
Cristina Nita-Rotaru

CS355: Cryptography

Lecture 6: Stream ciphers.

Cristina Nita-Rotaru 2

Modern cryptography

}  One-time pad requires the length of the
key to be the length of the plaintext and
the key to be used only once. Difficult to
manage.

}  Alternative: design cryptosystems, where a
key is used more than once.

}  What about the attacker? Resource
constrained, make it infeasible for adversary
to break the cipher.

Cristina Nita-Rotaru 3

Stream ciphers

}  In OTP, a key is described by a random bit string of
length n

}  Stream ciphers:
}  Idea: replace “rand” by “pseudo rand”
}  Use Pseudo Random Number Generator
}  PRNG: {0,1}s → {0,1}n

}  expand a short (e.g., 128-bit) random seed into a long (e.g., 106

bit) string that “looks random”
}  Secret key is the seed
}  Eseed[M] = M ⊕ PRNG(seed)

Cristina Nita-Rotaru 4

Properties of stream ciphers

}  Do not have perfect secrecy
}  Security depends on PRNG

}  PRNG must be “unpredictable”
}  Given consecutive sequence of bits output (but not

seed), next bit must be hard to predict
}  Typical stream ciphers are very fast
}  Used in many places, often incorrectly
}  DVD (LFSR), SSL(RC4), WEP (RC4), etc.

Cristina Nita-Rotaru 5

Weaknesses of stream ciphers

}  If the same keystream is used twice ever,
then easy to break – decipher the text.

}  Highly malleable
}  Easy to change ciphertext so that

plaintext changes in predictable, e.g., flip
bits

}  Weaknesses exist even if the PRNG is
strong

Randomness and pseudorandomness

}  Random is not a property of one string
}  Is “000000” “less random” than “011001”?
}  Random is the property of a distribution, or a random

variable drawn from the distribution

}  Similarly, pseudo-random is property of a
distribution

}  We say that a distribution D over strings of
length-l is pseudorandom if it is indistinguishable
from a random distribution.

}  We use “random string” and “pseudorandom
string” as shorthands

Cristina Nita-Rotaru 6

Distinguisher

}  A distinguisher D for two distributions works as
follows:
}  D is given one string sampled from one of the two

distributions
}  D tries to guess which distribution it is from
}  D succeeds if guesses correctly

}  How to distinguish a random binary string of 256 bits
from one generated using RC4 with 128 bites seed?

Cristina Nita-Rotaru 7

Pseudorandom generator definition

}  We say an algorithm G, which on input of length n
outputs a string of length l(n), is a pseudorandom
generator if

1.  For every n, l(n) > n
2.  For each PPT distinguisher D, there exists a negligible

function negl such that
 |Pr[D(r)=1] – Pr[D(G(s))=1]| ≤ negl(n)

Where r is chosen at uniformly random from {0,1} l
(n) and s is chosen at uniform random from {0,1}s

Cristina Nita-Rotaru 8

Variable length messages

}  A variable output-length pseudo-random generator is
G(s, 1l) that output l such that
}  Any shorter output is the prefix of the longer one
}  Fix any length, this is a pseudo-random generator

}  Given such a generator, can encrypt messages of
different length by choosing l to be length of the
message.

9 Cristina Nita-Rotaru

Multiple encryptions

}  How to encrypt multiple messages with one key?
}  What is wrong with using the standard way of using

stream cipher to encrypt?
}  How to define secure encryption with multiple

messages?
}  No deterministic encryption scheme is secure for

multiple messages

10 Cristina Nita-Rotaru

Single message vs. multiple messages

}  Give an encryption scheme that has indistinguishable
encryptions in the presence of an eavesdropper
}  i.e., secure in single message setting

}  But does not have indistinguishable multiple
encryptions in the presence of an eavesdropper.
}  i.e., insecure for encrypting multiple messages?

}  No deterministic encryption scheme is secure for

multiple messages

11 Cristina Nita-Rotaru

Multiple messages: Synchronized mode

}  Use a different part of the output stream to encrypt
each new message

}  Sender and receiver needs to know which position is
used to encrypt each message

}  Often problematic

12 Cristina Nita-Rotaru

Multiple messages: Unsynchronized mode

}  Use a random Initial Vector (IV)
}  Enck(m) = 〈IV, G(k,IV) ⊕ m〉

}  IV must be randomly chosen, and freshly chosen for each
message

}  How to decrypt?

}  What G to use and under what assumptions on G
such a scheme has indistinguishable multiple
encryptions in the presence of an eavesdropper
}  What if G(k,IV) ≡ G’(k||IV), where G’ is a pseudorandom

generator

13 Cristina Nita-Rotaru

Security of unsynchronized mode

}  Recall that IV is sent in clear, so is known by the
adversary

}  For each IV, G(⋅,IV) is assumed to be pseudorandom
generator;

}  Furthermore, when given multiple IVs and outputs
under the same randomly chosen seed, the combined
output must be pseudo-random

}  Stream ciphers in practice are assumed to have the
above augmented pseudorandomness property
and used this way

14 Cristina Nita-Rotaru

Linear Feedback Shift Register (LFSR)

}  Example:

1 0 0 0

⊕

•  Starting with 1000, the output stream is
–  1000 1001 1010 1111 000

•  Repeats every 24 – 1 bit
•  The seed is the key, in this case 1000
15 Cristina Nita-Rotaru

Linear Feedback Shift Register (LFSR)

}  Example:

•  zi = (zi-4+zi-3) mod 2
 = (0⋅zi-1 + 0⋅zi-2 + 1⋅zi-3 + 1⋅zi-4) mod 2

•  We say that stages 0 & 1 are selected.

