
Cristina Nita-Rotaru

CS505: Distributed Systems

Chubby. Zookeeper

REQUIRED READING

}  The Chubby Lock Service for Loosely-
Coupled Distributed Systems
OSDI 2006.

}  ZooKeeper: Wait-free coordination for
Internet-scale systems. Usenix 2010

}  Zab: High-performance broadcast for
primary-backup systems. DSN 2011

}  Slides prepare from talks of Chubby and
Zookeeper authors

Chubby. Zookeeper. Zab 2

1: Chubby

Chubby

}  A coarse-grained lock service
}  Provides a means for distributed systems to synchronize access

to shared resources
}  Uses advisory locks

}  Intended for use by “loosely-coupled distributed
systems”

}  Goals
}  High availability
}  Reliability
}  Small storage
}  Easy-to-understand semantics

Chubby. Zookeeper. Zab 4

Advisory vs. Mandatory Locking

}  Advisory (unenforced) locking:
}  Requires cooperation from the participating processes to

ensure serialization.
}  Each process tries to acquire a lock before writing.

}  Mandatory locking:
}  Does not require cooperation from the participating

processes.
}  Kernel checks every open, read, and write to verify that the

calling process is not violating a lock on the given file.

Chubby. Zookeeper. Zab 5

Why Not Mandatory Locks?

}  Locks represent client-controlled resources; how can
Chubby enforce this?

}  Mandatory locks imply shutting down client apps entirely
to do debugging
}  Shutting down distributed applications much trickier than in

single-machine case

Chubby. Zookeeper. Zab 6

How is Chubby Used at Google

}  GFS: Elect a master
}  BigTable: master election, client discovery, table service

locking
}  Well-known location to bootstrap larger systems: store

small amount of meta-data, as the root of the distributed
data structures

}  Partition workloads
}  Name service because of its consistent client caching
}  Locks are coarse: held for hours or days

Chubby. Zookeeper. Zab 7

External Interface

}  Organized as cells (5 replicas)
}  Presents a simple distributed file system
}  Clients can open/close/read/write files

}  Reads and writes are whole-file
}  Supports advisory reader/writer locks
}  Clients can register for notification of file update

Chubby. Zookeeper. Zab 8

How are Files used as Locks

}  Files can have several attributes
}  The contents of the file is one (primary) attribute
}  Owner of the file
}  Permissions
}  Date modified
}  Whether the file is locked or not

Chubby. Zookeeper. Zab 9

Example: Use Chubby for Master
Election

}  All replicas try to acquire a write lock on a designated
file.

}  The replica who gets the lock is the master.
}  Master can then write its address to file; other replicas

can read this file to discover the chosen master name.
}  Chubby can also be used as a name service.

Chubby. Zookeeper. Zab 10

Chubby Cell

Chubby. Zookeeper. Zab 11

Chubby and Consensus

}  Chubby cell is usually 5 replicas (2f+1), tolerates 2 failures
}  3 replicas must be alive for cell to work (otherwise it blocks)

}  Replicas in Chubby must agree on their own master and
official lock values

}  Uses PAXOS algorithm (provides consensus in an
asynchronous system)
}  Memory for individual “facts” in the network
}  A fact is a binding from a variable to a value

Chubby. Zookeeper. Zab 12

Paxos: Processor Assumptions

}  Operate at arbitrary speed
}  Independent, random failures
}  Process with stable storage may rejoin protocol after

failure
}  Do not lie, collude, or attempt to maliciously subvert the

protocol

Chubby. Zookeeper. Zab 13

Paxos: Network Assumptions

}  All processors can communicate with one another
}  Messages are sent asynchronously and may take arbitrarily

long to deliver
}  Order of messages is not guaranteed: they may be lost,

reordered, or duplicated
}  Messages, if delivered, are not corrupted in the process

