
Cristina Nita-Rotaru

CS526: Information security

Operating System Security and UNIX Access Control

Readings for This Lecture

•  Wikipedia
•  CPU modes
•  System call
•  Filesystem Permissions

•  Other readings
•  UNIX File and Directory Permissions

and Modes
}  http://www.hccfl.edu/pollock/AUnix1/

FilePermissions.htm
•  Unix file permissions

}  http://www.unix.com/tips-tutorials/
19060-unix-file-permissions.html

OS Security 2

Security Goals for Operating Systems

}  Enabling multiple users to securely share a computer
}  Separation and sharing of processes, memory, files, devices, etc.

}  Threat model
}  Users may be malicious
}  Users have terminal access to computers
}  Software may be malicious/buggy

}  Security mechanisms
}  User authentication – see previous lecture
}  Memory protection
}  Processor modes
}  File access control

OS Security 3

Security Goals of Operating Systems

}  Modern OS must ensure secure operation in a
networked environment

}  What is the threat model?
}  Security mechanisms

}  Authentication
}  Access Control
}  Secure Communication (using cryptography)
}  Logging & Auditing
}  Intrusion Prevention and Detection
}  Recovery

OS Security 4

}  Ensure separation
}  Physical
}  Temporal
}  Logical
}  Cryptographical

}  OS also need to ensure sharing

OS Security 5

Reconciling Separation and Sharing

Computer System Components

}  Hardware
}  Provides basic computing resources (CPU, memory, I/O

devices)
}  Operating system

}  Controls and coordinates the use of the hardware among
the various application programs

}  Applications programs
}  Define the ways in which the system resources are used

to solve the computing problems of the users
}  Users

}  E.g., people, machines, other computers

OS Security 6

Abstract View of System Components

OS Security 7

Memory Protection: Access Control

}  Ensures that one user’s process cannot access other’s
memory
}  fence
}  relocation
}  base/bounds register
}  segmentation
}  paging
}  …

}  Operating system and user processes need to have
different privileges

OS Security 8

Single-program, no Memory Protection

}  One application runs at a time
}  Each application runs within a hardwired range of physical

memory addresses
}  Application can use the same physical addresses every

time, across reboots
}  Applications typically use the lower memory addresses
}  An OS uses the higher memory addresses
}  An application can address any physical memory location

OS Security 9

Multiprogramming, no Memory Protection

§  When a program is copied into memory, a linker-loader
alters the code of the program (e.g., loads, stores, and
jumps)
§  To use the address of where the program lands in memory

§  Bugs in any program can cause other programs to
crash, even the OS

OS Security 10

Multiprogramming with Memory
protection

}  Memory protection keeps user programs from crashing
one another and the OS
}  Main idea: make all memory accesses go through an OS

controlled component which provides address translation
while checking all addresses

}  Two hardware-supported mechanisms
}  Address translation (controlled by the OS)
}  Dual-mode operation for the CPU

OS Security 11

Address Translation

}  Each process is associated with an address space, or all
the addresses a process can touch
}  Each process believes that it owns the entire memory, starting

with the virtual address 0

}  A translation table to translate every memory reference
from virtual to physical addresses
}  Processes cannot talk about other processes’ addresses, nor

about the OS addresses
}  OS uses physical addresses directly

}  No translations

OS Security 12

Dual-Mode Operation Revisited

}  Translation tables offer protection if they cannot be
altered by applications

}  An application can only touch its address space under the
user mode

}  Hardware requires the CPU to be in the kernel/system/
proviledged mode to modify the address translation
tables

OS Security 13

}  System mode (privileged mode, master mode,
supervisor mode, kernel mode)
}  Can execute any instruction
}  Can access any memory locations, e.g., accessing

hardware devices
}  Can enable and disable interrupts
}  Can change privileged processor state
}  Can access memory management units
}  Can modify registers for various descriptor tables

Reading: http://en.wikipedia.org/wiki/CPU_modes
OS Security 14

CPU Modes (processor modes or privilege)

Switching from the Kernel to User Mode

}  To run a user program, the kernel
}  Creates a process and initialize the address space
}  Loads the program into the memory
}  Initializes translation tables
}  Sets the hardware pointer to the translation table
}  Sets the CPU to user mode
}  Jumps to the entry point of the program