Stage
0

Stage
1

Stage
2

Stage
3

⊕

16 Cristina Nita-Rotaru

Properties of LFSR

}  Fact: given an L-stage LFSR, every output
sequence is periodic if and only if stage 0 is
selected

}  Definition: An L-stage LFSR is maximum-length if
some initial state will results a sequence that
repeats every 2L - 1 bit

}  Whether an LFSR is maximum-length or not
depends on which stages are selected

17 Cristina Nita-Rotaru

Cryptanalysis of LFSR

}  Vulnerable to know-plaintext attack
}  A LFSR can be described as

zm+i = ∑j=0
m-1 cj zi+j mod 2

}  Knowing 2m output bits, one can
} Construct m linear equations with m unknown

variables c0, …, cm-1

} Recover c0, …, cm-1

18 Cristina Nita-Rotaru

Cryptanalysis of LFSR

}  Given a 4-stage LFSR, we know
}  z4=z3c3+z2c2+z1c1+z0c0 mod 2
}  z5=z4c3+z3c2+z2c1+z1c0 mod 2
}  z6=z5c3+z4c2+z3c1+z2c0 mod 2

}  z7=z6c3+z5c2+z4c1+z3c0 mod 2
}  Knowing z0,z1,…,z7, one can compute c0,c1,c2,c4.
}  In general, knowing 2n output bits, one can solve an

n-stage LFSR

czczcz jjj +++= −− 2211

19 Cristina Nita-Rotaru

Cristina Nita-Rotaru 20

RC4

}  A proprietary cipher owned by RSA DSI,
designed by Ron Rivest.

}  Simple and effective design.
}  Variable key size, byte-oriented stream cipher.
}  Widely used (web SSL/TLS, wireless WEP).
}  Key forms random permutation of all 8-bit

values.
}  Uses that permutation to scramble input info

processed a byte at a time.

Cristina Nita-Rotaru 21

RC4 Key Schedule

}  Walks each entry in an array S of numbers: 0..255 turn,
using its current value plus the next byte of key to pick
another entry in the array, and swaps their values over.

}  Total number of possible states is 256!, very big number
}  S forms internal state of the cipher, L is the size of the

key k
for i = 0 to 255 do

S[i] = i
j = 0
for i = 0 to 255 do

j = (j + S[i] + k[i mod L])(mod 256)
swap (S[i], S[j])

Cristina Nita-Rotaru 22

RC4 encryption

}  Encryption continues shuffling array values
}  Sum of shuffled pair selects the "stream key” byte

value
}  XOR with next byte of message to en/decrypt

i = j = 0
for each message byte mi

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
Ci = mi ⊕ S[t]

Cristina Nita-Rotaru 23

RC4 cryptanalysis

}  The algorithm was kept secret however…
}  In 1994 the source code was leaked on the to

cyberpunks mailing list.
}  The external analysis of RC4 was done on the

source code that leaked in 1994.
}  Fluhrer showed two weaknesses:

}  The first byte generated by RC4 leaks
information about individual key bytes.

}  Found a large number of weak keys, in which
knowledge of a small number of key bits suffices
to determine many state and output bits with
non-negligible probability.

Cristina Nita-Rotaru 24

Fluher, Mantin, and Shamir Attack

}  This is an known-plaintext attack against
RC4, that allows attackers to eventually
recover a key.

}  Attack is based on an assumption that the
attacker is able to guess the first byte of
plaintext used by the victim.

}  Stubblefield, Ionnandis, and Rubin showed
that the attack is possible in practice

25

Take home lessons

}  Keystream should never be
reused for stream ciphers

}  When encrypting with a stream
cipher in unsynchronized mode
IV must be randomly chosen, and
freshly chosen for each message

}  LFSR is vulnerable to known
plaintext attacks

Cristina Nita-Rotaru

Example: WEP

Cristina Nita-Rotaru

Cristina Nita-Rotaru 27

Wired Equivalent Privacy

}  Security goals: protect link-level transmission
}  Confidentiality
}  Access control
}  Data integrity

}  Security relies on the difficulty of discovering
the secret key through a brute-force attack

}  Uses stream cipher RC4 for encryption and
CRC32 for integrity

Cristina Nita-Rotaru 28

WEP details

}  RC4 is a stream cipher: based on key k and
initialization vector (IV) v, generates a keystream
RC4(v,k)

}  To send a message M from A to B
}  Compute integrity checksum (CRC32): c(M)
}  plaintext P = {M, c(M)}
}  Encrypt P using RC4: ciphertext C = P ⊕ RC4

(v,k)
}  Transmit C’ = v, (P ⊕ RC4(v,k))

}  To decipher an encrypted message C’, the
encryption process is reversed

Cristina Nita-Rotaru 29

Some observations

}  The integrity check does not depend on
a key, but just on the message M, so
anybody can create a pair M and
CRC32(M)

}  The WEP standard specifies 64-bit key
= 40 bit key and 24 IV. Some vendors
implemented 128-bit keys (24 IV and
104 bit key).

