
Cristina Nita-Rotaru

CS526: Information security

Web security

Readings for This Lecture

•  Wikipedia
}  HTTP Cookie
}  Same Origin Policy
}  Cross Site Scripting
}  Cross Site Request Forgery

Web security 2

1: Background

Background

}  Many sensitive tasks are done through web
}  Online banking, online shopping
}  Database access
}  System administration

}  Web applications and web users are targets of many
attacks
}  Cross site scripting
}  SQL injection
}  Cross site request forgery
}  Information leakage
}  Session hijacking

Web security 4

Browser

Network

}  Browser sends requests
}  May reveal private information (in forms, cookies)

}  Browser receives information, code
}  May corrupt state by running unsafe code

}  Interaction susceptible to network attacks
}  Use HTTPS, which uses SSL/TLS

OS
Hardware

Web
site

request

reply

Browser and Network

Web security 5

Web Security Issues

}  Secure communications between client & server
}  HTTPS (HTTP over Secure Socket Layer)

}  User authentication & session management
}  Cookies & other methods

}  Active contents from different websites
}  Protecting resources maintained by browsers

}  Web application security
}  Web site authentication (e.g., anti-phishing)
}  Privacy concerns

Web security 6

HTTP: HyperText Transfer Protocol

}  Browser sends HTTP requests to the server
}  Methods: GET, POST, HEAD, …
}  GET: to retrieve a resource (html, image, script, css,…)
}  POST: to submit a form (login, register, …)
}  HEAD

}  Server replies with a HTTP response
}  Stateless request/response protocol

}  Each request is independent of previous requests
}  Statelessness has a significant impact on design and

implementation of applications

Web security 7

HTTP

}  HTTP is a stateless protocol.
}  Hosts do not need to retain information about users

between requests
}  Web applications must use alternative methods to track

the user's progress from page to page
}  sending and receiving cookies
}  server side sessions, hidden variables and URL encoded

parameters (such as /index.php?
session_id=some_unique_session_code).

Web security 8

Use Cookies to Store State Info

}  Cookies
}  A cookie is a name/value pair created by a website to

store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state
Web security 9

Cookies Fields

}  An example cookie from my browser
}  Name session-token
}  Content "s7yZiOvFm4YymG….”
}  Domain .amazon.com
}  Path /
}  Send For Any type of connection
}  Expires Monday, September 08, 2031 7:19:41 PM

Web security 10

More about Cookies

}  Stored by the browser
}  Used by the web applications

}  used for authenticating, tracking, and maintaining specific
information about users
}  e.g., site preferences, contents of shopping carts

}  Cookie ownership
}  Once a cookie is saved on your computer, only the website that

created the cookie can read it

}  Security aspects
}  Data may be sensitive
}  May be used to gather information about specific users

Web security 11

Web Authentication via Cookies

}  HTTP is stateless
}  How does the server recognize a user who has signed in?

}  Servers can use cookies to store state on client
}  After client successfully authenticates, server computes an

authenticator and gives it to browser in a cookie
}  Client cannot forge authenticator on his own (session id)

}  With each request, browser presents the cookie
}  Server verifies the authenticator

Web security 12

A Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

Web security 13

Browser Cookie Management

}  Cookie Same-origin ownership
}  Once a cookie is saved on your computer, only the Web site that

created the cookie can read it

}  Variations
}  Temporary cookies

}  Stored until you quit your browser

}  Persistent cookies
}  Remain until deleted or expire

}  Third-party cookies
}  Originates on or sent to a web site other than the one that provided

the current page

Web security 14

Example: Third-Party Cookies

}  Get a page from merchant.com
}  Contains
}  Image fetched from DoubleClick.com

}  DoubleClick knows IP address and page you were looking at

}  DoubleClick sends back a suitable advertisement
}  Stores a cookie that identifies "you" at DoubleClick

}  Next time you get page with a doubleclick.com image
}  Your DoubleClick cookie is sent back to DoubleClick
}  DoubleClick could maintain the set of sites you viewed
}  Send back targeted advertising (and a new cookie)

}  Cooperating sites
}  Can pass information to DoubleClick in URL, …

Web security 15

Example: Session State in URL

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View Catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check out Select Item

Store session information in URL; Easily read on network

Web security 16

2: Cross Site Scripting

Client Side Scripting

}  Web pages (HTML) can embed dynamic contents (code)
that can be executed on the browser