Chubby. Zookeeper. Zab 14

Paxos in Chubby

}  Replicas in a cell initially use Paxos to establish the leader.
}  Majority of replicas must agree
}  Replicas promise not to try to elect new master for at

least a few seconds (“master lease”)
}  Master lease is periodically renewed

Chubby. Zookeeper. Zab 15

Client Updates

}  All replicas are listed in DNS
}  All client updates go through master
}  Master updates official database; sends copy of update to

replicas
}  Majority of replicas must acknowledge receipt of update before

master writes its own value

}  Clients find master through DNS
}  Contacting replica causes redirect to master

Chubby. Zookeeper. Zab 16

Replica Failure

}  If a replica fails and does not recover for a long time (a
few hours), a fresh machine is selected to be a new
replica, replacing the failed one

}  New replica
}  Updates the DNS
}  Obtains a recent copy of the database

}  Current master polls DNS periodically to discover new
replicas

Chubby. Zookeeper. Zab 17

Chubby File System

}  Looks like simple UNIX FS: /ls/foo/wombat
}  All filenames start with ‘/ls’ (“lockservice”)
}  Second component is Chubby cell (“foo”)
}  Rest of the path is anything you want

}  No inter-directory move operation
}  Permissions use ACLs, non-inherited
}  No symlinks/hardlinks
}  Files have version numbers attached
}  Opening a file receives handle to file

}  Clients cache all file data including file-not-found

Chubby. Zookeeper. Zab 18

ACLs and File Handles

}  Access Control List (ACL)
}  A node has three ACL names (read/write/change)
}  An ACL name is a name to a file in the ACL directory
}  The file lists the authorized users

}  File handle:
}  Has check digits encoded in it; cannot be forged
}  Sequence number: a master can tell if this handle is created by

a previous master
}  Mode information at open time: If previous master created the

handle, a newly restarted master can learn the mode
information

Chubby. Zookeeper. Zab 19

Use of Sequences

}  Lock problems in distributed systems
}  A holds a lock L, issues request write W, then fails
}  B acquires L (because A fails), performs actions
}  W arrives (out-of-order) after B’s actions

}  One approach is to prevent other clients from getting the
lock if a lock become inaccessible or the holder has failed

}  Another approach: Sequencer
}  A lock holder can obtain a sequencer from Chubby
}  It attaches the sequencer to any requests that it sends to other

servers (e.g., Bigtable)
}  The other servers can verify the sequencer information

Chubby. Zookeeper. Zab 20

Chubby Events

}  Master notifies clients if files modified, created, deleted,
lock status changes, etc

}  Clients can subscribe to events (up-calls from Chubby
library)
}  File contents modified: if the file contains the location of a

service, this event can be used to monitor the service location
}  Master failed over
}  Child node added, removed, modified
}  Handle becomes invalid: probably communication problem
}  Lock acquired (rarely used)
}  Locks are conflicting (rarely used)

}  Push-style notifications decrease bandwidth from
constant polling Chubby. Zookeeper. Zab 21

APIs

}  Open()
}  Mode: read/write/change ACL; Events; Lock-delay
}  Create new file or directory?

}  Close()
}  GetContentsAndStat(), GetStat(), ReadDir()
}  SetContents(): set all contents; SetACL()
}  Delete()
}  Locks: Acquire(), TryAcquire(), Release()
}  Sequencers: GetSequencer(), SetSequencer(),

CheckSequencer()

Chubby. Zookeeper. Zab 22

Example: Primary Election

Open(“write mode”);
If (successful) {

 // primary
 SetContents(“identity”);
}
Else {
 // replica
 open (“read mode”, “file-modification event”);
 when notified of file modification:
 primary= GetContentsAndStat();
}

Chubby. Zookeeper. Zab 23

Client Caching

}  Clients cache all file content
}  Strict consistency:

}  Lease based
}  Master will invalidate cached copies upon a write request

}  Client must send respond to Keep-Alive message from
server at frequent interval

}  Keep-Alive messages include invalidation requests
}  Responding to Keep-Alive implies acknowledgement of cache

invalidation

}  Modification only continues after all caches invalidated or
Keep-Alive time out

Chubby. Zookeeper. Zab 24

Client Sessions

}  Sessions maintained between client and server
}  Keep-alive messages required to maintain session every few

seconds
}  A client sends keep-alive requests to a master
}  A master responds by a keep-alive response

}  If session is lost, server releases any client-held handles.
}  What if master is late with next keep-alive?

