Cristina Nita-Rotaru

CS526: Information security

Anonymity systems.

Based on slides by Chi Bun Chan

1: Terminology.

Anonymity

Anonymity (``without name") means that a person is not identifiable within a set of subjects

Unlinkability of action and identity

- For example, sender and his email are no more related after adversary's observations than they were before
- Who talks to whom

Unobservability

 Adversary cannot tell whether someone is using a particular system and/or protocol

Needs for anonymity

- Hiding identity
- Privacy
- Security
- Degree of innocence or deniability

Relevant applications

- Anonymizing bulletin board and email
- Electronic voting
- Incident reporting
- Anonymous e-commerce
- Private information retrieval
- Anonymous communication

Privacy on public networks

Internet is designed as a public network

 Wi-Fi access points, network routers see all traffic that passes through them

Routing information is public

- IP packet headers identify source and destination
- Even a passive observer can easily figure out who is talking to whom

Encryption does not hide identities

- Encryption hides payload, but not routing information
- Even IP-level encryption (tunnel-mode IPsec/ESP) reveals IP addresses of IPsec gateways

Anonymity metrics in communication

Basic metrics:

- Sender anonymity who sends what
- Receiver anonymity who receives what
- Unlinkability (relationship anonymity) who talks to whom
- Providing sender anonymity and unlinkability are desirable enough for common Internet activities
- Goals:
 - The identities of the communicating parties should stay anonymous to the outside community
 - Even the parties in communication may not know each other's real identity

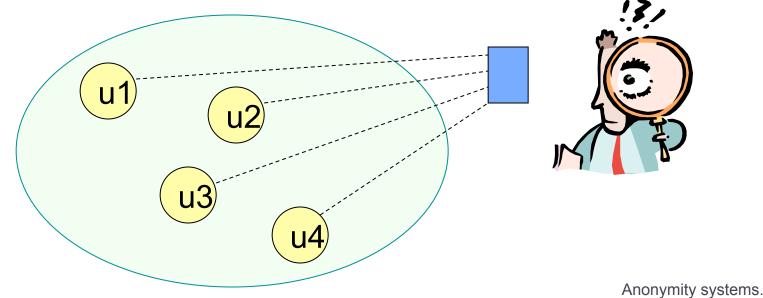
Types of adversary

Passive/Active

- **Passive**: eavesdrop traffic
- Active: able to observe, delay, alter and drop messages in the system

Local/Global

- Local: able to observe traffic to/form user's network link, within LAN
- Global: able to observe effectively large amount or all network links, across LAN boundaries


Internal/External

- Internal: participants in the anonymity system, adversary-operated nodes
- **External**: not participate in the protocol but may be able to observe, inject or modify traffic in the system

2: Anonymity systems.

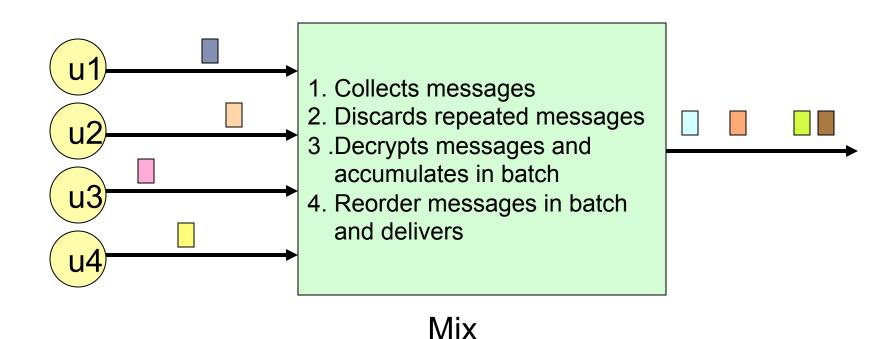
Anonymity set

- Hiding ones action in many others' actions
- Anonymity set: a group of users in which every one is equally-probable to be associated with a given action \Rightarrow every one has certain degree of innocence or deniability to an action

MIX-based systems

- Concept of using relay servers (MIXes) for anonymous communication
- Introduced by David Chaum (1981)
- Goals