}  JavaScript
}  embedded in web pages and executed inside browser

}  Java applets
}  small pieces of Java bytecodes that execute in browsers

Web security 18

HTML and Scripting

<html>
 …
 <P>
<script>

 var num1, num2, sum
 num1 = prompt("Enter first number")
 num2 = prompt("Enter second number")
 sum = parseInt(num1) + parseInt(num2)
 alert("Sum = " + sum)

</script>
 …

</html>

Browser receives content, displays
HTML and executes scripts

Web security 19

Scripts are Powerful

}  Client-side scripting is powerful and flexible, and can
access the following resources
}  Local files on the client-side host

}  read / write local files

}  Webpage resources maintained by the browser
}  Cookies
}  Domain Object Model (DOM) objects

¨  steal private information
¨  control what users see
¨  impersonate the user	

Web security 20

Browser as an Operating System

}  Web users visit multiple websites simultaneously
}  A browser serves web pages (which may contain

programs) from different web domains
}  a browser runs programs provided by mutually untrusted

entities
}  running code one does not know/trust is dangerous
}  a browser also maintains resources created/updated by web

domains

}  Browser must confine (sandbox) these scripts so that they
cannot access arbitrary local resources

}  Browser must have a security policy to manage/protect
browser-maintained resources and to provide separation
among mutually untrusted scripts Web security 21

Same Origin Policy

}  The basic security model enforced in the browser
}  SoP isolates the scripts and resources downloaded from

different origins
}  E.g., evil.org scripts cannot access bank.com resources

}  Use origin as the security principal
}  Origin = domain name + protocol + port

}  all three must be equal for origin to be considered the same

Web security 22

Same Original Policy: What it Controls

}  Same-origin policy applies to the following accesses:
}  manipulating browser windows
}  URLs requested via the XmlHttpRequest

}  XmlHttpRequest is an API that can be used by web browser scripting
languages to transfer XML and other text data to and from a web
server using HTTP, by establishing an independent and asynchronous
communication channel.
¨  used by AJAX

}  manipulating frames (including inline frames)
}  manipulating documents (included using the object tag)
}  manipulating cookies

Web security 23

Problems with S-O Policy

}  Poorly enforced on some browsers
}  Particularly older browsers

}  Limitations if site hosts unrelated pages
}  Example: Web server often hosts sites for unrelated parties

}  http://www.example.com/account/
}  http://www.example.com/otheraccount/

}  Same-origin policy allows script on one page to access
properties of document from another

}  Can be bypassed in Cross-Site-Scripting attacks
}  Usability: Sometimes prevents desirable cross-origin

resource sharing

Web security 24

Cross Site Scripting (XSS)

}  Recall the basics
}  scripts embedded in web pages run in browsers
}  scripts can access cookies

}  get private information

}  and manipulate DOM objects
}  controls what users see

}  scripts controlled by the same-origin policy

}  Why would XSS occur
}  Web applications often take user inputs and use them as part

of webpage (these inputs can have scripts)

Web security 25

How XSS Works on Online Blog

}  Everyone can post comments, which will be displayed to
everyone who views the post

}  Attacker posts a malicious comment that includes script
(which reads local authentication credentials and sends
them of to the attacker)

}  Anyone who viewed the post can have local
authentication cookies stolen

}  Web apps will check that posts do not include scripts,
but the check sometimes fail.

}  Bug in the web application. Attack happens in browser.

Web security 26

Effect of the Attack

}  Attacker can execute arbitrary scripts in browser

}  Can manipulate any DOM component on victim.com
}  Control links on page
}  Control form fields (e.g. password field) on this page and linked

pages.

}  Can infect other users: MySpace.com worm.

Web security 27

MySpace.com (Samy worm)

}  Users can post HTML on their pages
}  MySpace.com ensures HTML contains no

<script>, <body>, onclick,

}  However, attacker find out that a way to include Javascript
within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”
}  With careful javascript hacking:

}  Samy’s worm: infects anyone who visits an infected MySpace
page … and adds Samy as a friend.

}  Samy had millions of friends within 24 hours.
}  More info: http://namb.la/popular/tech.html

Web security 28

Avoiding XSS bugs (PHP)

}  Main problem:
}  Input checking is difficult --- many ways to inject scripts

into HTML.

}  Preprocess input from user before echoing it
}  PHP: htmlspecialchars(string)
 & → & " → " ' → '

 < → < > → >
}  htmlspecialchars(

 "Test", ENT_QUOTES);
 Outputs:
 Test

Web security 29

Avoiding XSS bugs (ASP.NET)

}  ASP.NET 1.1:

}  Server.HtmlEncode(string)
}  Similar to PHP htmlspecialchars

}  validateRequest: (on by default)
}  Crashes page if finds <script> in POST data.

