
Cristina Nita-Rotaru

CS526: Information security

Access Control Models

1: Discretionary Access Control

Readings for this lecture

}  Wikipedia
}  Discretionary Access Control
}  Confused Deputy Problem
}  Capability-based Security
}  Ambient Authority
}  Mandatory Access Control

Access control 3

Why computers are vulnerable?

}  Programs are buggy

}  Humans make mistakes

}  Access control is not good enough
}  Discretionary Access Control (DAC) used in Unix and

Windows assume that programs are not buggy

Access control 4

Access control check

}  Given an access request, return an access control decision
based on the policy
}  allow / deny

Access control 5

Access Control
Check

A	 Request	 Allow	 /	 Deny	

The	 Policy	

Discretionary access control

}  No precise definition. Basically, DAC allows access rights
to be propagated at subject’s discretion
}  often has the notion of owner of an object
}  used in UNIX, Windows, etc.

}  According to TCSEC (Trusted Computer System
Evaluation Criteria)
}  "A means of restricting access to objects based on the identity

and need-to-know of users and/or groups to which they
belong. Controls are discretionary in the sense that a subject
with a certain access permission is capable of passing that
permission (directly or indirectly) to any other subject."

Access control 6

DAC Limitations

}  DAC causes the Confused Deputy problem
}  Solution: use capability-based systems

}  DAC does not preserve confidentiality when facing Trojan
horses
}  Solution: use Mandatory Access Control (BLP)

}  DAC implementation fails to keep track of for which
principals, a subject (process) is acting on behalf of
}  Solution: fixing the DAC implementation to better keep track

of principals

Access control 7

The confused deputy problem

Access control 8

SYSX/FORT $OUTPUT
Compiler Program

SYSX (Dir)
 FORT
 STAT
 BILL

Write to
the bill
file

System
Admin

$Output SYSX/BILL

Write
output
file

User

The Confused Deputy by Norm Hardy

The confused deputy problem (cont.)

}  The compiler runs with authority from two sources
}  the invoker (i.e., the programmer)
}  the system admin (who installed the compiler and controls

billing and other info)

}  It is the deputy of two masters
}  There is no way to tell which master the deputy is serving

when performing a write
}  Solution: Use capability

Access control 9

Access matrix model

Access control 10

U r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

Implementation of access matrix

}  Access Control Lists
}  Encode columns

}  Capabilities
}  Encode rows

}  Access control triples
}  Encode cells

Access control 11

Access control lists (ACLs)

}  each column of the access matrix is stored with the
object corresponding to that column

Access control 12

F
U:r
U:w
U:own

G
U:r
V:r
V:w
V:own

each row of the access matrix is stored with the
subject corresponding to that row

U F/r, F/w, F/own, G/r

V G/r, G/w, G/own

Access control 13

Capabilities lists

Subject Access Object
 U r F
 U w F
 U own F
 U r G
 V r G
 V w G
 V own G

commonly used in relational DBMS

Access control 14

Access control triples

Different notions of capabilities

}  Capabilities as a row representation of Access Matrices
}  Capabilities used in Linux as a way to divide the root

power into multiple pieces that can be given out
separately

}  Capabilities as a way of implementing the whole access
control systems
}  Subjects have capabilities, which can be passed around
}  When accessing resources, subjects select capabilities to access

}  An example is open file descriptors

Access control 15

More on capability based access control

}  Subjects have capabilities, which
}  Give them accesses to resources

}  E.g., like keys

}  Are transferable and unforgeable tokens of authority
}  Can be passed from one process to another

¨  Similar to opened file descriptors

}  Why capabilities may solve the confused deputy
problems?
}  When accessing a resource, must select a capability, which also

selects a master

Access control 16

Back to the confused deputy problem

Access control 17

SYSX/FORT $OUTPUT

 1 2 3

SYSX/ STAT SYSX/ BILL $OUTPUT

•  Invoker must pass in a capability for $OUTPUT, which is
stored in slot 3.

•  Writing to output uses the capability in slot 3.
•  Invoker cannot pass a capability it doesn’t have.