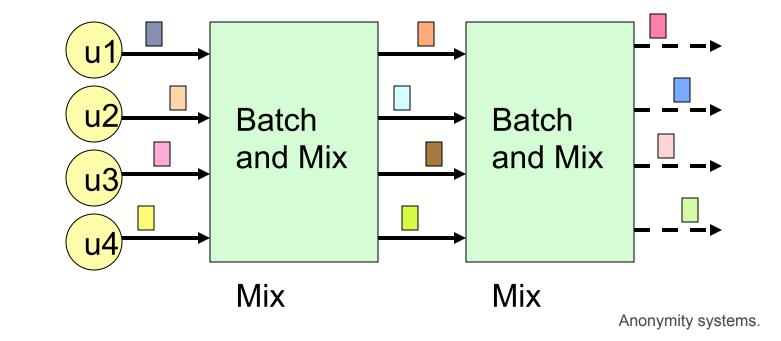
D


- Sender anonymity
- Unlinkability against global eavesdroppers
- Idea: Messages from sender "look" (contents, time) differently than messages to recipient

MIX – basic operations

- A mix is a store-and-forward relay
- Batching
 - collect fixed-length messages from different sources
 - accumulate a batch of n messages
- Mixing
 - cryptographically transform collected messages
 - forwarding messages to their recipients in random order

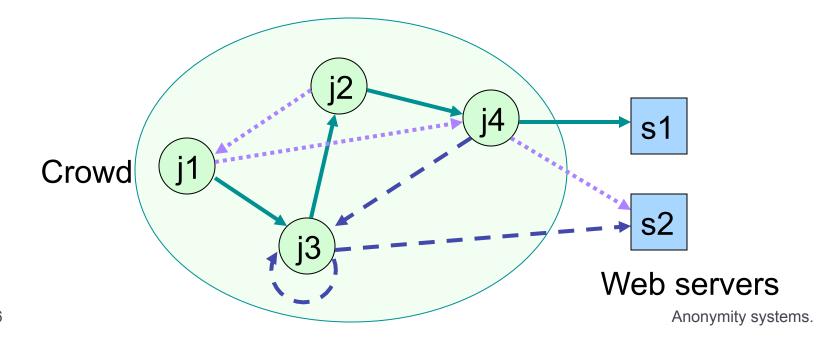
MIX - example


- Each mix has a public key
- Each sender encrypts its message (with randomness) using public key of mix

13

MIX - variants

- Single mix (also single point of trust, attack and failure)
- Mix cascade
- Mix network
- Different ways of batch and mix operations



MIX (cont.)

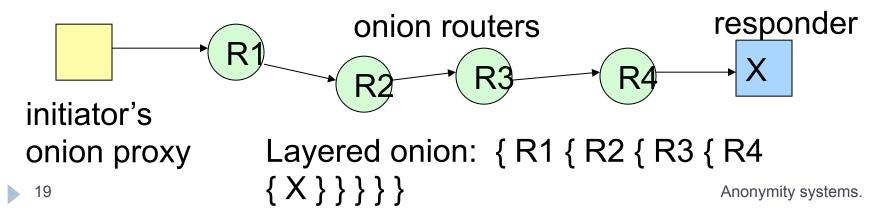
- Traditional designs are message-based
- Usually high latency and asynchronous due to batch and mix operations
 - may be acceptable for applications like email
 - frustrating user experience in low latency or interactive applications: web browsing, instant messaging, SSH
- Alternatives: circuit-based designs

Crowds

- Anonymous web browsing
- Dynamic collecting users (jondo) in a group (crowd)
- Member list maintained in a central server (blender)
- Idea:Who is the initiator?

Crowds (cont.)

- Initiator submits request to a random member
- Upon receiving a request, a member either:
 - forwards to another random member (p = pf)
 - submits to end server (p = I pf)
- A random path is created during the first request, subsequent requests use the same path; server replies using the same path but in reserve order
- Link encryption of messages with a shared key known to all members


Onion routing

- A (small) fixed core set of relays
 - Core Onion Router (COR)
- Designed to support low-latency service
- Initiator defines an anonymous path for a connection through an "onion"
- An onion is a layered structure (recursively encrypted using public keys of CORs) that defines:
 - path of a connection through CORs
 - properties of the connection at each point, e.g. cryptographic algorithms, symmetric keys

Onion routing (cont.)

