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Readings for This Lecture 

•  Wikipedia 
}  HTTP Cookie 
}  Same Origin Policy 
}  Cross Site Scripting 
}  Cross Site Request Forgery 
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1: Background 



Background 

}  Many sensitive tasks are done through web 
}  Online banking, online shopping 
}  Database access 
}  System administration 

}  Web applications and web users are targets of many 
attacks 
}  Cross site scripting 
}  SQL injection 
}  Cross site request forgery 
}  Information leakage 
}  Session hijacking 
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Browser 
 
 

Network 

}  Browser sends requests 
}  May reveal private information (in forms, cookies) 

}  Browser receives information, code 
}  May corrupt state by running unsafe code 

}  Interaction susceptible to network attacks 
}  Use HTTPS, which uses SSL/TLS 

OS 
Hardware 

Web 
site 

request 

reply 

Browser and Network 
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Web Security Issues 

}  Secure communications between client & server 
}  HTTPS (HTTP over Secure Socket Layer)  

}  User authentication & session management 
}  Cookies & other methods 

}  Active contents from different websites 
}  Protecting resources maintained by browsers 

}  Web application security 
}  Web site authentication (e.g., anti-phishing) 
}  Privacy concerns 
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HTTP: HyperText Transfer Protocol 

}  Browser sends HTTP requests to the server 
}  Methods: GET, POST, HEAD, … 
}  GET: to retrieve a resource (html, image, script, css,…) 
}  POST: to submit a form (login, register, …) 
}  HEAD 

}  Server replies with a HTTP response 
}  Stateless request/response protocol 

}  Each request is independent of previous requests 
}  Statelessness has a significant impact on design and 

implementation of applications  
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HTTP 

}  HTTP is a stateless protocol.  
}  Hosts do not need to retain information about users 

between requests 
}  Web applications must use alternative methods to track 

the user's progress from page to page 
}  sending and receiving cookies 
}  server side sessions, hidden variables and URL encoded 

parameters (such as /index.php?
session_id=some_unique_session_code). 
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Use Cookies to Store State Info 

}  Cookies 
}  A cookie is a name/value pair created by a website to 

store information on your computer 

Browser 
Server 

Enters form data 

Response + cookies 

Browser 
Server 

Request + cookies 

Returns data 

Http is stateless protocol; cookies add state 
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Cookies Fields 

}  An example cookie from my browser 
}  Name   session-token 
}  Content   "s7yZiOvFm4YymG….” 
}  Domain   .amazon.com 
}  Path   / 
}  Send For  Any type of connection 
}  Expires   Monday, September 08, 2031 7:19:41 PM 
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More about Cookies  

}  Stored by the browser 
}  Used by the web applications 

}  used for authenticating, tracking, and maintaining specific 
information about users 
}  e.g., site preferences, contents of shopping carts 

}  Cookie ownership 
}  Once a cookie is saved on your computer, only the website that 

created the cookie can read it 

}  Security aspects 
}  Data may be sensitive 
}  May be used to gather information about specific users 
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Web Authentication via Cookies 

}  HTTP is stateless 
}  How does the server recognize a user who has signed in?  

}  Servers can use cookies to store state on client 
}  After client successfully authenticates, server computes an 

authenticator and gives it to browser in a cookie 
}  Client cannot forge authenticator on his own (session id) 

}  With each request, browser presents the cookie 
}  Server verifies the authenticator 
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A Typical Session with Cookies 

client server 

POST /login.cgi 

Set-Cookie:authenticator 

GET /restricted.html 
Cookie:authenticator 

Restricted content 

Verify that this 
client is authorized 

Check validity of 
authenticator 

Authenticators must be unforgeable and tamper-proof 
(malicious clients shouldn’t be able to modify an existing authenticator) 
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Browser Cookie Management 

}  Cookie Same-origin ownership 
}  Once a cookie is saved on your computer, only the Web site that 

created the cookie can read it 

}  Variations 
}  Temporary cookies 

}  Stored until you quit your browser 

}  Persistent cookies 
}  Remain until deleted or expire 

}  Third-party cookies 
}  Originates on or sent to a web site other than the one that provided 

the current page 
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Example: Third-Party Cookies 

