manual and
automated), to handle and repair conflicts.

DFS 52

