
Cristina Nita-Rotaru

CS526: Information security

Software security

Readings for This Lecture

}  Wikipedia
}  Privilege escalation
}  Directory traversal
}  Time-of-check-to-time-of-use
}  Buffer overflow
}  Stack buffer overflow
}  Buffer overflow protection
}  Format string attack
}  Integer overflow

}  Smashing The Stack For Fun And Profit by Aleph One

Software security 2

Secure Programs

}  Software quality
}  Penetrate and patch approach

To understand program security one
has to understand if the program
behaves as its designer intended
and as the user expects it

Software security 3

Why Software Vulnerabilities Matter?

}  When a process reads input from attacker, the process
may be exploited if it contains vulnerabilities

}  When an attacker successfully exploits a vulnerability, he
can
}  Crash programs: Compromises availability
}  Obtain sensitive information: Compromises confidentiality
}  Execute arbitrary code: Compromises integrity

}  Software vulnerability enables the attacker to run with
privileges of other users, thus violating desired access
control policy

Software security 4

Attacks Exploiting Software Vulnerabilities

}  Drive-by download (drive-by installation)
}  Malicious web contents exploit vulnerabilities in browsers (or

plugins) to download/install malware on victim system

}  Email attachments in PDF, Word, etc.
}  Network-facing daemon programs (such as http, ftp, mail

servers, etc.) as entry points
}  Privilege escalation

}  Attacker on a system exploits vulnerability in a root process
and gains root privilege

Software security 5

Common Software Vulnerabilities

}  Input validation
}  Race conditions

}  Time-of-check-to-time-of-use (TOCTTOU)

}  Buffer overflows
}  Format string problems
}  Integer overflows

Software security 6

1: Input validation

Sources of Input that Need Validation

}  Sources of input for local applications
}  Command line arguments
}  Environment variables
}  Configuration files, other files
}  Inter-Process Communication call arguments
}  Network packets

}  Sources of input for web applications
}  Web form input
}  Scripting languages with string input

Software security 8

void main(int argc, char ** argv) {

 char buf[1024];

 sprintf(buf,”cat %s”,argv[1]);

 system (“buf”);

}

Intention: get a file name from input and then cat the file;

What can go wrong?
}  Attacker can add to the command by using ;, e.g., “a; ls”
}  User can set command line arguments to almost anything, e.g.,

by using execve system call to start a program, the invoker has
complete control over all command line arguments

Software security 9

Command line as a Source of Input

exec

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ...,
char *const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *filename, char *const argv [],
char *const envp[]);

}  Family of functions for replacing process’s program with the one
inside the exec() call.

Software security 10

Environment Variables

}  Users can set the environment variables to anything
}  Using execve
}  Has some interesting consequences

}  Examples:
}  PATH
}  LD_LIBRARY_PATH
}  IFS

Software security 11

Attack by Resetting PATH

}  A setuid program has a system call: system(ls);
}  The user sets his PATH to be . (current directory) and

places a program ls in this directory
}  The user can then execute arbitrary code as the setuid

program

}  Solution: Reset the PATH variable to be a standard form
(i.e., “/bin:/usr/bin”)

Software security 12

Attack by Resetting IFS

}  However, you must also reset the IFS variable
}  IFS is the characters that the system considers as white space

}  If not, the user may add “s” to the IFS
}  system(ls) becomes system(l)
}  Place a function l in the directory

}  Moral: things are intricately related and inputs can have
unexpected consequences

Software security 13

Attack by Resetting LD_LIBRARY_PATH

}  Assume you have a setuid program that loads dynamic
libraries

}  UNIX searches the environment variable
LD_LIBRARY_PATH for libraries

}  A user can set LD_LIBRARY_PATH to /tmp/attack and
places his own copy of the libraries here

}  Most modern C runtime libraries have fixed this by not
using the LD_LIBRARY_PATH variable when the EUID is
not the same as the RUID or the EGID is not the same as
the RGID

Software security 14

Input Validation in Web Applications

}  SQL injection
}  Caused by failure to validate/process inputs from web forms

before using them to create SQL queries

}  Cross Site Scripting
}  Caused by failure to validate/process inputs from web forms or