Capability vs. ACL

}  Consider two security mechanisms for bank accounts
}  One is identity-based. Each account has multiple

authorized owners. You go into the bank and show your
ID, then you can access all accounts you are authorized
}  Once you show ID, you can access all accounts
}  You have to tell the bank which account to take money from

}  The other is token-based. When opening an account, you
get a passport to that account and a PIN, whoever has
the passport and the PIN can access

Access control 18

Capabilities vs. ACL: Ambient authority

}  Ambient authority means that a user’s authority is
automatically exercised, without the need of being
selected
}  causes the confused deputy problem

}  Example: You are carrying a lot of keys. When you walk to
a door, the door automatically opens if you have the right
key. You don’t need to select a key.

}  No ambient authority in capability systems

Access control 19

Capability vs. ACL: Naming

}  ACL systems need a namespace for objects
}  In capability systems, a capability can serve both to

designate a resource and to provide authority
}  ACLs also need a namespace for subjects or principals

}  as they need to refer to subjects or principals

}  Implications
}  the set of subjects cannot be too many or too dynamic
}  most ACL systems grant rights to user accounts principals, and

do not support fine-grained subject rights management

Access control 20

Conjectures on why most real-world OS
use ACL, rather than capabilities

}  Capability is more suitable for process level sharing, but
not user-level sharing
}  user-level sharing is what is really needed

}  Processes are more tightly coupled in capability-based
systems because they need to pass capabilities around
}  programming may be more difficult

Access control 21

Inherent weakness of DAC

}  Unrestricted DAC allows information flows from an
object which can be read to any other object which can
be written by a subject
}  Suppose A is allowed to read some information and B is not, A

can read and tell B

}  Suppose users are trusted not to do this deliberately. It is
still possible for Trojan Horses to copy information from
one object to another

Access control 22

Trojan Horse example

Access control 23

File F
A:r
A:w

File G
B:r
A:w

Principal B cannot read file F

ACL

Trojan Horse example

}  Principal B can read contents of file F copied to file G

Access control 24

File F
A:r
A:w

File G
B:r
A:w

ACL Principal A

Program Goodies

 Trojan Horse

executes
read

write

Buggy software can become Trojan Horses

}  When a buggy software is exploited, it executes the code/
intention of the attacker, while using the privileges of the
user who started it

}  This means that computers with only DAC cannot be
trusted to process information classified at different levels
}  Mandatory Access Control is developed to address this

problem

Access control 25

DAC’s weaknesses caused by the gap

}  A request: a subject wants to perform an action
}  E.g., processes in OS

}  The policy: each principal has a set of privileges
}  E.g., user accounts in OS

}  Challenging to fill the gap between the subjects and the
principals
}  relate the subject to the principals

Access control 26

Unix DAC revisited (1)

Access control 27

Action Process Effective
UID

Real
Principals

User A Logs In shell User A User A

Load Binary “Goodie”
Controlled by user B

Goodie User A ? ?

•  When the Goodie process issues a request, what principal(s)
is/are responsible for the request?

•  Under what assumption, it is correct to say that User A is
responsible for the request?

Assumption: Programs are benign, i.e., they only do
what they are told to do.

UNIX DAC revisited (2)

Access control 28

Action Process Effective
UID

Real
Principals

 shell User A User A

Load AcroBat Reader Binary AcroBat User A User A

Read File Downloaded from
Network

AcroBat User A ? ?

•  When the AcroBat process (after reading the file) issues a
request, which principal(s) is/are responsible for the request?

•  Under what assumption, it is correct to say that User A is
responsible for the request?

Assumption: Programs are correct, i.e., they handle
inputs correctly.

Why DAC is vulnerable?

}  Implicit assumptions
}  Software are benign, i.e., behave as intended
}  Software are correct, i.e., bug-free

}  The reality
}  Malware are popular
}  Software are vulnerable

}  The problem is not caused by the discretionary nature of
policy specification!
}  i.e., owners can set policies for files

Access control 29

Why DAC is vulnerable? (cont’)

}  A deeper reason in the enforcement mechanism
}  A single invoker is not enough to capture the origins of a

process

}  When the program is a Trojan
}  The program-provider should be responsible for the requests