}  The IV is sent in clear, so is available to
the attacker as well.

Cristina Nita-Rotaru 30

Risk of keystream reuse

C1 = P1 ⊕ RC4(v, k)
C2 = P2 ⊕ RC4(v, k)
C1 ⊕ C2 = P1 ⊕ P2

}  If P1 or P2 is also known by the attacker, the other
plaintext is easy to compute

}  If n ciphertexts using the same keystream are available
makes reading traffic easier (frequency analysis, etc)

}  Find plaintext P and the encryption C with keystream k,
then it is easy to decipher any ciphertext C’ encrypted
with the same keystream k.

Cristina Nita-Rotaru 31

Is keystream reused?

}  The pseudorandom keystream is based on the
shared key k and the initialization vector IV. Since
the key k is secret and is difficult to be changed
for every packet, changing the IV is important to
prevent keystream reuse.

}  The IV is sent in clear, so is available to the
attacker as well.

}  The WEP standard recommends, but does not
require that the IV be changed every packet, also
does not say anything about how to select the IV.

}  An implementation can reuse the same IV for all
packets without risking non-compliance !

Cristina Nita-Rotaru 32

24-bit IV space

}  Busy access point sending 1500 byte packets,
at an average of 2 Mbps, exhausts the IV
space in half a day.

}  Random generation of IV can produce
collisions every 5000 packets (due to the
birthday paradox).

}  Many implementations use for IV a counter
that is incremented for each packet sent and
reset every time the card is inserted in the
computer.

Cristina Nita-Rotaru 33

Exploiting keystream reuse

}  Methods to obtain pairs (plaintext, ciphertext):
}  IP fields predictable: login sequences, recognize

shared libraries transfer
}  Send email and wait for the user to check it

via wireless links
}  Send data to access-points that have access

control disables and observe the encrypted
data

Cristina Nita-Rotaru 34

Dictionary attack
}  Goal: Decrypt traffic
}  How: Store keystream in a table, indexed by IV.
}  Remember the IV is sent it clear
}  When the attacker sees a packet with an IV stored

already in the table, look up the corresponding
keystream, XOR it against the packet, and read the
data!

}  Table is at most 1500 * 2^24 bytes = 24 GB

Cristina Nita-Rotaru 35

Packet modification

}  CRC32 is linear: c(M ⊕ D) = c(M) ⊕ c(D)
}  Message M was transmitted, and the ciphertext was

C and the IV was IV, C and IV are known to the
adversary.

}  Attacker can find C’ s. t. it decrypts to M’ = M ⊕ D
D = arbitrarily chosen by the attacker

}  C’= C ⊕ <D,c(D)>
 = RC4(v,k) ⊕ <M,c(M)> ⊕ <D,c(D)>
 = RC4(v,k) ⊕ <M ⊕ D, c(M) ⊕ c(D)>
 = RC4(v,k) ⊕ <M’, c(M ⊕ D)>
 = RC4(v,k) ⊕ <M’, c(M’)>

Cristina Nita-Rotaru 36

Packet injection

}  The attacker knows the keystream, he
can select any message and compute
CRC of the message without knowing
the key.

}  The base station will accept the packet
as valid

Cristina Nita-Rotaru 37

WEP authentication

}  Base station verifies that a client joining the network really
knows the shared secret key k.

}  The base station sends a challenge string to the client,
and the client sends back the encrypted challenge

}  The base station checks if the challenge is correctly
encrypted, and if so, accepts the client.

}  If adversary sees a challenge/response pair for a given
key k; he can perform the packet injection attack
previously describe, and trick the base station.

Lessons learnt

Cristina Nita-Rotaru 38

}  Engineering network protocols vs. security:
}  CRC-32 and RC4 are fast and simple, but they have

problems
}  Being stateless is good for networking, but

dangerous for security because they give an
attacker more freedom

}  Learn from previous works: see IPSEC, TLS.
}  Public review is important: international standards

should be examined by the cryptographic community

3G encryption also a stream cipher

}  2010, reports of a new attack that had "broken
Kasumi" (also known as A5/3), the standard
encryption algorithm used to secure traffic on 3G
GSM wireless networks, by means of a sandwich
attack (a type of related-key attack), allowing them to
identify a full key

Cristina Nita-Rotaru 39

40

Take home lessons
}  The strongest attack is finding the key

just by observing the traffic and
exploiting a known-attack on RC4, the
encryption algorithm

}  Decrypting traffic looking for pairs of
plaintext, ciphertext and look for text
encrypted with the same keystream

}  Packet modification and injection
 exploiting the fact that integrity
 was implemented using CRC32

Cristina Nita-Rotaru