URL before using them to create the web page

}  Cross Site Request Forgery is not an input validation
issue

Software security 15

A Remote Example: PHP passthru

}  Idea
}  PHP passthru(string) executes command
}  Web-pages can construct string from user input and execute

the commands to generate web content
}  Attackers can put “;” in input to run desired commands

}  Example
echo 'Your usage log:
';
$username = $_GET['username'];
passthru(“cat /logs/usage/$username”);

}  What if: “username=andrew;cat%20/etc/passwd”?

Software security 16

Directory Traversal Vulnerabilities

A typical example of vulnerable application in php code is:
<?php

 $template = 'red.php';

 if (isset($_COOKIE['TEMPLATE']))
 $template = $_COOKIE['TEMPLATE'];
 include ("/home/users/phpguru/

templates/" . $template);

?>

Attacker sends

 GET /vulnerable.php HTTP/1.0
 Cookie:

TEMPLATE=../../../../../../../../../etc/passwd

Software security 17

Unicode Vulnerabilities

}  Some web servers check string input
}  Disallow sequences such as ../ or \
}  But may not check unicode %c0%af for '/'

}  IIS Example, used by Nimda worm

}  passes <some command> to cmd command
}  scripts directory of IIS has execute permissions

}  Input checking would prevent that, but not this

}  IIS first checks input, then expands unicode

Software security 18

http://victim.com/scripts/../../winnt/system32/cmd.exe?<some command>

http://victim.com/scripts/..%c0%af..%c0%afwinnt/system32/...

Dealing with Input Validation

}  Avoid checking for bad things (blacklisting) if
possible
} The logic for blacklisting may not be exhaustive
} Code where input is used may have different

logic
}  Instead, check for things that are allowed

(whitelisting)
}  Or, use systematic rewriting

Software security 19

Take home lessons: Input Validation

}  Malicious inputs can become code, or
change the logic to do things that are
not intended

}  Inputs interact with each other,
sometimes in subtle ways

}  Use systematic approaches to deal
with input validation

Software security 20

2: Time-of-check-to-time-of-use

Time-of-check-to-time-of-use

}  TOCTTOU, pronounced "TOCK too“
}  A class of software bugs caused by changes in a system

between the checking of a condition (such as
authorization) and use of the results of the check
}  When a process P requests to access resource X, the system

checks whether P has right to access X; the usage of X
happens later

}  When the usage occurs, perhaps P should not have access to X
anymore because P changed or X changed

Software security 22

Example

}  In Unix, the following C code, when used in a setuid
program, is a TOCTTOU bug:
if (access("file", W_OK) != 0)

 { exit(1); }

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof(buffer));

}  Access is intended to check whether the real user who
executed the setuid program would normally be allowed
to write the file (i.e., access checks the real userid rather
than effective userid)

Software security 23

Example: Attack

if (access("file", W_OK) != 0)
 { exit(1); }

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof(buffer));

}  Between the access verification and the open of the file,
the attacker removed the file “file” and created a symbolic
link pointing to the file “/etc/passwd”; this is done through
some other program and requires coordination

}  The result is that the program will open the paswwd file
even if the user should not have had access to write to it

Software security 24

Take home lessons: TOCTTOU

}  Exploiting a TOCTTOU vulnerability
requires precise timing of the victim
process.
}  Can run the attack multiple times,

hoping to get lucky

}  Most general attack may require
“single-stepping” the victim, i.e., can
schedule the attacker process after
each operation in the victim
}  Techniques exist to “single-step” victim

}  Preventing TOCTTOU attacks is
difficult

Software security 25

3: Buffer overflow

Programs and Memory

}  The operating system creates a process by
assigning memory and other resources

}  Stack: keeps track of the point to which
each active subroutine should return
control when it finishes executing; stores
variables that are local to functions

}  Heap: dynamic memory for variables that
are created with malloc, calloc, realloc and
disposed of with free

}  Data: initialized variables including global
and static variables, un-initialized variables

}  Code: the program instructions to be
executed

Stack

Heap

Code

Data

Virtual Memory

Software security 27

What is a Buffer Overflow?