}  Looks for hardcoded list of patterns.

}  Can be disabled:

 <%@ Page validateRequest=“false" %>

Web security 30

3: Cross site request forgery

Cross site request forgery (abbrev. CSRF
or XSRF)

}  Also known as one click attack or session riding
}  Effect: Transmits unauthorized commands from a user

who has logged in to a website to the website.
}  Recall that a browser attaches cookies set by domain X

to a request sent to domain X; the request may be from
another domain
}  Site Y redirects you to facebook; if you already logged in, the

cookie is attached by the browser

Web security 32

CSRF Explained

}  Example:
}  User logs in to bank.com. Forgets to sign off.
}  Session cookie remains in browser state

}  Then user visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

}  Browser sends user auth cookie with request
}  Transaction will be fulfilled

}  Problem:
}  The browser is a confused deputy; it is serving both the

websites and the user and gets confused who initiated a
request

Web security 33

GMail Incidence: Jan 2007

}  Allows the attacker to steal a user’s contact
}  Google docs has a script that run a callback function,

passing it your contact list as an object. The script
presumably checks a cookie to ensure you are logged into
a Google account before handing over the list.

}  Unfortunately, it doesn’t check what page is making the
request. So, if you are logged in on window 1, window 2
(an evil site) can make the function call and get the
contact list as an object. Since you are logged in
somewhere, your cookie is valid and the request goes
through.

Web security 34

Real World CSRF Vulnerabilities

}  Gmail
}  NY Times
}  ING Direct (4th largest saving bank in US)
}  YouTube
}  Various DSL Routers
}  Purdue WebMail
}  PEFCU
}  Purdue CS Portal
}  …

Web security 35

Prevention

}  Server side:
}  use cookie + hidden fields to authenticate a web form

}  hidden fields values need to be unpredictable and user-specific; thus
someone forging the request need to guess the hidden field values

}  requires the body of the POST request to contain cookies
}  Since browser does not add the cookies automatically, malicious

script needs to add the cookies, but they do not have access because
of Same Origin Policy

}  User side:
}  logging off one site before using others
}  selective sending of authentication tokens with requests (may

cause some disruption in using websites)

Web security 36

Other Web Threats

}  SQL Injection
}  Side channel leakages
}  Web browsing privacy: third-party cookies

Web security 37

3: SQL-injection

Acknowledgments: xkcd.com
Web security 39

What is a SQL Injection Attack?

}  Many web applications take user input from a form
}  Often this user input is used literally in the construction

of a SQL query submitted to a database.

}  SELECT productdata FROM table WHERE productname =
‘user input product name’;

}  A SQL injection attack involves placing SQL statements in
the user input

Web security 40

An Example SQL Injection Attack

}  Product Search:

}  This input is put directly into the SQL statement within
the Web application:
}  $query = “SELECT prodinfo FROM prodtable WHERE

prodname = ‘” . $_POST[‘prod_search’] . “’”;

}  Creates the following SQL:
}  SELECT prodinfo FROM prodtable WHERE prodname =

‘blah‘ OR ‘x’ = ‘x’
}  Attacker has now successfully caused the entire database to be

returned.

Web security 41

blah‘ OR ‘x’ = ‘x

SQL Injection Attacks Results

}  Add new data to the database
}  Modify data currently in the database

}  Could be very costly to have an expensive item suddenly be
deeply ‘discounted’

}  Often can gain access to other user’s system capabilities
by obtaining their password

Web security 42

Defenses

}  Use provided functions for escaping strings
}  Many attacks can be thwarted by simply using the SQL string

escaping mechanism ‘ à \’ and “ à \”

}  Check syntax of input for validity
}  Many classes of input have fixed languages

}  Have length limits on input
}  Many SQL injection attacks depend on entering long strings

}  Scan query string for undesirable word combinations that
indicate SQL statements

}  Limit database permissions and segregate users
}  Connect with read-only permission if read is the goal
}  Don’t connect as a database administrator from web app

Web security 43

Defenses: PREPARE statement

}  For existing applications adding PREPARE statements will
prevent SQL injection attacks

}  Hard to do automatically with static techniques
}  Need to guess the structure of query at each query issue

location
}  Query issued at a location depends on path taken in program

}  Human assisted efforts can add PREPARE statements
}  Costly effort

}  Is it possible to dynamically infer the benign query
structure?