Initiator's onion proxy (OP)

- connects to COR
- initiates a random circuit using an onion
- converts data to fixed size cells
- performs layered encryption, one per router
- Circuit-based multi-hop forward
 - Each COR decrypts and removes a layer of received cells, then forwards to next COR

Tarzan & MorphMix

- Similar to Onion routing, Mix-net approach but extended to peer-to-peer environment
 - Again, layered/nested encryption with multi-hop forwarding
- All peers are potential message originators and relays
 - More potential relays than a small fixed core set
 - More scalable
 - Hide one's action in a large dynamic set of users
- Tarzan targets at network layer while MorphMix runs at application layer

Tarzan & MorphMix (cont.)

Larger dynamic set of unreliable nodes

- More efforts to defense against colluding nodes (dishonest or adversary controlled)
 - Restricted peer-selection in Tarzan
 - Collusion detection mechanism in MorphMix

3: Traffic analysis.

Attacks on anonymity systems

Degrading the quality of anonymity service

- Break sender/receiver anonymity, unlinkability
- Control anonymity to certain level
- Traffic analysis, traffic confirmation

Degrading the utilization of anonymity system

- Decrease the performance, reliability and availability of system, so as to drive users not using the service
- Denial-of-Service attacks

Traffic analysis

- If one is interested in breaking the anonymity ...
- Based on features in communication traffic, one may infer
 - who's the initiator \Rightarrow NO sender anonymity
 - who's the responder \Rightarrow NO receiver anonymity
 - an initiator-responder mapping \Rightarrow NO unlinkability

Common vulnerabilities

Message features

distinguishable contents, size

Communication patterns

- user online/offline period
- send-receive sequence
- message frequencies, e.g. burst stream

Properties/constraints in anonymity systems

- Iow-latency requirement
- link capacity and traffic shaping

Attacks on message features

If a message itself reveals one's identity or more, anonymity is defeated regardless of the strength of an anonymity system!

Message features

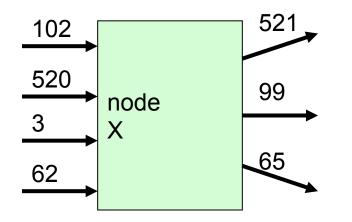
size, format, writing style ..., etc

Message size

- Varieties of message sizes may help linking a message to some application or sender
- Fixed by constant-size message padding

Distinguishable message contents

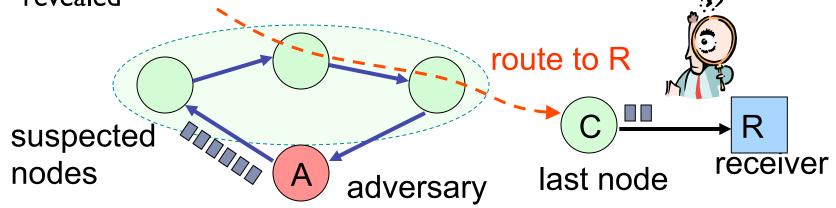
Message contents


- may expose user information or the route of a message
- e.g. host information, Referer, User-Agent fields in HTTP header
- Active adversary can perform message tagging attack
 - Alter bits in message header/payload
 - Recognize altered messages to exploit the route

Solutions

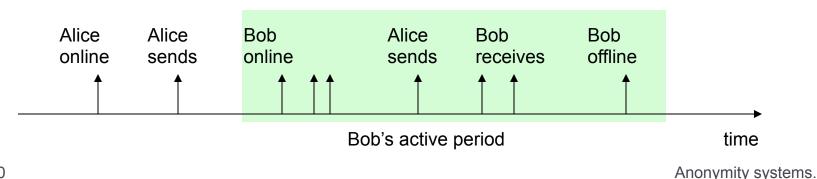
- Proper message transformation: e.g. encryption
- Removal of distinguishable information: e.g. Privoxy (privacy enhancing proxy)