}  Buffer overflow occurs when a program or process tries
to store more data in a buffer than the buffer can hold

}  Very dangerous because the extra information may:
}  Affect user’s data
}  Affect user’s code
}  Affect system’s data
}  Affect system’s code

Software security 28

Why Does Buffer Overflow Happen?

}  No check on boundaries
}  Programming languages give user too much

control
}  Programming languages have unsafe functions
}  Users do not write safe code

}  C and C++, are more vulnerable because
they provide no built-in protection against
accessing or overwriting data in any part of
memory
}  Can’t know the lengths of buffers from a pointer
}  No guarantees strings are null terminated

Software security 29

Why Buffer Overflow Matters

}  Overwrites:
}  other buffers
}  variables
}  program flow data

}  Results in:
}  erratic program behavior
}  a memory access exception
}  program termination
}  incorrect results
}  breach of system security

Software security 30

History

}  Used in 1988’s Morris Internet Worm

}  Alphe One’s “Smashing The Stack For Fun And Profit” in
Phrack Issue 49 in 1996 popularizes stack buffer
overflows

}  Still extremely common today

Software security 31

Types of Buffer Overflow Attacks

}  Stack overflow
}  Shell code
}  Return-to-libc

}  Overflow sets ret-addr to address of libc function

}  Off-by-one
}  Overflow function pointers & longjmp buffers

}  Heap overflow

Software security 32

Example: Linux Process Memory Layout

Unused
0x08048000

Run time heap

Shared libraries

User stack

0x40000000

0xC0000000

Loaded
from exec

Kernel virtual memory 0xFFFFFFFF

Software security 33

C Program Execution

}  PC (program counter or instruction pointer)
points to next machine instruction to be executed

}  Procedure call:
}  Prepare parameters
}  Save state (SP (stack pointer) and PC) and allocate on

stack local variables
}  Jumps to the beginning of procedure being called

}  Procedure return:
}  Recover state (SP and PC (this is return address)) from

stack and adjust stack
}  Execution continues from return address

Software security 34

Stack Frame

SP

Parameters

Return address

Stack Frame Pointer

Local variables Stack
Growth

}  Parameters for the
procedure

}  Save current PC onto
stack (return address)

}  Save current SP value onto
stack

}  Allocates stack space for
local variables by
decrementing SP by
appropriate amount

Software security 35

}  Suppose a web server contains a function:
 void my_func(char *str) {

 char buf[128];

 strcpy(buf, str);
 do-something(buf);

 }

}  When the function is invoked the stack looks like:

}  What if *str is 136 bytes long? After strcpy:

str ret-addr sfp buf
top
of

stack

str
top
of

stack
 *str ret

Example of a Stack-based Buffer Overflow

Software security 36

Basic Stack Exploit

}  When my_func() exits, the user will be given a shell
}  Note: attack code runs in stack.
}  To determine ret attacker guesses position of stack when

my_func() is called.

top
of

stack
 *str ret Code for P

Program P: exec(“/bin/sh”)
(exact shell code by Aleph One)

void my_func(char *str) {
 char buf[128];

 strcpy(buf, str);
 do-something(buf);
}

Software security 37

Carrying out this attack requires

}  Determine the location of injected code position on stack
when func() is called.
}  So as to change RET on stack to point to it
}  Location of injected code is fixed relative to the location of the

stack frame

}  Program P should not contain the ‘\0’ character.
}  Easy to achieve

}  Overflow should not crash program before func() exits.

Software security 38

Some unsafe C lib functions

 strcpy (char *dest, const char *src)
 strcat (char *dest, const char *src)
 gets (char *s)
 scanf (const char *format, …)
 sprintf (conts char *format, …)

Software security 39

Other control hijacking opportunities

}  In addition to overwrite return address on the stack, can
also use overflow to overwrite the following:

}  Function pointers: (used in attack on PHP 4.0.2)
}  Overflowing buf will override function pointer.