}  Client has its own (longer) timeout to detect server failure

Chubby. Zookeeper. Zab 25

Master Failure

}  If client does not hear back about Keep-Alive in local
lease timeout, session is in jeopardy
}  Clear local cache
}  Wait for “grace period” (about 45 seconds)
}  Continue attempt to contact master
}  Successful attempt => ok; jeopardy over
}  Failed attempt => session assumed lost

}  If replicas lose contact with master
}  They wait for grace period (4—6 secs)
}  On timeout, hold new election

Chubby. Zookeeper. Zab 26

Master Fail-over: Grace Period

Chubby. Zookeeper. Zab 27

Reliability

}  Started out using replicated Berkeley DB
}  Now uses custom write-thru logging DB
}  Entire database periodically sent to GFS

}  In a different data center

}  Chubby replicas span multiple racks

Chubby. Zookeeper. Zab 28

Scalability

}  90K+ clients communicate with a single Chubby master
(2 CPUs)

}  System increases lease times from 12 sec up to 60 secs
under heavy load

}  Clients cache virtually everything
}  Data is small – all held in RAM (as well as disk)

Chubby. Zookeeper. Zab 29

2: Zokeeper

ZooKeeper

}  Provides to HDSF functionality similar to that provided by
Chubby to GFS

}  Design inspired from Chubby
}  Zookeeper is used to manage master election and store

other process metadata
}  Chubby and Zookeeper are both much more than a

distributed lock service: implementations of highly
available, distributed metadata file systems.

Chubby. Zookeeper. Zab 31

ZooKeeper	

}  Aims to provide a simple and high performance kernel for
building more complex client

}  Wait free
}  FIFO
}  No lock
}  Pipeline architecture	

Chubby. Zookeeper. Zab 32

What is coordination?	

}  Group membership
}  Leader election
}  Dynamic configuration
}  Status monitoring
}  Queuing
}  Critical sections	

Chubby. Zookeeper. Zab 33

Contributions	

}  Coordination kernel
}  Wait-free coordination

}  Coordination recipes
}  Build higher primitives

}  Experience with Coordination
}  Some application use ZooKeeper	

Chubby. Zookeeper. Zab 34

Zookeeper Service	

}  Znode
}  In-memory data node in the Zookeeper data
}  Have a hierarchical namespace
}  UNIX like notation for path

}  Types of Znode
}  Regular
}  Ephemeral

}  Flags of Znode
}  Sequential flag

Chubby. Zookeeper. Zab 35

Zookeeper Service	

}  Watch Mechanism
}  Get notification
}  One time triggers

}  Other properties of Znode
}  Znode isn’t designed for data storage, instead it stores meta-

data or configuration
}  Can store information like timestamp version

}  Session
}  A connection to server from client is a session
}  Timeout mechanism	

Chubby. Zookeeper. Zab 36

Client API	

}  Create(path, data, flags)
}  Delete(path, version)
}  Exist(path, watch)
}  getData(path, watch)
}  setData(path, data, version)
}  getChildren(path, watch)
}  Sync(path)
}  Two version synchronous and asynchronous 	

Chubby. Zookeeper. Zab 37

Guarantees	

}  Linearizable writes
}  All requests that update the state of ZooKeeper are

serializable and respect precedence

}  FIFO client order
}  All requests are in order that they were sent by client.	