Packet counting attack

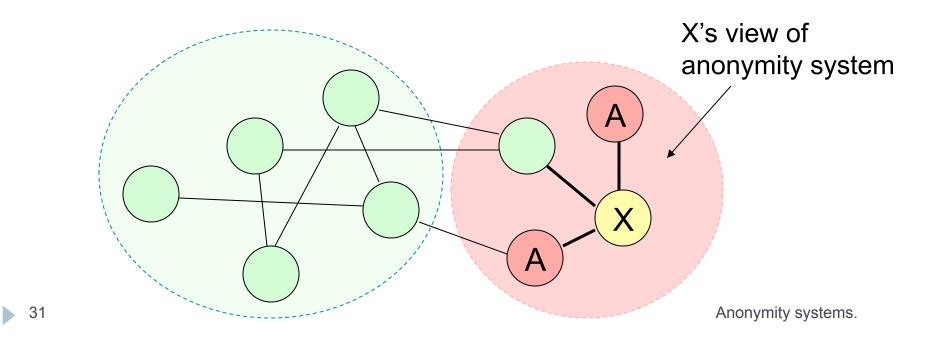

- Count the number of messages entering a node and leaving an anonymous tunnel
- Constant link padding may help:
 - Two nodes exchange a constant number of same-sized packets per time unit
 - Generate dummy traffic on idle or lightly loaded links
 - Costly
 - > Still vulnerable to other attacks, e.g. latency attacks

Anonymity systems.

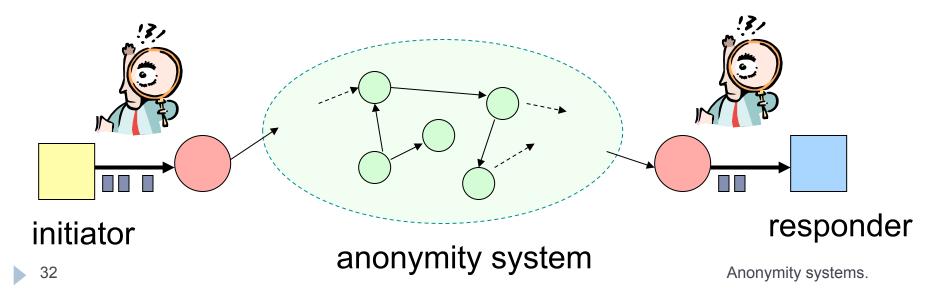
Clogging attack


- Observe traffic between a certain last node C and end receiver R
- Create a route through a set of suspected nodes
- Clog the route with high volume of traffic
- Decrease in throughput from C to R may indicate at least one node in the suspected route belongs to a route containing C
- Continue with different sets of nodes until a route is to R is revealed

Intersection attacks


Communication pattern

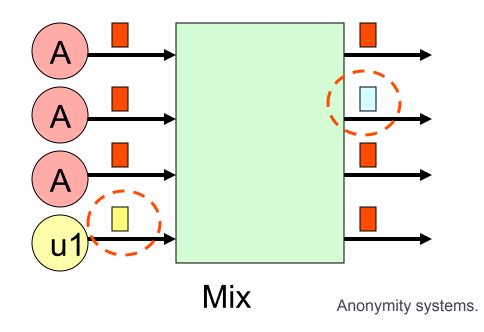
- Users join and leave the system from time to time
- Users are not active in communication all the time
- Some receivers receive messages after some senders transmit messages
- Intersecting sets of possible senders over different time periods → anonymity set shrinks
- Short term vs Long term


Partition attack on client knowledge

- Render inconsistent views of anonymity system on clients
 - e.g. member list on directory server
- Identify clients who always choose a particular subset of neighbors

Attacks on endpoints

- Sometimes referred as traffic confirmation rather than traffic analysis
- Suppose an adversary controls the first and the last node of a route
- Observe the traffic entering the first node and leaving the last node



Attacks on endpoints (cont.)