}  Longjmp buffers: longjmp(pos) (used in attack on Perl
5.003)
}  Overflowing buf next to pos overrides value of pos.

Software security 40

Heap
or

stack
 buf[128] FuncPtr

return-to-libc attack

}  “Bypassing non-executable-stack during exploitation using
return-to-libs” by c0ntex

}  Overflow ret address to point to injected shell code
requires execution of injected code
}  Many defenses exist

}  Return-to-libc overwrites the return address to point to
functions in libc (such as system())
}  Executing existing code
}  But set up the parameters so that the attacker gets a shell

Software security 41

return-to-libc attack

}  Illustrating return-to-libc attack

Software security 42

 *str ret Code for P

Shell code attack: Program P: exec(“/bin/sh”)

 *str ret fake_ret

system() in libc

Return-to-libc attack: “/bin/sh”

Return-to-libc Attacks

}  Instead of putting
shellcode on stack, can
put args there,
overwrite return
address with pointer to
well known library
function
}  e.g.,
system(“/bin/sh”);

}  Return-to-libc attack

0x80707
336 0x63441
827

return
addr

request

args

Increasing m
em

ory
addresses

saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

0x61a4ac14

0x80707308

Slide thanks to Brad Karp, UCL.
Software security 43

Return-oriented programming

}  Goal: executing arbitrary code without injecting any code.
}  Observations:

}  Almost all instructions already exist in the process’s address
space, but need to piece them together to do what the
attacker wants

}  Attack:
}  Find instructions that are just before “return”
}  Set up the stack to include a sequence of addresses so that

executing one instruction is followed by returning to the next
one in the sequence.

}  Effectiveness: has been shown that arbitrary program can
be created this way

Software security 44

Off by one buffer overflow

Sample code
 func f(char *input) {
 char buf[LEN];
 if (strlen(input) <= LEN) {
 strcpy(buf, input)
 }
 }

}  What could go wrong here?

Software security 45

Heap Overflow

}  Heap overflow is a general term that refers to overflow in
data sections other than the stack
}  buffers that are dynamically allocated, e.g., by malloc
}  statically initialized variables (data section)
}  uninitialized buffers (bss section)

}  Heap overflow may overwrite other data allocated on
heap

}  By exploiting the behavior of memory management
routines, may overwrite an arbitrary memory location
with a small amount of data.
}  E.g., SimpleHeap_free() does

}  hdr->next->next->prev := hdr->next->prev;

Software security 46

Finding buffer overflows

}  Hackers find buffer overflows as follows:
}  Run web server on local machine.
}  Fuzzing: Issue requests with long tags.

 All long tags end with “$$$$$”.
}  If web server crashes,

 search core dump for “$$$$$” to find
 overflow location.

}  Some automated tools exist.
}  Then use disassemblers and debuggers (e..g IDA-Pro) to

construct exploit.
}  How to defend against buffer overflow attacks?

Software security 47

Preventing Buffer Overflow Attacks

}  Use type safe languages (Java, ML)
}  Use safe library functions
}  Static source code analysis
}  Non-executable stack
}  Run time checking: StackGuard, Libsafe, SafeC, (Purify)
}  Address space layout randomization
}  Instruction set randomization
}  Detection deviation of program behavior
}  Access control to control aftermath of attacks

Software security 48

Static Source Code Analysis

•  Statically check source code to detect buffer
overflows.

•  Automate the code review process.
•  Several tools exist:

}  Coverity (Engler et al.): Test trust inconsistency.
}  Microsoft program analysis group:

}  PREfix: looks for fixed set of bugs
}  PREfast: local analysis to find idioms for prog.

errors.
}  Berkeley: Wagner, et al. Test constraint violations.

•  Find lots of bugs, but not all.