}  Get a page from merchant.com 
}  Contains <img src=http://doubleclick.com/advt.gif> 
}  Image fetched from DoubleClick.com 

}  DoubleClick knows IP address and page you were looking at 

}  DoubleClick sends back a suitable advertisement 
}  Stores a cookie that identifies "you" at DoubleClick 

}  Next time you get page with a doubleclick.com image 
}  Your DoubleClick cookie is sent back to DoubleClick 
}  DoubleClick could maintain the set of sites you viewed  
}  Send back targeted advertising (and a new cookie) 

}  Cooperating sites 
}  Can pass information to DoubleClick in URL, … 
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Example: Session State in URL 

www.e_buy.com 

www.e_buy.com/ 
shopping.cfm? 

pID=269 

View Catalog 

www.e_buy.com/ 
shopping.cfm? 

pID=269& 
item1=102030405 

www.e_buy.com/ 
checkout.cfm? 

pID=269& 
item1=102030405 

Check out Select Item 

Store session information in URL; Easily read on network 
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2: Cross Site Scripting 



Client Side Scripting 

}  Web pages (HTML) can embed dynamic contents (code) 
that can be executed on the browser 

}  JavaScript 
}  embedded in web pages and executed inside browser 

}  Java applets 
}  small pieces of Java bytecodes that execute in browsers 
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HTML and Scripting 

<html> 
      … 
    <P>  
<script> 

  var num1, num2, sum 
  num1 = prompt("Enter first number") 
  num2 = prompt("Enter second number") 
  sum = parseInt(num1) + parseInt(num2) 
  alert("Sum = " + sum) 

</script> 
  … 

</html> 

Browser receives content, displays 
HTML and executes scripts 
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Scripts are Powerful 

}  Client-side scripting is powerful and flexible, and can 
access the following resources 
}  Local files on the client-side host 

}  read / write local files 

}  Webpage resources maintained by the browser 
}  Cookies 
}  Domain Object Model (DOM) objects 

¨  steal private information 
¨  control what users see 
¨  impersonate the user	
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Browser as an Operating System 

}  Web users visit multiple websites simultaneously 
}  A browser serves web pages (which may contain 

programs) from different web domains 
}  a browser runs programs provided by mutually untrusted 

entities 
}  running code one does not know/trust is dangerous 
}  a browser also maintains resources created/updated by web 

domains 

}  Browser must confine (sandbox) these scripts so that they 
cannot access arbitrary local resources 

}  Browser must have a security policy to manage/protect 
browser-maintained resources and to provide separation 
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Same Origin Policy 

}  The basic security model enforced in the browser 
}  SoP isolates the scripts and resources downloaded from 

different origins 
}  E.g., evil.org scripts cannot access bank.com resources 

}  Use origin as the security principal 
}  Origin = domain name + protocol + port 

}  all three must be equal for origin to be considered the same 
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Same Original Policy: What it Controls 

}  Same-origin policy applies to the following accesses: 
}  manipulating browser windows  
}  URLs requested via the XmlHttpRequest 

}  XmlHttpRequest is an API that can be used by web browser scripting 
languages to transfer XML and other text data to and from a web 
server using HTTP, by establishing an independent and asynchronous 
communication channel.  
¨  used by AJAX  

}  manipulating frames (including inline frames)  
}  manipulating documents (included using the object tag)  
}  manipulating cookies 
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Problems with S-O Policy 

}  Poorly enforced on some browsers 
}  Particularly older browsers 

}  Limitations if site hosts unrelated pages 
}  Example: Web server often hosts sites for unrelated parties 

}  http://www.example.com/account/  
}  http://www.example.com/otheraccount/  

}  Same-origin policy allows script on one page to access 
properties of document from another 

}  Can be bypassed in Cross-Site-Scripting attacks 
}  Usability: Sometimes prevents desirable cross-origin 

resource sharing 
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Cross Site Scripting (XSS) 

}  Recall the basics 
}  scripts embedded in web pages run in browsers 
}  scripts can access cookies  