- Correlate the timings of a message entering the first node with those coming out of the last node
 - Packet counting attack, Timing attacks, Message frequency attack
- An adversary may be able to:
 - figure out some input message to output message mappings
 - rule out some potential senders or receivers from the anonymity sets
 - Ink a particular pair of sender and receiver
- An active adversary may increase the chance of success and speedup the analysis by delaying and dropping messages, flooding several nodes and links

Node flushing attack

- Intended to defeat MIX-based systems
- Flooding attack, (n-1) attack
- Flood a node with identifiable fake messages but leave a room for a single message to be traced
- Link user's input message with messages leaving the node

Trickle attack

- Trickle, flushing attack referred as blending attack
- Suppose a MIX accumulates and emits messages in rounds
- An active attacker holds a target message until the mix emits a batch of messages
- He then submits target message to mix while blocking other incoming messages
- Only the target message is emitted in the next round
- Requires control over traffic flow practical to launch?

More attacks ...

- The "Sting" Attack
- The "Send n' Seek" Attack
- Active Attacks Exploiting User Reactions
- Denial of Service Attack
- Social Engineering
- Alternative attack goal:
 - Drive users to less secure anonymity systems or not using anonymity service at all

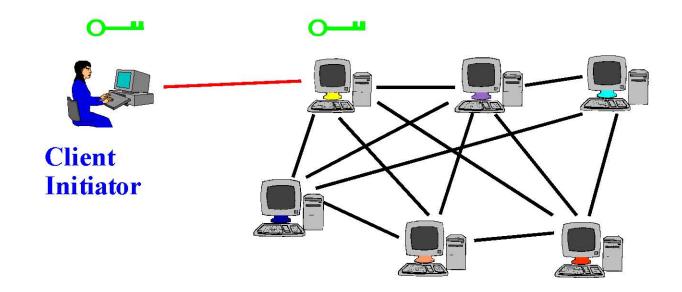
4: Tor: The Second-Generation Onion Router

R. Dingledine, N. Mathewson, P. Syverson

Slides by Vitaly Shmatikov

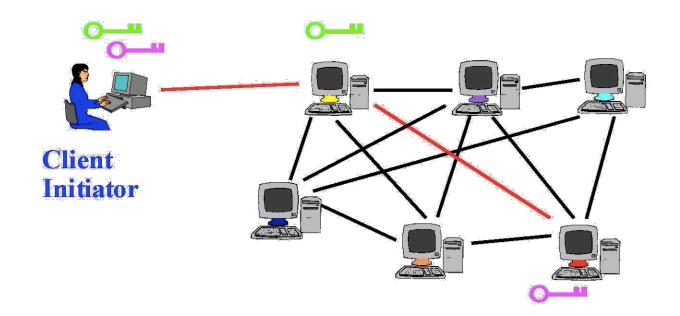
Disadvantages of Basic Mixnets

- Public-key encryption and decryption at each mix are computationally expensive
- Basic mixnets have high latency
 - Ok for email, not Ok for anonymous Web browsing
- Challenge: low-latency anonymity network
 - Use public-key cryptography to establish a "circuit" with pairwise symmetric keys between hops on the circuit
 - Then use symmetric decryption and re-encryption to move data messages along the established circuits
 - Each node behaves like a mix; anonymity is preserved even if some nodes are compromised

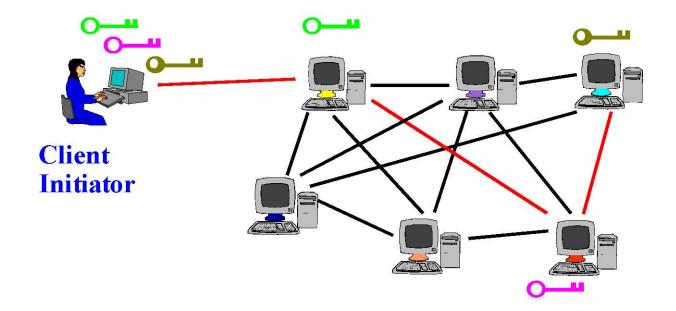

Tor

Deployed onion routing network

- http://torproject.org
- Specifically designed for low-latency anonymous Internet communications
- Running since October 2003
 - Thousands of relay nodes, I00K-500K? of users
- Easy-to-use client proxy,
- integrated Web browser