Software security 49

Bugs to Detect in Source Code Analysis

}  Some examples

Software security 50

•  Crash Causing Defects
•  Null pointer dereference
•  Use after free
•  Double free
•  Array indexing errors
•  Mismatched array new/delete
•  Potential stack overrun
•  Potential heap overrun
•  Return pointers to local variables
•  Logically inconsistent code

•  Uninitialized variables
•  Invalid use of negative values
•  Passing large parameters by value
•  Underallocations of dynamic data
•  Memory leaks
•  File handle leaks
•  Network resource leaks
•  Unused values
•  Unhandled return codes
•  Use of invalid iterators

}  Run time tests for stack integrity.

}  Embed “canaries” in stack frames and verify their
integrity prior to function return.

str ret sfp local
top
of

stack
canary str ret sfp local canary
Frame 1 Frame 2

Run Time Checking: StackGuard

Software security 51

Canary Types

}  Random canary:
}  Choose random string at program startup.
}  Insert canary string into every stack frame.
}  Verify canary before returning from function.
}  To corrupt random canary, attacker must learn current random

string.

}  Terminator canary:
 Canary = 0, newline, linefeed, EOF

}  String functions will not copy beyond terminator.
}  Hence, attacker cannot use string functions to corrupt stack.

Software security 52

StackGuard: Implementation

}  StackGuard implemented as a GCC patch
}  Program must be recompiled
}  Minimal performance effects: 8% for Apache

}  Newer version: PointGuard
}  Protects function pointers and setjmp buffers by placing

canaries next to them
}  More noticeable performance effects

}  Note: Canaries do not offer full protection
}  Some stack attacks can leave canaries untouched

Software security 53

}  Dynamically loaded library.
}  Intercepts calls to strcpy (dest, src)

}  Validates sufficient space in current stack frame:
 |frame-pointer – dest| > strlen(src)

}  If so, does strcpy.
Otherwise, terminates application.

dest ret-addr sfp
top
of

stack
src buf ret-addr sfp

libsafe main

Run Time Checking: Libsafe

Software security 54

}  At function prologue, copy return address RET
and SFP to “safe” location (beginning of data
segment)

}  Upon return, check that RET and SFP is equal to
copy.

}  Implemented as assembler file processor (GCC)

Run Time Checking: StackShield

Software security 55

Marking stack as non-execute

}  Basic stack exploit can be prevented by marking
stack segment as non-executable.
}  Support in Windows since XP SP2. Code patches exist for

Linux, Solaris.

}  Problems:
}  Does not defend against `return-to-libc’ or “return-oriented

programming”.
}  Some apps need executable stack (e.g. LISP interpreters).
}  Does not block more general overflow exploits:

}  Overflow on heap, overflow func pointer.

Software security 56

Randomization: Motivations

}  Buffer overflow, return-to-libc, and return-oriented
programing exploits need to know the (virtual) address to
which pass control
}  Address of attack code in the buffer
}  Address of a standard kernel library routine

}  Same address is used on many machines
}  Slammer infected 75,000 MS-SQL servers using same code on

every machine

}  Idea: introduce artificial diversity
}  Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

Software security 57

Address Space Layout Randomization

}  Arranging the positions of key data areas randomly in a
process' address space.
}  e.g., the base of the executable and position of libraries (libc),

heap, and stack,
}  Effects: for return to libc, needs to know address of the key

functions.
}  Attacks:

}  Repetitively guess randomized address
}  Spraying injected attack code

}  Vista has this enabled, software packages available for
Linux and other UNIX variants

Software security 58

Instruction Set Randomization

}  Instruction Set Randomization (ISR)
}  Each program has a different and secret instruction set
}  Use translator to randomize instructions at load-time
}  Attacker cannot execute its own code.