}  get private information 

}  and manipulate DOM objects 
}  controls what users see 

}  scripts controlled by the same-origin policy 

}  Why would XSS occur 
}  Web applications often take user inputs and use them as part 

of webpage (these inputs can have scripts) 
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How XSS Works on Online Blog  

}  Everyone can post comments, which will be displayed to 
everyone who views the post 

}  Attacker posts a malicious comment that includes script 
(which reads local authentication credentials and sends 
them of to the attacker) 

}  Anyone who viewed the post can have local 
authentication cookies stolen 

}  Web apps  will check that posts do not include scripts, 
but the check sometimes fail. 

}  Bug in the web application.  Attack happens in browser. 
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Effect of the Attack 

}  Attacker can execute arbitrary scripts in browser 

}  Can manipulate any DOM component on victim.com 
}  Control links on page 
}  Control form fields (e.g. password field) on this page and linked 

pages. 

}  Can infect other users:   MySpace.com  worm. 
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MySpace.com   (Samy worm) 

}  Users can post HTML on their pages 
}  MySpace.com ensures HTML contains no 

<script>, <body>, onclick, <a href=javascript://> 

}  However, attacker  find out that a way to include Javascript 
within CSS tags: 

<div style=“background:url(‘javascript:alert(1)’)”> 

And can hide  “javascript” as  “java\nscript” 
}  With careful javascript hacking: 

}  Samy’s worm: infects anyone who visits an infected MySpace 
page   …    and adds Samy as a friend. 

}  Samy had millions of friends within 24 hours. 
}  More info:      http://namb.la/popular/tech.html 
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Avoiding XSS bugs  (PHP) 

}  Main problem:    
}  Input checking is difficult  ---  many ways to inject scripts 

into HTML. 

}  Preprocess input from user before echoing it 
}  PHP:  htmlspecialchars(string) 
  &  →  &amp;      "  → &quot;      '  →  &#039;       

 <  →   &lt;        > →  &gt;  
}  htmlspecialchars( 

      "<a href='test'>Test</a>",   ENT_QUOTES);  
 Outputs:   
   &lt;a href=&#039;test&#039;&gt;Test&lt;/a&gt;  
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Avoiding XSS bugs   (ASP.NET) 

}  ASP.NET 1.1: 

}  Server.HtmlEncode(string)  
}  Similar to PHP htmlspecialchars 

}  validateRequest:    (on by default) 
}  Crashes page if finds  <script>  in POST data. 

}  Looks for hardcoded list of patterns. 

}  Can be disabled: 

  <%@  Page  validateRequest=“false"  %>  
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3: Cross site request forgery 



Cross site request forgery (abbrev. CSRF 
or XSRF) 

}  Also known as one click attack or session riding 
}  Effect: Transmits unauthorized commands from a user 

who has logged in to a website to the website.  
}  Recall that a browser attaches cookies set by domain X 

to a request sent to domain X; the request may be from 
another domain 
}  Site Y redirects you to facebook; if you already logged in, the 

cookie is attached by the browser  
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CSRF Explained 

}  Example:    
}  User logs in to  bank.com.    Forgets to sign off. 
}  Session cookie remains in browser state 

}  Then user visits another site containing: 
  <form  name=F  action=http://bank.com/BillPay.php> 
  <input  name=recipient   value=badguy> … 
  <script> document.F.submit(); </script>  

}  Browser sends user auth cookie with request 
}  Transaction will be fulfilled 

}  Problem:    
}  The browser is a confused deputy; it is serving both the 

websites and the user and gets confused who initiated a 
request 
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GMail Incidence: Jan 2007 

}  Allows the attacker to steal a user’s contact 
}  Google docs has a script that run a callback function, 

passing it your contact list as an object. The script 
presumably checks a cookie to ensure you are logged into 
a Google account before handing over the list. 