}  When the program is vulnerable
}  It may be exploited by input-providers
}  The requests may be issued by injected code from input-

providers

}  Solution: include input-providers as the principals

Access control 30

2: Bell LaPadula Model

Readings for this lecture

}  Wikipedia
}  Bell-LaPadula model

}  David E. Bell: Looking Back at the
Bell-La Padula Model

Access control 32

Access control at different abstractions

}  Using principals
}  Determines which principals (user accounts) can access what

documents

}  Using subjects
}  Determines which subjects (processes) can access what

resources
}  This is where BLP focuses on

Access control 33

Multi-level security (MLS)

}  The capability of a computer system to carry information
with different sensitivities (i.e. classified information at
different security levels)
}  permit simultaneous access by users with different security

clearances and needs-to-know
}  prevent users from obtaining access to information for which

they lack authorization.
}  Discretionary access control fails to achieve MLS

}  Example of security levels
}  Top Secret > Secret > Confidential > Unclassified

}  Security goal is confidentiality: ensures that information
does not flow to those not cleared for that level

Access control 34

Mandatory access control

}  Mandatory access controls (MAC) restrict the access of
subjects to objects based on a system-wide policy
}  denying users full control over the access to resources that

they create. The system security policy (as set by the
administrator) entirely determines the access rights granted

Access control 35

Bell-LaPadula: A MAC model for
achieving multi-level security

}  Introduced in 1973

}  Air Force was concerned with security in time-sharing
systems
}  Many OS bugs
}  Accidental misuse

}  Main Objective:
}  Enable one to formally show that a computer system can

securely process classified information

Access control 36

What is a Security Model?

}  A model describes the system
}  e.g., a high level specification or an abstract machine

description of what the system does

}  A security policy
}  defines the security requirements for a given system

}  Verification techniques that can be used to show that a
policy is satisfied by a system

}  System Model + Security Policy = Security Model

Access control 37

Approach of BLP

}  Use state-transition systems to describe computer
systems

}  Define a system as secure iff. every reachable state
satisfies 3 properties
}  simple-security property
}  *-property
}  discretionary-security property

}  Prove a Basic Security Theorem (BST)
}  so that given the description of a system, one can prove that

the system is secure

Access control 38

BLP: System Model

}  A computer system is modeled as a state-transition
system

}  There is a set of subjects; some are designated as trusted.
}  Each state has objects, an access matrix, and the current

access information
}  There are state transition rules describing how a system

can go from one state to another
}  Each subject s has a maximal security level Lm(s), and a

current security level Lc(s)
}  Each object has a classification level

Access control 39

Elements of the BLP model

Access control 40

Subjects

Trusted
Subjects

Objects
Current
Accesses

Security levels, e.g.: {TS, S, C, U}

Lm: Max
Sec. Level

L: Class.
Level

Lc: Current
Sec. Level

Access Matrix

BLP: Security policy

}  A state is secure if it satisfies
}  Simple Security Condition (no read up):

}  S can read O iff Lm(S) ≥ L(O)

}  The Star Property (no write down): for any S that is not
trusted
}  S can read O iff Lc(S) ≥ L(O) (no read up)
}  S can write O iff Lc(S) ≤ L(O) (no write down)

}  Discretionary-security property
}  every access is allowed by the access matrix

}  A system is secure if and only if every reachable state is
secure.

}  Note: Trusted subjects are not restricted to the Star
Property

Access control 41

Implication of the BLP policy

Highest

Can Read & Write

Lowest

Subject Max Level

Current
Level

C
an W

rite
C

an R
ead

Objects

Access control 42

Star property

}  Applies to subjects not to principals and users
}  Users are trusted (must be trusted) not to disclose secret

information outside of the computer system
}  Subjects are not trusted because they may have Trojan

Horses embedded in the code they execute
}  Star-property prevents overt leakage of information

but does not address the covert channel problem

Access control 43

Overt (explicit) channels vs. covert
channels

}  Security objective of MLS in general, BLP in particular
}  high-classified information cannot flow to low-cleared users

}  Overt channels of information flow
}  read/write an object

}  Covert channels of information flow
}  communication channel based on the use of system resources

not normally intended for communication between the
subjects (processes) in the system

Access control 44

Examples of covert channels

}  Using file lock as a shared boolean variable
}  By varying its ratio of computing to input/output or its

paging rate, the service can transmit information to a
concurrently running process

}  Timing of packets being sent

}  Covert channels are often noisy
}  However, information theory and coding theory can be

used to encode and decode information through noisy
channels

Access control 45

BLP and covert channels

}  Covert channels cannot be blocked by star-property
}  It is generally very difficult, if not impossible, to block all

covert channels
}  One can try to limit the bandwidth of covert channels
}  Military requires cryptographic components be

implemented in hardware
}  to avoid Trojan horse leaking keys through covert channels

Access control 46

Limitations of BLP notion of security

}  The objective of BLP security is to ensure
}  a subject cleared at a low level should never read information

classified high

}  The simple-security-property and the star-property are
sufficient to stop such information flow at any given state

}  What about information flow across states?