}  What constitutes instruction set depends on the
environment.
}  For binary code, it is CPU instruction
}  For interpreted program, it depends on the interpreter

Software security 59

Instruction Set Randomization

}  An implementation for x86 using the Bochs emulator
}  Network intensive applications don’t have too much

performance overhead
}  CPU intensive applications have one to two orders of slow-

down

}  Not yet used in practice

Software security 60

4: Format string

Format string problem

 int func(char *user) {
 fprintf(stdout, user);
 }

}  Problem: what if user = “%s%s%s%s%s%s%s” ??
}  Most likely program will crash: DoS.
}  If not, program will print memory contents. Privacy?
}  Full exploit using user = “%n”

}  Correct form:
 int func(char *user) {
 fprintf(stdout, “%s”, user);
 }

Software security 62

Format string attacks (“%n”)

}  printf(“%n”, &x) will change the value of the variable x
}  in other words, the parameter value on the stack is interpreted

as a pointer to an integer value, and the place pointed by the
pointer is overwritten

Software security 63

History

}  Danger discovered in June 2000.
}  Examples:

}  wu-ftpd 2.* : remote root.
}  Linux rpc.statd: remote root
}  IRIX telnetd: remote root
}  BSD chpass: local root

Software security 64

Vulnerable functions

}  Any function using a format string.

}  Printing:
}  printf, fprintf, sprintf, …
}  vprintf, vfprintf, vsprintf, …

}  Logging:
}  syslog, err, warn

Software security 65

5: Integer overflow

Integer Overflow

}  Integer overflow: an arithmetic operation attempts to
create a numeric value that is larger than can be
represented within the available storage space.

}  Example:

Software security 67

Test 1:
 short x = 30000;
 short y = 30000;
 printf(“%d\n”, x+y);

Test 2:
 short x = 30000;
 short y = 30000;
 short z = x + y;
 printf(“%d\n”, z);

Will two programs output the same?
Assuming short uses 16 bits.
What will they output?

C Data Types

}  short int 16bits [-32,768; 32,767]
}  unsigned short int 16bits [0; 65,535]
}  unsigned int 16bits [0; 4,294,967,295]
}  Int 32bits

 [-2,147,483,648; 2,147,483,647]
}  long int 32 bits

 [-2,147,483,648; 2,147,483,647]
}  signed char 8bits [-128; 127]
}  unsigned char 8 bits [0; 255]

Software security 68

When casting occurs in C?

}  When assigning to a different data type
}  For binary operators +, -, *, /, %, &, |, ^,

}  if either operand is an unsigned long, both are cast to an
unsigned long

}  in all other cases where both operands are 32-bits or less, the
arguments are both upcast to int, and the result is an int

}  For unary operators
}  ~ changes type, e.g., ~((unsigned short)0) is int
}  ++ and -- does not change type

Software security 69

Where Does Integer Overflow Matter?

}  Allocating spaces using calculation
}  Calculating indexes into arrays
}  Checking whether an overflow could occur

}  Direct causes:
}  Truncation; Integer casting

Software security 70

Example (from Phrack)

int main(int argc, char *argv[]) {

 unsigned short s;

 int i;

 char buf[80];

 if (argc < 3){ return -1; }

 i = atoi(argv[1]);

 s = i;

 if(s >= 80) {

 printf(“Input too long!\n");

 return -1;

 }

 printf("s = %d\n", s);

 memcpy(buf, argv[2], i);

 buf[i] = '\0'; printf("%s\n", buf); return 0;

}
Software security 71

Another Example

const long MAX_LEN = 20K;
char buf[MAX_LEN];
short len = strlen(input);
if (len < MAX_LEN) strcpy(buf, input);

}  Can a buffer overflow attack occur?
}  If so, how long does input needs to be?

Software security 72

Another Example

int ConcatBuffers(char *buf1, char *buf2,
 size_t len1, size_t len2) {

 char buf[0xFF];
 if ((len1 + len2) > 0xFF) return -1;
 memcpy(buf, buf1, len1);
 memcpy(buf+len1, buf2, len2);
 return 0;
}

Software security 73

Another Example

// The function is supposed to return false when
// x+y overflows unsigned short.
// Does the function do it correctly?

bool IsValidAddition(unsigned short x,

 unsigned short y) {

 if (x+y < x)

 return false;

 return true;

}

Software security 74

Take home lessons

}  Software vulnerabilities are a huge
problem

} Most common result from
improper input validation and
buffer overflow

} Avoid using functions that don’t
check boundaries

}  Pay attention to integer overflow
when checking sizes and copying
buffers

Software security 75

