
Cristina Nita-Rotaru

CS505: Distributed Systems

BigTable. Hbase. Megastore. Spanner

1: BigTable

Acknowledgement

}  Slides based on material from course at UMichigan, U
Washington, and the authors of BigTable, Megastore,
Spanner.

BigTable. HBase. Megastore. Spanner 3

REQUIRED READING

}  Bigtable: A Distributed Storage
System for Structured Data. 2008.
ACM Trans. Comput. Syst. 26, 2
(Jun. 2008), 1-26

}  Megastore: Providing Scalable,
Highly Available Storage for
Interactive Services, CIDR 2011

}  Spanner, Google’s globally
distributed database. OSDI 2012.

BigTable. HBase. Megastore. Spanner 4

BigTable

}  Distributed storage system for managing structured data
such as:
}  URLs: contents, crawl metadata, links, anchors, pagerank
}  Per-user data: user preference settings, recent queries/search

results
}  Geographic locations: physical entities (shops, restaurants, etc.),

roads, satellite image data, user annotations, …

}  Designed to scale to a very large size: petabytes of data
distributed across thousands of servers

}  Used for many Google applications
}  Web indexing, Personalized Search, Google Earth, Google

Analytics, Google Finance, … and more

BigTable. HBase. Megastore. Spanner 5

Why BigTable?

}  Scalability requirements not met by existent commercial
systems:
}  Millions of machines
}  Hundreds of millions of users
}  Billions of URLs, many versions/page
}  Thousands or queries/sec
}  100TB+ of satellite image data

}  Low-level storage optimization helps performance
significantly

BigTable. HBase. Megastore. Spanner 6

Goals

}  Simpler model that supports dynamic control over data
and layout format

}  Want asynchronous processes to be continuously
updating different pieces of data: access to most current
data at any time

}  Examine data changes over time: e.g. contents of a web
page over multiple crawls

}  Support for:
}  Very high read/write rates (millions ops per second)
}  Efficient scans over all or subsets of data
}  Efficient joins of large one-to-one and one-to-many datasets

BigTable. HBase. Megastore. Spanner 7

Design Overview

}  Distributed multi-level map
}  Fault-tolerant, persistent
}  Scalable

}  Thousands of servers
}  Terabytes of in-memory data
}  Petabyte of disk-based data
}  Millions of reads/writes per second, efficient scans

}  Self-managing
}  Servers can be added/removed dynamically
}  Servers adjust to load imbalance

BigTable. HBase. Megastore. Spanner 8

Typical Google Cluster

Shared pool of machines that also run other distributed applications

BigTable. HBase. Megastore. Spanner 9

Building Blocks

}  Google File System (GFS)
}  Stores persistent data (SSTable file format)

}  Scheduler
}  Schedules jobs onto machines

}  Chubby
}  Lock service: distributed lock manager, master election,

location bootstrapping

}  MapReduce (optional)
}  Data processing
}  Read/write BigTable data

BigTable. HBase. Megastore. Spanner 10

Chubby

}  {lock/file/name} service
}  Coarse-grained locks

}  Provides a namespace that consists of directories and small
files.

}  Each of the directories or files can be used as a lock.

}  Each client has a session with Chubby
}  The session expires if it is unable to renew its session lease

within the lease expiration time.

}  5 replicas Paxos, need a majority vote to be active

BigTable. HBase. Megastore. Spanner 11

Data Model

}  A sparse, distributed persistent multi-dimensional sorted
map

}  Rows, column are arbitrary strings

}  (row, column, timestamp) -> cell contents

BigTable. HBase. Megastore. Spanner 12

Data Model: Rows

}  Arbitrary string
}  Access to data in a row is atomic

}  Row creation is implicit upon storing data
}  Ordered lexicographically

BigTable. HBase. Megastore. Spanner 13

Rows (cont.)