Access control 47

BLP security is not sufficient!

}  Consider a system with subjects s1, s2, and objects o1, o2
}  Lm(s1) = Lc(s1) = L(o1) = high
}  Lm(s2) = Lc(s2) = L(o2) = low

}  And the following execution
}  s1 gets access to o1, reads something, releases access, then

changes current level to low, gets write access to o2, writes to
o2

}  Every state is secure, yet illegal information exists
}  Solution: tranquility principle: subject cannot change

current levels, or cannot drop to below the highest
level read so far

Access control 48

More on the BLP Notion of Security
}  When a subject A copies information from high to a low

object f, this violates the star-property, but no information
leakage occurred yet
}  Only when B, who is not cleared at high, reads f, does leakage

occurs
}  If the access matrix limits access to f only to A, then such leakage

may never occur

}  BLP notion of security is neither sufficient nor necessary
to stop illegal information flow (through direct/overt
channels)

}  The state based approach is too low level and limited
in expressive power

Access control 49

How to Fix The BLP Notion of Security?

}  May need to differentiate externally visible objects from
other objects
}  e.g., a printer is different from a memory object

}  State-sequence based property
}  e.g., exists no sequence of states so that there is an

information path from a high object to a low externally visible
object or to a low subject

Access control 50

The Basic Security Theorem

}  This provides the verification techniques piece in
}  Model – Policy – Verification framework

}  Restatement of The Basic Security Theorem: A system is a
secure system if and only if the starting state is a secure
state and each action (concrete state transition that could
occur in an execution sequence) of the system leads the
system into a secure state.

Access control 51

Observations of the BST

}  The BST is purely a result of defining security as a state-
based property.
}  It holds for any other state-based property

}  The BST cannot be used to justify that the BLP notion of
security is “good”
}  This is McLean’s main point in his papers

}  “A Comment on the Basic Security Theorem of Bell and
LaPadula” [1985]

}  “Reasoning About Security Models” [1987]
}  “The Specification and Modeling of Computer Security” [1990]

Access control 52

Main contributions of BLP

}  The overall methodology to show that a system is secure
}  adopted in many later works

}  The state-transition model
}  which includes an access matrix, subject security levels, object

levels, etc.

}  The introduction of star-property
}  Simple-security-property is not enough to stop illegal

information flow

Access control 53

Other limitations of BLP

}  Addresses only confidentiality, not integrity
}  Confidentiality is often not as important as integrity in most

situations
}  Integrity addressed by other models (such as Biba, Clark-

Wilson)

}  Does not deal with information flow through covert
channels

Access control 54

More on MLS: Security levels

}  Used as attributes of both subjects & objects
}  clearance & classification

}  Typical military security levels:
}  top secret ≥ secret ≥ confidential ≥ unclassified

}  Typical commercial security levels
}  restricted ≥ proprietary ≥ sensitive ≥ public

Access control 55

Security categories

}  Also known as compartments
}  Typical military security categories

}  army, navy, air force
}  nato, nasa, noforn

}  Typical commercial security categories
}  Sales, R&D, HR
}  Dept A, Dept B, Dept C

Access control 56

Security labels

}  Labels = Levels × P (Categories)
}  Define an ordering relationship among Labels

}  (e1, C1) ≤ (e2, C2) iff. e1 ≤e2 and C1 ⊆ C2

}  This ordering relation is a partial order
}  reflexive, transitive, anti-symmetric
}  e.g., ⊆

}  All security labels form a lattice

Access control 57

An Example Security Lattice

}  levels={top secret, secret}
}  categories={army,navy}

Top Secret, {army, navy}

Top Secret,
{army}

Top Secret,
{navy}

Secret, {army,
navy}

Top Secret, {} Secret, {army} Secret, {navy}

Secret, {}

Access control 58

The need-to-know principle

}  Even if someone has all the necessary official approvals
(such as a security clearance) to access certain
information they should not be given access to such
information unless they have a need to know: that is,
unless access to the specific information necessary for the
conduct of one's official duties.