Chubby. Zookeeper. Zab 38

Examples of primitives	

}  Configuration Management
}  For dynamic configuration propose
}  Simplest way is to make up a znode c for saving configuration.
}  Other processes set the watch flag on c
}  The notification just indicate there is a update without telling

how many time updates occurs

Chubby. Zookeeper. Zab 39

Examples of primitives	

}  Rendezvous
}  Configuration of the system may not be sure at the begining
}  Create a znode r for this problem
}  When master starts he fills the configuration in r
}  Workers watch node r
}  Set to ephemeral node 	

Chubby. Zookeeper. Zab 40

Examples of primitives	

}  Group Membership
}  Create a znode g
}  Each process create a znode under g in ephemeral mode
}  Watch g for group information	

Chubby. Zookeeper. Zab 41

Examples of primitives	

}  Simple Lock
}  Create a znode l for locking
}  If one gets to create l he gets the lock
}  Others who fail to create watch l
}  Problems: herd effect

Chubby. Zookeeper. Zab 42

Examples of primitives	

}  Simple Lock without herd effect

Chubby. Zookeeper. Zab 43

Examples of primitives	

}  Read/Write Lock

Chubby. Zookeeper. Zab 44

Examples of primitives	

}  Double Barrier
}  To synchronize the beginning and the end of compuation
}  Create a znode b, and every process needs to register on it, by

adding a znode under b
}  Set a threshold that starts the process

Chubby. Zookeeper. Zab 45

Application	

}  Fetching Service
}  Using ZooKeeper for recovering from failure of masters
}  Configuration metadata and leader election	

Chubby. Zookeeper. Zab 46

Application	

}  Yahoo Message Broker
}  A distributed publish-subscribe system	

Chubby. Zookeeper. Zab 47

3: Zab

Zab	

}  It provides an important service for Zookeeper
}  Atomic broadcast for primary-backup schemes
}  Addresses the scenario when the primary (i.e the leader)

fails
}  Semantics

}  Primary order: similar but different from causal order

}  Assumes that state changes are idempotent, i.e. applying
the same state multiple times does not lead to
inconsistencies
}  At least once semantics is enough

Chubby. Zookeeper. Zab 49

2PC Simplified Version: No Failures

Coordinator:
Multicast ready_to_commit
Collect replies

All Ok => send commit
Else => send abort

Participant receives:
ready_to_commit => save to temp
area and reply Ok
commit => make changes
permanent
abort => delete temp area

Chubby. Zookeeper. Zab 50

p0 p1 p2 Ready to
Commit?

Save to
temp area

OK
OK

Commit! Make
permanent

Zab vs Group Communication

}  Zab does borrow some concepts from group
communication

}  Group communication also uses the notion of VIEW – to
define membership
}  View changes take place because of join/leave, process crashes

and network partitions

}  Zab uses VIEWs to identify leadership of primaries
}  View changes take place when a primary crashed or lost

support from a quorum

Chubby. Zookeeper. Zab 51

Other features

}  Support for prefix of transactions submitted concurrently
by a client are applied in FIFO order

}  Fast recovery from primary crashes: allows the primary
to identify the sequence of transactions to recover the
application state
}  Does not need to reexecute orderings for pending

transactions

Chubby. Zookeeper. Zab 52

Process roles

}  All process either Lead or Follow
}  Followers

}  Maintain a history of transactions

}  Leader
}  Can change

}  Transactions are identified by <e, c>
}  e is the epoch number of the leader
}  C: epoch counter

Chubby. Zookeeper. Zab 53

Properties of the PO Broadcast

}  Integrity
}  Only broadcast transactions are delivered
}  Leaders recovers before broadcasting new transactions

}  Total order
}  Agreement

}  Followers deliver the same transaction and in the same order

}  They are defined with respect to the leadership of a
leader
}  Similar with the way such properties were defined in the

context of Virtual Synchrony

Chubby. Zookeeper. Zab 54

Primary Order

}  Local order:
}  Order in which transactions are accepted by the leader

}  Global order:
}  Defined by the order of epochs

Chubby. Zookeeper. Zab 55

Zab

}  Phase 0 – Leader election
}  Prospective leader L elected

}  Phase 1 – Discovery
}  Phase 2

}  Followers promise not to go back to previous epochs
}  Followers send to the leader L their last epoch and history
}  L selects longest history of latest epoch

}  Phase 3 – Synchronization
}  Sends new history to followers
}  Followers confirm leadership

}  Phase 3 – Broadcast
}  Proposes new transactions
}  Commits if quorum acknowledges

Chubby. Zookeeper. Zab 56