}  Rows close together lexicographically usually on one or a
small number of machines

}  Reads of short row ranges are efficient and typically
require communication with a small number of machines

}  Can exploit lexicographic order by selecting row keys so
they get good locality for data access

}  Example:
}  math.gatech.edu, math.uga.edu, phys.gatech.edu,

phys.uga.edu
}  VS
}  edu.gatech.math, edu.gatech.phys, edu.uga.math,

edu.uga.phys
BigTable. HBase. Megastore. Spanner 14

Data Model: Columns

}  Two-level name structure: family: qualifier
}  Column family:

}  Is the unit of access control
}  Has associated type information

}  Qualifier gives unbounded columns
}  Additional levels of indexing, if desired

BigTable. HBase. Megastore. Spanner 15

Data Model: Timestamps (64bit
integers)

}  Store different versions of data in a cell:
}  New writes default to current time, but timestamps for writes can

also be set explicitly by clients

}  Lookup options
}  Return most recent K values
}  Return all values

}  Column families can be marked w/ attributes:
}  Retain most recent K values in a cell
}  Keep values until they are older than K seconds

BigTable. HBase. Megastore. Spanner 16

Data Model: Tablet

}  The row range for a table is dynamically partitioned
}  Each row range is called a tablet (typically 10-100 bytes)
}  Tablet is the unit for distribution and load balancing

BigTable. HBase. Megastore. Spanner 17

Storage: SSTable

}  Immutable, sorted file of key-value pairs
}  Optionally, SSTable can be completely mapped into

memory
}  Chunks of data plus an index

}  Index is of block ranges, not values
}  Index is loaded into memory when SSTable is open

Index

64K
block

64K
block

64K
block

SSTable

BigTable. HBase. Megastore. Spanner 18

Tablet vs. SSTable

}  Tablet is built out of multiple SSTables

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

BigTable. HBase. Megastore. Spanner 19

Table vs. Tablet vs. SSTable

}  Multiple tablets make up the table
}  SSTables can be shared
}  Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat

BigTable. HBase. Megastore. Spanner 20

Example: WebTable

}  Want to keep copy of a large collection of web pages and
related information

}  Use URLs as row keys
}  Various aspects of web page as column names
}  Store contents of web pages in the contents: column

under the timestamps when they were fetched.
BigTable. HBase. Megastore. Spanner 21

Implementation

}  Library linked into every client
}  One master server responsible for:

}  Assigning tablets to tablet servers
}  Detecting addition and expiration of tablet servers
}  Balancing tablet-server load
}  Garbage collection
}  Handling schema changes such as table and column family creation

}  Many tablet servers, each of them:
}  Handles read and write requests to its table
}  Splits tablets that have grown too large

}  Clients communicate directly with tablet servers for reads and
writes.

BigTable. HBase. Megastore. Spanner 22

Deployment

BigTable. HBase. Megastore. Spanner 23

More about Tablets

}  Serving machine responsible for 10 - 1000
}  Usually about 100 tablets

}  Fast recovery:
}  100 machines each pick up 1 tablet for failed machine

}  Fine-grained load balancing:
}  Migrate tablets away from overloaded machine
}  Master makes load-balancing decisions

BigTable. HBase. Megastore. Spanner 24

Tablet Location

}  Since tablets move around from server to server, given a
row, how do clients find the right machine
}  Find tablet whose row range covers the target row

}  METADATA: Key: table id + end row, Data: location
}  Aggressive caching and prefetching at client side

BigTable. HBase. Megastore. Spanner 25

Tablet Assignment

}  Each tablet is assigned to one tablet server at a time.
}  Master server

}  Keeps track of the set of live tablet servers and current
assignments of tablets to servers.

}  Keeps track of unassigned tablets.

}  When a tablet is unassigned, master assigns the tablet to a
tablet server with sufficient room.

}  It uses Chubby to monitor health of tablet servers, and
restart/replace failed servers.