}  Can be implemented using categories and or DAC

Access control 59

3: Integrity Protection Models: Biba, Clark-
Wilson, Chinese Wall

Readings for this lecture

}  Related Papers (Optional):
}  Kenneth J. Biba: "Integrity

Considerations for Secure Computer
Systems", MTR-3153, The Mitre
Corporation, April 1977.

}  David D. Clark and David R. Wilson. “A
Comparison of Commercial and Military
Computer Security Policies.” In IEEE
SSP 1987.

}  David FC. Brewer and Michael J. Nash.
“The Chinese Wall Security Policy.” in
IEEE SSP 1989.

Access control 61

Motivations

}  BLP focuses on confidentiality

}  In most systems, integrity is equally, if not more,
important

}  Data integrity vs. system integrity
}  Data integrity means that data cannot be changed without

being detected

Access control 62

What is integrity in systems?

}  Attempt 1: Critical data do not change.
}  Attempt 2: Critical data changed only in “correct ways”

}  E.g., in DB, integrity constraints are used for consistency

}  Attempt 3: Critical data changed only through certain
“trusted programs”

}  Attempt 4: Critical data changed only as intended by
authorized users.

Access control 63

Biba: Integrity levels

}  Each subject (process) has an integrity level
}  Each object has an integrity level
}  Integrity levels are totally ordered

}  Integrity levels different from security levels in
confidentiality protection
}  Highly sensitive data may have low integrity
}  What is an example of a piece of data that needs high integrity,

but no confidentiality?

Access control 64

Five mandatory policies in Biba

}  Strict integrity policy
}  Subject low-water mark policy
}  Object low-water mark policy
}  Low-water mark integrity audit policy
}  Ring policy

}  In practice, one may be using one or more of these
policies, possibly applying different policies to different
subjects
}  E.g., subjects for which ring policy is applied are trusted to be

able to correctly handle inputs;

Access control 65

Strict integrity policy (BLP reversed)

}  Rules:
}  s can read o iff i(s) ≤ i(o)

}  no read down
}  stops indirect sabotage by contaminated data

}  s can write to o iff i(s) ≥ i(o)
}  no write up
}  stops directly malicious modification

}  Fixed integrity levels
}  No information path from low object/subject to high

object/subject

Access control 66

Subject low-water policy

}  Rules
}  s can always read o; after reading

 i(s) ← min[i(s), i(o)]
}  s can write to o iff i(s) ≥ i(o)

}  Subject’s integrity level decreases as reading lower
integrity data

}  No information path from low-object to high-object

Access control 67

Object low-water mark policy

}  Rules
}  s can read o; iff i(s) ≤ i(o)
}  s can always write to o; after writing

 i(o) ← min[i(s), i(o)]

}  Object’s integrity level decreases as it is contaminated by
subjects

}  In the end, objects that have high labels have not been
contaminated

Access control 68

Low-water mark integrity audit policy

}  Rules
}  s can always read o; after reading

 i(s) ← min[i(s), i(o)]
}  s can always write to o; after writing

 i(o) ← min[i(s), i(o)]

}  Tracing, but not preventing contamination
}  Similar to the notion of tainting in software security

Access control 69

Ring policy

}  Rules
}  Any subject can read any object
}  s can write to o iff i(s) ≥ i(o)

}  Integrity levels of subjects and objects are fixed.

}  Intuitions:
}  subjects are trusted to process low-level inputs correctly

Access control 70

Object integrity levels

}  The integrity level of an object may be based on
}  Quality of information (levels may change)

}  Degree of trustworthiness
}  Contamination level:

}  Importance of the object (levels do not change)
}  Degree of being trusted
}  Protection level: writing to the objects should be protected

}  What should be the relationship between the two
meanings, which one should be higher?