Web security 44

Dynamic Candidate Evaluations

}  Create benign sample inputs (Candidate Inputs) for
every user input

}  Execute the program simultaneously over actual
inputs and candidate inputs

}  Generate a candidate query along with the actual
query
}  The candidate query is always non-attacking
}  Actual query is possibly malicious

}  Issue the actual query only if parse structures match

Web security 45

Finding Benign Candidate Inputs

Actual
 Path

Query
Issue
Location

Candidate
 Path

}  Have to create a set of
candidate inputs which
}  Are Benign
}  Issue a query at the

same query issue
location

}  By following the same
path in the program

• Problem in the most general
case it is undecidable

Web security 46

Use Manifestly Benign Inputs

}  For every string create a
sample string of ‘a’ s having
the same length

}  Candidate Input:
uname = ‘aaaa’
pwd = ‘aa’

}  Shadow every intermediate
string variable that depends
on input

}  For integer or boolean
variable, use the originals

}  Follow the original control
flow

Phonebook Record Manager

 John

os

User Name

Password

Submit

DeleteDisplay

Web security 47

true

input str uname,
str pwd, bool display

query = ‘SELECT * from phonebook WHERE username = ‘ +
uname + ’ AND password = ’ + pwd +’

false

query = ‘DELETE * from phonebook WHERE
username = ‘ + uname + ’ AND password = ’ + pwd +’

User Input :
uname = “john”
pwd = “os”
display = false

Candidate Input :
uname = “aaaa”
pwd = “aa”
display = true

Actual Query: DELETE * from phonebook WHERE username = ‘john’ AND password = ’ os’
Candidate Query: DELETE * from phonebook WHERE username = ‘aaaa’ AND password = ’aa’

Candidate
Input :
uname = “aaaa”
pwd = “aa”

display?

Web security 48

Program Transformation Example
i/p str uname; i/p str pwd; i/p bool delete;

false true

query = DELETE * from phonebook WHERE username = ‘ +
uname + ’ AND password = ’ + pwd +’
query_c = DELETE * from phonebook WHERE username = ‘ +
uname_c + ’ AND password = ’ + pwd_c +’;
 query = SELECT * from phonebook WHERE username = ‘ + uname + ’ AND

password = ’ + pwd +’ ;
query_c = SELECT * from phonebook WHERE username = ‘ + uname_c + ’
AND password = ’ + pwd_c +’;

query = DELETE * from phonebook WHERE username = ‘ +
uname + ’ AND password = ’ + pwd +’

query = SELECT * from phonebook WHERE username = ‘ + uname + ’ AND
password = ’ + pwd +’ ;

uname = input_1, pwd = input_2, delete = input_3;
uname_c = createSample(uname) , pwd_c = createSample(pwd);

str uname_c; str pwd_c;

if(match_queries(query,query_c) == true) execute_query(query)

execute_query(query)

display?

Web security 49

CANDID Implementation Architecture

n Offline View

n Online View

DB

Java Bytecode
transformer

Original
Program

Instrumented
Web
Application

SQL Parse Tree
Checker

Web Server

Browser

Instrumented
Web
Application

java
bytecode

java
bytecode

java

MySql

Tomcat
server

Web security 50

Readings for This Lecture

•  Optional Reading
}  Bandhakavi et al.:

CANDID : Preventing SQL Injection
Attacks Using Dynamic Candidate
Evaluations

}  Chen et al.:
Side-Channel Leaks in Web
Applications: a Reality Today, a
Challenge Tomorrow

Web security 51

Browser Cookie Management

}  Cookie Same-origin ownership
}  Once a cookie is saved on your computer, only the Web site

that created the cookie can read it.

}  Variations
}  Temporary cookies

}  Stored until you quit your browser

}  Persistent cookies
}  Remain until deleted or expire

}  Third-party cookies
}  Originates on or sent to a web site other than the one that provided

the current page

Web security 52

Third-party cookies

}  Get a page from merchant.com
}  Contains
}  Image fetched from DoubleClick.com

}  DoubleClick knows IP address and page you were looking at

}  DoubleClick sends back a suitable advertisement
}  Stores a cookie that identifies "you" at DoubleClick

}  Next time you get page with a doubleclick.com image
}  Your DoubleClick cookie is sent back to DoubleClick
}  DoubleClick could maintain the set of sites you viewed
}  Send back targeted advertising (and a new cookie)

}  Cooperating sites
}  Can pass information to DoubleClick in URL, …

Web security 53

Cookie issues

}  Cookies maintain record of your browsing habits
}  Cookie stores information as set of name/value pairs
}  May include any information a web site knows about you
}  Sites track your activity from multiple visits to site

}  Sites can share this information (e.g., DoubleClick)
}  Browser attacks could invade your “privacy”

Web security 54