BigTable. HBase. Megastore. Spanner 26

Tablet Assignment: Chubby

}  Tablet server registers itself with Chubby by getting a lock
in a specific directory of Chubby

}  Chubby gives “lease” on lock, must be renewed
periodically

}  Server loses lock if it gets disconnected
}  Master monitors this directory to find which servers

exist/are alive
}  If server not contactable/has lost lock, master grabs lock and

reassigns tablets
}  GFS replicates data. Prefer to start tablet server on same

machine that the data is already at

BigTable. HBase. Megastore. Spanner 27

API

}  Metadata operations
}  Create/delete tables, column families, change metadata

}  Writes (atomic)
}  Set(): write cells in a row
}  DeleteCells(): delete cells in a row
}  DeleteRow(): delete all cells in a row

}  Reads
}  Scanner: read arbitrary cells in a bigtable

}  Each row read is atomic
}  Can restrict returned rows to a particular range
}  Can ask for just data from 1 row, all rows, etc.
}  Can ask for all columns, just certain column families, or specific

columns
BigTable. HBase. Megastore. Spanner 28

Refinements: Locality Groups

}  Can group multiple column families into a locality group
}  Separate SSTable is created for each locality group in each

tablet.

}  Segregating columns families that are not typically
accessed together enables more efficient reads.
}  In WebTable, page metadata can be in one group and contents

of the page in another group.

BigTable. HBase. Megastore. Spanner 29

Refinements: Compression

}  Many opportunities for compression
}  Similar values in the same row/column at different timestamps
}  Similar values in different columns
}  Similar values across adjacent rows

}  Two-pass custom compressions scheme
}  First pass: compress long common strings across a large

window
}  Second pass: look for repetitions in small window

}  Speed emphasized, but good space reduction (10-to-1)

BigTable. HBase. Megastore. Spanner 30

Refinements: Bloom Filters

}  Read operation has to read from disk when desired
SSTable is not in memory

}  Reduce number of accesses by specifying a Bloom filter:
}  Allows to ask if a SSTable might contain data for a specified

row/column pair.
}  Small amount of memory for Bloom filters drastically reduces

the number of disk seeks for read operations
}  Results in most lookups for non-existent rows or columns not

needing to touch disk

BigTable. HBase. Megastore. Spanner 31

Real Applications

BigTable. HBase. Megastore. Spanner 32

Limitations

}  No transactions supported
}  Does not support full relational data model
}  Achieved throughput is limited by GFS

BigTable. HBase. Megastore. Spanner 33

Lessons Learnt

}  Large distributed systems vulnerable to many type of
failures
}  Memory and network corruption
}  Large clock skew
}  Hung machines
}  Extended and asymmetric network partitions
}  Bugs in other systems

}  Proper system-level monitoring critical
}  Simple design better
}  Do not add new features before they are needed

BigTable. HBase. Megastore. Spanner 34

2: HBase

HBase

}  Open-source, distributed, versioned, column-oriented
data store, modeled after Google's Bigtable

}  Random, real time read/write access to large data:
}  Billions of rows, millions of columns
}  Distributed across clusters of commodity hardware

BigTable. HBase. Megastore. Spanner 36

History	

}  2006.11
}  Google releases paper on BigTable

}  2007.2
}  Initial HBase prototype created as Hadoop contrib.

}  2007.10
}  First useable HBase

}  2008.1
}  Hadoop become Apache top-level project and HBase becomes

subproject

}  Current stable release 0.98.x

BigTable. HBase. Megastore. Spanner 37

HBase Is Not …	

}  Tables have one primary index, the row key.
}  No join operators.
}  Scans and queries can select a subset of available columns.
}  There are three types of lookups:

}  Fast lookup using row key and optional timestamp.
}  Full table scan
}  Range scan from region start to end.	

BigTable. HBase. Megastore. Spanner 38

HBase Is Not …(2)	

}  Limited atomicity and transaction support.
}  HBase supports multiple batched mutations of single rows only.
}  Data is unstructured and untyped.

}  No accessed or manipulated via SQL.
}  Programmatic access via Java, REST, or Thrift APIs.
}  Scripting via JRuby.	

BigTable. HBase. Megastore. Spanner 39

3: Megastore

Megastore	

}  Designed to meet following requirements
}  Highly scalable (MySQL is not enough)
}  Rapid development (fast time-to-market)
}  Low latency (service must be responsive)
}  Consistent view of data (update result)
}  Highly available (24/7 internet service)

}  Scales and provides consistent view of the data
}  Scales by using NoSQL (BigTable)
}  Partitions data
}  Uses Paxos to provide consistent view within a partition

BigTable. HBase. Megastore. Spanner 41

Partitioning and Locality	

BigTable. HBase. Megastore. Spanner 42

Partitioning and Locality (cont.)	