Access control 71

Trusted vs. trustworthy

}  A component of a system is trusted means that
}  the security of the system depends on it
}  failure of component can break the security policy
}  determined by its role in the system

}  A component is trustworthy means that
}  the component deserves to be trusted
}  e.g., it is implemented correctly
}  determined by intrinsic properties of the component

Access control 72

Integrity vs. Confidentiality

Confidentiality Integrity

Control reading
preserved if confidential info
is not read

Control writing
preserved if important obj is
not changed

For subjects who need to
read, control writing after
reading is sufficient, no need
to trust them

For subjects who need to
write, has to trust them,
control reading before
writing is not sufficient

Integrity requires trust in subjects!

Access control 73

Key difference between confidentiality
and integrity

}  For confidentiality, controlling reading & writing is
sufficient
}  theoretically, no subject needs to be trusted for confidentiality;

however, one does need trusted subjects in BLP to make
system realistic

}  For integrity, controlling reading and writing is insufficient
}  one has to trust all subjects who can write to critical data

Access control 74

Impacts of The Need to Trust Subjects

}  Trusting only a small security kernel is no longer possible

}  No need to worry about covert channels for integrity
protection

}  How to establish trust in subjects becomes a challenge

Access control 75

Application of Integrity Protection

}  Mandatory Integrity Control in Windows (since Vista)
}  Uses four integrity levels: Low, Medium, High, and System
}  Each process is assigned a level, which limit resources it can

access
}  Processes started by normal users have Medium
}  Elevated processes have High

}  Through the User Account Control feature

}  Some processes run as Low, such as IE in protected mode
}  Reading and writing do not change the integrity level

}  Ring policy.

Access control 76

The Clark-Wilson Model

}  David D. Clark and David R. Wilson. “A Comparison of
Commercial and Military Computer Security Policies.” In
IEEE SSP 1987.

}  Military policies focus on preventing disclosure
}  In commercial environment, integrity is paramount

}  no user of the system, even if authorized, may be permitted to
modify data items in such a way that assets or accounting
records of the company are lost or corrupted

Access control 77

Two High-level Mechanisms for
Enforcing Data Integrity

}  Well-formed transaction
}  a user should not manipulate data arbitrarily, but only in

constrained ways that preserve or ensure data integrity
}  e.g., use an append-only log to record all transactions
}  e.g., double-entry bookkeeping
}  e.g., passwd

Access control 78

Can manipulate data only through trusted code!

Two High-level Mechanisms for
Enforcing Data Integrity

}  Separation of duty
}  ensure external consistency: data objects correspond to the

real world objects
}  separating all operations into several subparts and requiring

that each subpart be executed by a different person
}  e.g., the two-man rule

Access control 79

Implementing the Two High-level
Mechanisms

}  Mechanisms are needed to ensure
}  control access to data: a data item can be manipulated only by

a specific set of programs
}  program certification: programs must be inspected for proper

construction, controls must be provided on the ability to install
and modify these programs

}  control access to programs: each user must be permitted to
use only certain sets of programs

}  control administration: assignment of people to programs must
be controlled and inspected

Access control 80

The Clarke-Wilson Model for Integrity

}  Unconstrained Data Items (UDIs)
}  data with low integrity

}  Constrained Data Items (CDIs)
}  data items within the system to which the integrity model must

apply

}  Integrity Verification Procedures (IVPs)
}  confirm that all of the CDIs in the system conform to the

integrity specification

}  Transformation Procedures (TPs)
}  well-formed transactions

Access control 81

Differences from MAC/BLP

}  A data item is not associated with a particular security
level, but rather with a set of TPs

}  A user is not given read/write access to data items, but
rather permissions to execute certain programs

Access control 82

Comparison with Biba

}  Biba lacks the procedures and requirements on identifying
subjects as trusted

}  Clark-Wilson focuses on how to ensure that programs
can be trusted

Access control 83

The Chinese Wall Security Policy

}  Goal: Avoid Conflict of Interest
}  Data are stored in a hierarchical arranged system

}  the lowest level consists of individual data items
}  the intermediate level group data items into company data sets
}  the highest level group company datasets whose corporation

are in competition

Access control 84

Access control 85

Simple Security Rule in Chinese Wall
Policy

}  Access is only granted if the object requested:
}  is in the same company dataset as an object already accessed

by that subject, i.e., within the Wall, or belongs to an entirely
different conflict of interest class.

Access control 86