OS Security 15

User Mode

}  User mode
}  Access to memory is limited,
}  Cannot execute some instructions
}  Cannot disable interrupts,
}  Cannot change arbitrary processor state,
}  Cannot access memory management units

}  Transition from user mode to system mode can only
happen via well defined entry points, i.e., through
system calls

Reading: http://en.wikipedia.org/wiki/CPU_modes
OS Security 16

System Calls

}  Guarded gates from user mode (space, land) into kernel
mode (space, land)
}  use a special CPU instruction (often an interruption),

transfers control to predefined entry point in more
privileged code; allows the more privileged code to
specify where it will be entered as well as important
processor state at the time of entry

}  the higher privileged code, by examining processor
state set by the less privileged code and/or its stack,
determines what is being requested and whether to
allow it

http://en.wikipedia.org/wiki/System_call
OS Security 17

Kernel space vs User space

}  Part of the OS runs in the kernel model
}  known as the OS kernel

}  Other parts of the OS run in the user mode, including
service programs (daemon programs), user
applications, etc.
}  they run as processes
}  they form the user space (or the user land)

}  What is the difference between kernel mode and
processes running as root (or superuser,
administrator)?

OS Security 18

Hardware (disks, network interfaces, etc.)

The Kernel

Process 1 Process 2 Process n ……

Kernel Space vs. User Space

OS Security 19

Access control

}  A reference monitor mediates all access to
resources
}  Principle: Complete mediation: control all

accesses to resources

Resource
User

process

Reference
monitor

access request

policy

?

OS Security 20

U r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

Access Control Matrix

OS Security 21

}  Basic Abstractions

•  Subjects

•  Objects

•  Rights

}  The rights in a cell specify the access of
the subject (row) to the object (column)

Access Matrix Model

OS Security 22

}  A subject is a program (application)
executing on behalf of some
principal(s)

}  A principal may at any time be idle,
or have one or more subjects
executing on its behalf

What are subjects in UNIX?
What are principals in UNIX?

Principals and Subjects

OS Security 23

}  An object is anything on which a subject can perform
operations (mediated by rights)

}  Usually objects are passive; examples:
•  File
•  Directory (or Folder)
•  Memory segment

}  Subjects (i.e. processes) can also be objects, with
operations performed on them
•  kill, suspend, resume, send interprocess communication,

etc.

Objects

OS Security 24

UNIX Access Control

}  Users, Groups, Files, Processes
}  Each user account has a unique UID

}  The UID 0 means the super user (system admin)
}  A user account belongs to multiple groups
}  Subjects are processes

}  associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid),
(suid, sgid)

}  Objects are files

OS Security 25

USERS PRINCIPALS

Real World User Unit of Access Control
and Authorization

the system authenticates the human user to
a particular principal

Users vs. Principals

OS Security 26

}  There should be a one-to-many mapping from
users to principals

•  a user may have many principals

•  each principal is associated with an unique
user

}  This ensures accountability of a user's actions

Users and Principals

OS Security 27

Organization of Objects

}  Almost all objects are modeled as files
}  Files are arranged in a hierarchy
}  Files exist in directories
}  Directories are also one kind of files

}  Each object has
}  owner
}  group
}  12 permission bits

}  rwx for owner, rwx for group, and rwx for others
}  suid, sgid, sticky

OS Security 28

inode

}  Data structure:
}  represents a filesystem object (file or a directory)

}  Stores:
}  Filesystem attributes:

} manipulation metadata (e.g. creation, access,
modify time), as well as owner

} permission data (e.g. group-id, user-id,
permissions)

}  Disk block location(s) of the filesystem object's data
}  Filesystem object attributes may include

OS Security 29

UNIX
inodes:

Each file
corresponds
to an inode

OS Security 30

Unix Directories

OS Security 31

Basic Permissions Bits on Files

}  Read controls reading the content of a file
}  i.e., the read system call

}  Write controls changing the content of a file
}  i.e., the write system call

}  Execute controls loading the file in memory and
execute
}  i.e., the execve system call

OS Security 32

Execution of a file: binary vs script

} Having execute but not read, can one run a
binary file?