BigTable. HBase. Megastore. Spanner 43

Application	
 Entity Groups	
 Cross-EG Ops	

Email	
 User accounts	
 none	

Blogs	
 Users, Blogs	

Access control,
notifications,
global indexes	

Mapping	
 Local patches	

Patch-spanning

ops	

Social	
 Users, Groups	

Messages,

relationships,
notifications	

Resources	
 Sites	
 Shipments	

Entity Group Examples

BigTable. HBase. Megastore. Spanner 44

Bigtable	

•  Bigtable (e.g. key-value store) is straightforward to
store and query hierarchical data
•  Runs on Google File System and using Chubby, a
distributed lock service based on Paxos (5 servers)

BigTable. HBase. Megastore. Spanner 45

Data Model	

}  Abstract tuples of an RDBMS + row-column storage of
NoSQL

}  RDBMS features
}  Data model is declared in a schema
}  Tables per schema / entities per table / properties per entity
}  Sequence of properties is used for primary key of entity
}  Hierarchy (foreign key)

}  Tables are either entity group root or child tables
}  Child table points to root table
}  Root table and child table are stored in the same entity group

BigTable. HBase. Megastore. Spanner 46

Example	

BigTable. HBase. Megastore. Spanner 47

Secondary Indexes	

}  Local index: separate indexed for each entity group (e.g.
PhotosByTime)

}  Global index: spans entity groups, indexed index across
entity groups (e.g. PhotosByTag)

}  Repeated index: Supports indexing repeated values (e.g.
PhotosByTag

}  Inline index: Provide a way to de-normalized data from
source entities
}  A virtual repeated column in the target entry (e.g.

PhotosByTime)

BigTable. HBase. Megastore. Spanner 48

Transactions and Concurrency Control	

}  Each entity group is a mini-database that provides serializable ACID
Semantics

}  A transaction writes its update into the entity group’s write-ahead log, then
the update is applied to the data

}  MVCC: multiversion concurrency control
}  Read consistency

}  Current: last committed value
}  Snapshot: value as a start of the read transaction
}  Inconsistent reads: ignore the state of log and read the last values

directly
}  Write consistency

}  Always begins with a current read to determine the next available log
}  Commit operation assigns updates of write-ahead log a timestamp

higher than any previous one
}  Paxos uses optimistic concurrency with write operations

BigTable. HBase. Megastore. Spanner 49

Transactions in Megastore	

}  Read: Obtain the timestamp and log position of the last
committed transaction

}  Application logic: Read from Bigtable and gather writes
into a log entry

}  Commit: Use Paxos to achieve consensus for appending
that entry to the log

}  Apply: Write changes to the entities and indexes in
Bigtable

}  Clean up: Delete data that is no longer required	

BigTable. HBase. Megastore. Spanner 50

Replication	

}  Single, consistent view of the data stored in its underlying
replicas

}  Reads and writes can be initiated from any replicas
}  ACID semantics are preserved regardless of what replica

a client starts from
}  Replication is done per entity group by synchronously

replicating the group’s transaction log
}  Writes require one round of inter-datacenter

communication	

BigTable. HBase. Megastore. Spanner 51

Replication Architecture	
Replica type
•  Full: contain all the entity and index data, able to service current reads
•  Witness: storing the write-ahead log (for write transaction)
•  Read-only: inverse of witness (storing full snapshot of the data)

BigTable. HBase. Megastore. Spanner 52

3: Spanner

Limitations of BigTable

}  Difficult to use for applications that
}  have complex, evolving schemas,
}  want strong consistency in the presence of wide-area

replication

BigTable. HBase. Megastore. Spanner 54

What is Spanner

}  Scalable, multi-version, globally- distributed, and
synchronously-replicated database

}  Distribute data at global scale and support externally-
consistent distributed transactions.

}  Features:
}  non- blocking reads in the past
}  lock-free read-only transactions,
}  atomic schema changes

}  Scale up to
}  millions of machines
}  hundreds of datacenters
}  trillions of database rows

BigTable. HBase. Megastore. Spanner 55

What is Spanner

}  Applications can control replication configurations for
data

}  Applications can specify constraints
}  to control which datacenters contain which data, how far data

is from its users (to control read latency)
}  how far replicas are from each other (to control write latency)
}  how many replicas are maintained (to control durability,

availability, and read performance).