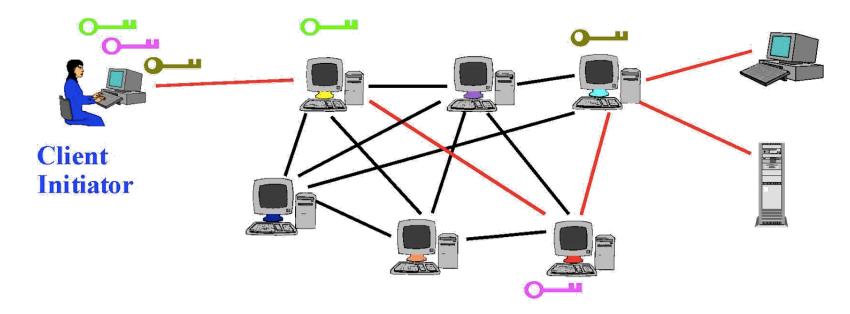

Tor circuit setup (1)

 Client proxy establish a symmetric session key and circuit with relay node #I


Tor circuit setup (2)

- Client proxy extends the circuit by establishing a symmetric session key with relay node #2
 - Tunnel through relay node #1 don't need

Tor circuit setup (3)


- Client proxy extends the circuit by establishing a symmetric session key with relay node #3
 - Tunnel through relay nodes #1 and #2

Anonymity systems.

Using a Tor circuit

- Client applications connect and communicate over the established Tor circuit
 - Datagrams decrypted and re-encrypted at each link

Anonymity systems.

Using Tor

Many applications can share one circuit

- Multiple TCP streams over one anonymous connection
- Tor router doesn't need root privileges
 - Encourages people to set up their own routers
 - More participants = better anonymity for everyone

Directory servers

- Maintain lists of active relay nodes, their locations, current public keys, etc.
- Control how new nodes join the network
 - "Sybil attack": attacker creates a large number of relays
- Directory servers' keys ship with Tor code

Passive attacks

- Observe Traffic Patterns
 - Multiplexing minimizes damage
- Observe User Content
 - Use of Privoxy
- Option Distinguishability
 - Leads to tracing due to distinct pattern behavior
- End-to-end Timing Correlation
 - Tor does not hide timing (low-latency requirement)
- End-to-end Size Correlation
 - Leaky-Pipe Topology
- Website Fingerprinting
 - New attack as of 2004, semi-defended by mitigation

Active attacks

Compromise Keys

Mitigated by key rotation and redundant multiple layer encryption. Replacing a node via identity key could theoretically avoid this defense.

Iterated Compromise

Short lifetimes for circuits

Run Recipient

Adversary controls end server, which allows him to use Tor to attack the other end. Privoxy would help minimize chance of revealing initiator

Run Onion Proxy

- Compromised OPs compromise all information sent through OP
- DoS non-observed nodes
 - Only real defense is robustness
- Run hostile OR
 - Requires nodes at both ends of a circuit to obtain information
- Introduce Timing
 - Similar to timing discussed in passive version

Active attacks (cont.)

Tag Attacks

Integrity check mitigates this

Replay Attacks

- Session key changes if replay used
- Replace End Server
 - No real solution, verify that server is actually server with authentication. Similar to Recipient attack
- Smear Attacks
 - Good press and exit policies
- Hostile Code Distribution
 - All Tor releases signed

Directory subversion

Destroy Servers

Directories require majority rule, or human intervention if more than half destroyed.

Subvert Server

> At worst, cast tie-breaker vote

Subvert Majority of Servers

• Ensure Directories are independent and resistant to attacks

Encourage Dissent in Directory Operators

- People problem, not Tor problem.
- Trick Directories
 - Server Operators should be able to filter out hostile nodes.
- Convince Directories that OR is Functional
 - Directory servers should test by building circuit and streams to OR.

Rendezvous point attacks

Many Introduction Point Requests

IP can block requests with authorization tokens, or require certain amounts of computation per request.

Attack Introduction Point

Server re-advertises on different IP, or advertise secretly.
Attacker must disable all IPs.

Compromise Introduction Point

Servers should occasionally verify their IPs, and close circuits that flood them.

Compromise Rendezvous Point

Similar to active attacks against ORs