} Having execute but not read, can one run a
script file?

} Having read but not execute, can one run a
script file?

OS Security 33

Permission Bits on Directories

}  Read bit allows one to show file names in a directory
}  The execution bit controls traversing a directory

}  does a lookup, allows one to find inode # from file name
}  chdir to a directory requires execution

}  Write + execution control creating/deleting files in
the directory
}  Deleting a file under a directory requires no permission on

the file

}  Accessing a file identified by a path name requires
execution to all directories along the path

OS Security 34

Ruid and rgid

}  Real user ID (ruid) and real GID (rgid) identify the
real owner of the process
}  Affect the permissions for sending signals. A process without

superuser privilege can signal another process only if the
sender’s ruid or euid matches the ruid or suid of the receiver.
Since child processes inherit the credentials from the parent,
they can signal each other.

OS Security 35

Euid and egid

}  OS kernel uses the euid and egid of the process to
determine if it can access the file

}  Effective user ID (euid) of a process is the ownership
assigned to files created by that process

}  Effective GID (egid) of a process may also affect file
creation, depending on the semantics of the specific
kernel implementation being used and possibly also by the
mount options used
}  In Unix newly created files will get assigned the group

ownership of the egid of the process that creates them

OS Security 36

Suid

}  Saved user ID (suid) of a process is used when a program
running with elevated privileges needs to temporarily do
some unprivileged work

}  It changes its euid from a privileged value (typically root)
to some unprivileged one, and this triggers a copy of the
privileged user ID to the suid.

}  Later, it can set its euid back to the suid (an unprivileged
process can only set its euid to three values: its ruid , its
suid, and its euid—i.e., unchanged) to resume its
privileges.

OS Security 37

The suid, sgid, sticky bits

suid sgid sticky bit

non-
executable
files

no effect affect locking
(unimportant
for us)

not used
anymore

executable
files

change euid
when executing
the file

change egid
when executing
the file

not used
anymore

directories no effect new files inherit
group of the
directory

only the
owner of a
file can
delete

OS Security 38

Some Examples

}  What permissions are needed to access a file/
directory?
}  read a file: /d1/d2/f3
}  write a file: /d1/d2/f3
}  delete a file: /d1/d2/f3
}  rename a file: from /d1/d2/f3 to /d1/d2/f4
}  …

}  File/Directory Access Control is by System Calls
}  e.g., open(2), stat(2), read(2), write(2), chmod(2),

opendir(2), readdir(2), readlink(2), chdir(2), …

OS Security 39

The Three Sets of Permission Bits

}  Intuition:
}  if the user is the owner of a file, then the r/w/x bits

for owner apply
}  otherwise, if the user belongs to the group the file

belongs to, then the r/w/x bits for group apply
}  otherwise, the r/w/x bits for others apply

}  Can one implement negative authorization, i.e., only
members of a particular group are not allowed to
access a file?

OS Security 40

Other Issues On Objects in UNIX

}  Accesses other than read/write/execute
}  Who can change the permission bits?

}  The owner can
}  Who can change the owner?

}  Only the superuser

}  Rights not related to a file
}  Affecting another process
}  Operations such as shutting down the system, mounting a

new file system, listening on a low port
}  traditionally reserved for the root user

OS Security 41

Subjects vs. Principals

}  Access rights are specified for users (accounts)
}  Accesses are performed by processes (subjects)
}  The OS needs to know on which users’ behalf a

process is executing

OS Security 42

Process User ID Model in Modern UNIX
Systems

}  Each process has three user IDs
}  real user ID (ruid) owner of the process
}  effective user ID (euid) used in most access

 control decisions
}  saved user ID (suid)

}  and three group IDs
}  real group ID
}  effective group ID
}  saved group ID

OS Security 43

Process User ID Model in Modern UNIX
Systems

}  When a process is created by fork
}  it inherits all three users IDs from its parent

process
}  When a process executes a file by exec
}  it keeps its three user IDs unless the set-user-ID bit

of the file is set, in which case the effective uid and
saved uid are assigned the user ID of the owner of
the file