}  Unfortunately, it doesn’t check what page is making the 
request. So, if you are logged in on window 1, window 2 
(an evil site) can make the function call and get the 
contact list as an object. Since you are logged in 
somewhere, your cookie is valid and the request goes 
through. 
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Real World CSRF Vulnerabilities 

}  Gmail 
}  NY Times 
}  ING Direct (4th largest saving bank in US) 
}  YouTube 
}  Various DSL Routers 
}  Purdue WebMail 
}  PEFCU 
}  Purdue CS Portal 
}  … 
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Prevention 

}  Server side: 
}  use cookie + hidden fields to authenticate a web form 

}  hidden fields values need to be unpredictable and user-specific; thus 
someone forging the request need to guess the hidden field values 

}  requires the body of the POST request to contain cookies 
}  Since browser does not add the cookies automatically, malicious 

script needs to add the cookies, but they do not have access because 
of Same Origin Policy 

}  User side: 
}  logging off one site before using others 
}  selective sending of authentication tokens with requests (may 

cause some disruption in using websites) 
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Other Web Threats 

}  SQL Injection 
}  Side channel leakages  
}  Web browsing privacy: third-party cookies 
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3: SQL-injection  



Acknowledgments: xkcd.com
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What is a SQL Injection Attack? 

}  Many web applications take user input from a form 
}  Often this user input is used literally in the construction 

of a SQL query submitted to a database.  

}  SELECT productdata FROM table WHERE  productname = 
‘user input product name’; 

}  A SQL injection attack involves placing SQL statements in 
the user input 
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An Example SQL Injection Attack 

}  Product Search: 

}  This input is put directly into the SQL statement within 
the Web application: 
}  $query = “SELECT prodinfo FROM prodtable WHERE 

prodname = ‘” . $_POST[‘prod_search’] . “’”; 

}  Creates the following SQL: 
}  SELECT prodinfo FROM prodtable WHERE prodname = 

‘blah‘ OR ‘x’ = ‘x’ 
}  Attacker has now successfully caused the entire database to be 

returned. 
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SQL Injection Attacks Results 

}  Add new data to the database 
}  Modify data currently in the database 

}  Could be very costly to have an expensive item suddenly be 
deeply ‘discounted’ 

}  Often can gain access to other user’s system capabilities 
by obtaining their password 
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Defenses 

}  Use provided functions for escaping strings 
}  Many attacks can be thwarted by simply using the SQL string 

escaping mechanism ‘ à \’  and “ à \” 

}  Check syntax of input for validity 
}  Many classes of input have fixed languages 

}  Have length limits on input 
}  Many SQL injection attacks depend on entering long strings 

}  Scan query string for undesirable word combinations that 
indicate SQL statements 

}  Limit database permissions and segregate users 
}  Connect with read-only permission if read is the goal 
}  Don’t connect as a database administrator from web app 
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Defenses: PREPARE statement 

}  For existing applications adding PREPARE statements will 
prevent SQL injection attacks 

}  Hard to do automatically with static techniques 
}  Need to guess the structure of query at each query issue 

location 
}  Query issued at a location depends on path taken in program 

}  Human assisted efforts can add PREPARE statements 
}  Costly effort 

}  Is it possible to dynamically infer the benign query 
structure? 
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Dynamic Candidate Evaluations 

}  Create benign sample inputs (Candidate Inputs) for 
every user input 

}  Execute the program simultaneously over actual 
inputs and candidate inputs 

}  Generate a candidate query along with the actual 
query  
}  The candidate query is always non-attacking   
}  Actual query is possibly malicious 

}   Issue the actual query only if parse structures match 
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Finding Benign Candidate Inputs 

Actual
 Path

Query 
Issue 
Location

Candidate
 Path

}  Have to create a set of 
candidate inputs which 
}  Are Benign 
}  Issue a query at the 

same query issue 
location  

}  By following the same 
path in the program 

• Problem in the most general  
case it is undecidable 
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Use Manifestly Benign Inputs 

}  For every string create a 
sample string of ‘a’ s having 
the same length 

}  Candidate Input: 
uname = ‘aaaa’ 
pwd = ‘aa’ 