}  Data can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters

BigTable. HBase. Megastore. Spanner 56

Spanner – key idea

}  Consistent reads and writes
}  How:

}  use global commit timestamps to transactions, even though
transactions may be distributed.

}  timestamps represent serialization order.
}  provide such guarantees at global scale

}  How to get the global timestamps: TrueTime
}  Relies on existing algorithms as Paxos and 2PC

BigTable. HBase. Megastore. Spanner 57

Architecture

}  Instance – it’s called universe; examples: test, deployment,
production
}  Universe master
}  Placement master

}  handles automated movement of data across zones on the timescale
of minutes

}  periodically communicates with the spanservers to find data that
needs to be moved, either to meet updated replication constraints or
to balance load.

}  Universe consists of zones
}  Denotes physical isolation
}  Several zones can be in a datacenter

BigTable. HBase. Megastore. Spanner 58

Architecture

BigTable. HBase. Megastore. Spanner 59

Zones

}  Zonemaster
}  assigns the data to span servers

}  Spanservers
}  hundreds to thousands
}  store data
}  responsible for between 100 and 1000 instances of a data

structure called a tablet (different from the BigTable tablet)
}  each data has a timestamp

}  Location proxies
}  used by clients to locate the spanservers assigned to serve

their data

BigTable. HBase. Megastore. Spanner 60

Replication

BigTable. HBase. Megastore. Spanner 61

More about replication

}  Directory – analogous to bucket in BigTable
}  Smallest unit of data placement
}  Smallest unit to define replication properties

}  2PC and Paxos-based replication
}  Back End: Colossus (successor to GFS)
}  Paxos State Machine on top of each tablet stores meta

data and logs of the tablet.
}  Leader among replicas in a Paxos group is chosen and all

write requests for replicas in that group initiate at leader.
}  Transaction Leader

}  Is Paxos Leader if transaction involves one Paxos group

BigTable. HBase. Megastore. Spanner 62

TrueTime

}  Leverages hardware features like GPS and Atomic Clocks
}  Implemented via TrueTime API

}  Key method being now() which not only returns current
system time but also another value (ε) which tells the
maximum uncertainty in the time returned

}  Set of time master server per datacenters and time slave
daemon per machines

}  Majority of time masters are GPS fitted and few others
are atomic clock fitted (Armageddon masters)

}  Daemon polls variety of masters and reaches a consensus
about correct timestamp

BigTable. HBase. Megastore. Spanner 63

TrueTime

}  TrueTime uses both GPS and Atomic clocks since they
are different failure rates and scenarios

}  Two other boolean methods in API are
}  After(t) – returns TRUE if t is definitely passed
}  Before(t) – returns TRUE if t is definitely not arrived

}  TrueTime uses these methods in concurrency control and
t serialize transactions

BigTable. HBase. Megastore. Spanner 64

TrueTime

}  After() is used for Paxos Leader Leases
}  Uses after(Smax) to check if Smax is passed so that Paxos

Leader can abdicate its slaves.

}  Paxos Leaders can not assign timestamps(Si) greater than
Smax for transactions(Ti) and clients can not see the data
commited by transaction Ti till after(Si) is true.
}  After(t) – returns TRUE if t is definitely passed
}  Before(t) – returns TRUE if t is definitely not arrived

}  Replicas maintain a timestamp tsafe which is the
maximum timestamp at which that replica is up to date.

BigTable. HBase. Megastore. Spanner 65

TrueTime

}  Read-Write – requires lock.
}  Read-Only – lock free.

}  Requires declaration before start of transaction.
}  Reads information that is up to date

}  Snapshot Read – Read information from past by specifying
a timestamp or bound
}  Use specifies specific timestamp from past or timestamp bound

so that data till that point will be read.

BigTable. HBase. Megastore. Spanner 66

Applications

}  Google advertising backend application – F1
}  Replicated across 5 datacenters spread across US

BigTable. HBase. Megastore. Spanner 67