}  A process may change the user ids via system calls

OS Security 44

The Need for suid/sgid Bits

}  Some operations are not modeled as files and require
user id = 0
}  halting the system
}  bind/listen on “privileged ports” (TCP/UDP ports

below 1024)
}  non-root users need these privileges

}  File level access control is not fine-grained enough
}  System integrity requires more than controlling who

can write, but also how it is written

OS Security 45

Security Problems of Programs with
suid/sgid

}  These programs are typically setuid root
}  Violates the least privilege principle
}  every program and every user should operate using

the least privilege necessary to complete the job
}  Why violating least privilege is bad?
}  How would an attacker exploit this problem?
}  How to solve this problem?

OS Security 46

Changing Effective user IDs

}  A process that executes a set-uid program can drop
its privilege; it can
}  drop privilege permanently

}  removes the privileged user id from all three user
IDs

}  drop privilege temporarily
}  removes the privileged user ID from its effective

uid but stores it in its saved uid, later the process
may restore privilege by restoring privileged user
ID in its effective uid

OS Security 47

login

pid 2235

euid 0

ruid 0

suid 0

login

pid 2235

euid 500

ruid 500

suid 500

setuid(500)

After the login
process verifies
that the entered
password is
correct, it issues
a setuid system
call.

bash

pid 2235

euid 500

ruid 500

suid 500

exec(“bash”)

The login
process then
loads the
shell, giving
the user a
login shell.

fork()

The user
types in the
passwd
command to
change his
password.

What Happens during Logging in

OS Security 48

bash

pid 2235

euid 500

ruid 500

suid 500

bash

pid 2297

euid 500

ruid 500

suid 500

passwd

pid 2297

euid 0

ruid 500

suid 0

exec(“passwd”)

The fork call creates a new
process, which loads “passwd”,
which is owned by root user, and
has setuid bit set.

passwd

pid 2297

euid 500

ruid 500

suid 0

passwd

pid 2297

euid 500

ruid 500

suid 500

Drop
privilege
temporarily

Drop
privilege
permanently

OS Security 49

Access Control in Early UNIX

}  A process has two user IDs: real uid and effective uid
and one system call setuid

}  The system call setuid(id)
}  when euid is 0, setuid set both the ruid and the euid

to the parameter
}  otherwise, the setuid could only set effective uid to

real uid
} Permanently drops privileges

}  A process cannot temporarily drop privilege

Setuid Demystified, In USENIX Security ‘ 02

OS Security 50

System V

}  To enable temporarily drop privilege, added saved uid
& a new system call

}  The system call seteuid
}  if euid is 0, seteuid could set euid to any user ID
}  otherwise, could set euid to ruid or suid

} Setting euid to ruid temp. drops privilege
}  The system call setuid is also changed
}  if euid is 0, setuid functions as seteuid
}  otherwise, setuid sets all three user IDs to real uid

OS Security 51

BSD

}  Uses ruid & euid, change the system call from setuid
to setreuid
}  if euid is 0, then the ruid and euid could be set to

any user ID
}  otherwise, either the ruid or the euid could be set

to value of the other one
} enables a process to swap ruid & euid

OS Security 52

Modern UNIX

}  System V & BSD affect each other, both implemented
setuid, seteuid, setreuid, with different semantics
}  some modern UNIX introduced setresuid

}  Things get messy, complicated, inconsistent, and buggy
}  POSIX standard, Solaris, FreeBSD, Linux

OS Security 53

Suggested Improved API

}  Three method calls
}  drop_priv_temp
}  drop_priv_perm
}  restore_priv

}  Lessons from this?
•  “Mechanism, not policy” not necessarily a good idea for

security (flexibility not always a good thing)
•  Psychological acceptability principle

}  “human interface should be designed for ease of use”
}  the user’s mental image of his protection goals should

match the mechanism

OS Security 54

Take home lessons

}  Access control matrix model used
to specify what right do Subjects
have on Objects (or other files)

}  CPU Mode vs User mode defines
different access rights

}  Unix access control is based on the
concepts of users, files, groups and
processes

OS Security 55