}  Shadow every intermediate 
string variable that depends 
on input 

}  For integer or boolean 
variable, use the originals 

}  Follow the original control 
flow 

Phonebook Record Manager

 John

os

User Name

Password

Submit

DeleteDisplay

Web security 47 



true

input str uname, 
str pwd, bool display

query = ‘SELECT * from phonebook WHERE username = ‘ + 
uname  + ’ AND password = ’ + pwd  +’ 

false

query = ‘DELETE * from phonebook WHERE  
username = ‘ + uname  + ’ AND password = ’ + pwd  +’ 
 

User Input : 
uname = “john” 
pwd = “os” 
display = false 

Candidate Input : 
uname = “aaaa” 
pwd = “aa” 
display = true 

Actual Query: DELETE * from phonebook WHERE username = ‘john’ AND password = ’ os’ 
Candidate Query: DELETE * from phonebook WHERE username = ‘aaaa’ AND password = ’aa’ 

Candidate 
Input : 
uname = “aaaa” 
pwd = “aa” 
 

display?
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Program Transformation Example 
i/p str uname; i/p str pwd; i/p bool delete;


false true

query = DELETE * from phonebook WHERE username = ‘ + 
uname  + ’ AND password = ’ + pwd  +’ 
query_c = DELETE * from phonebook WHERE username = ‘ +  
uname_c  + ’ AND password = ’ + pwd_c  +’; 
 query = SELECT * from phonebook WHERE username = ‘ + uname  + ’ AND 

password = ’ + pwd  +’ ; 
query_c = SELECT * from phonebook WHERE username = ‘ + uname_c  + ’ 
AND password = ’ + pwd_c  +’; 


query = DELETE * from phonebook WHERE username = ‘ + 
uname  + ’ AND password = ’ + pwd  +’ 
 

query = SELECT * from phonebook WHERE username = ‘ + uname  + ’ AND 
password = ’ + pwd  +’ ; 
 

uname = input_1,  pwd = input_2, delete = input_3;
uname_c = createSample(uname) , pwd_c = createSample(pwd);

str uname_c;  str pwd_c;


if(match_queries(query,query_c) == true) execute_query(query)

execute_query(query)


display?
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CANDID Implementation Architecture 

n Offline View 

n Online View 

DB 

Java Bytecode 
transformer 

Original  
Program 

Instrumented  
Web  
Application 

SQL Parse Tree 
Checker 

Web Server 

Browser 

 
Instrumented 
Web  
Application 
 

java 
bytecode 

java 
bytecode 

java 

MySql 

Tomcat 
server 
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Readings for This Lecture 

•  Optional Reading 
}  Bandhakavi et al.: 

CANDID : Preventing SQL Injection 
Attacks Using Dynamic Candidate 
Evaluations  

}  Chen et al.: 
Side-Channel Leaks in Web 
Applications: a Reality Today, a 
Challenge Tomorrow  
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Browser Cookie Management 

}  Cookie Same-origin ownership 
}  Once a cookie is saved on your computer, only the Web site 

that created the cookie can read it. 

}  Variations 
}  Temporary cookies 

}  Stored until you quit your browser 

}  Persistent cookies 
}  Remain until deleted or expire 

}  Third-party cookies 
}  Originates on or sent to a web site other than the one that provided 

the current page 
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Third-party cookies 

}  Get a page from merchant.com 
}  Contains <img src=http://doubleclick.com/advt.gif> 
}  Image fetched from DoubleClick.com 

}  DoubleClick knows IP address and page you were looking at 

}  DoubleClick sends back a suitable advertisement 
}  Stores a cookie that identifies "you" at DoubleClick 

}  Next time you get page with a doubleclick.com image 
}  Your DoubleClick cookie is sent back to DoubleClick 
}  DoubleClick could maintain the set of sites you viewed  
}  Send back targeted advertising (and a new cookie) 

}  Cooperating sites 
}  Can pass information to DoubleClick in URL, … 
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Cookie issues 

}  Cookies maintain record of your browsing habits 
}  Cookie stores information as set of name/value pairs 
}  May include any information a web site knows about you 
}  Sites track your activity from multiple visits to site 

}  Sites can share this information (e.g., DoubleClick) 
}  Browser attacks could invade your “privacy” 
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