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CS355: Cryptography 

Lecture 6: Stream ciphers. 
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Modern cryptography 

}  One-time pad requires the length of the 
key to be the length of the plaintext and 
the key to be used only once. Difficult to 
manage. 

}  Alternative: design cryptosystems, where a 
key is used more than once. 

}  What about the attacker? Resource 
constrained, make it infeasible for adversary 
to break the cipher. 
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Stream ciphers 

}  In OTP, a key is described by a random bit string of 
length n 

}  Stream ciphers:  
}  Idea: replace “rand” by “pseudo rand” 
}  Use Pseudo Random Number Generator 
}  PRNG: {0,1}s → {0,1}n 

}  expand a short (e.g., 128-bit) random seed into a long (e.g., 106 

bit) string that “looks random” 
}  Secret key is the seed 
}  Eseed[M] = M ⊕ PRNG(seed) 
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Properties of stream ciphers 

}  Do not have perfect secrecy 
}  Security depends on PRNG 

}  PRNG must be “unpredictable” 
}  Given consecutive sequence of bits output (but not 

seed), next bit must be hard to predict 
}  Typical stream ciphers are very fast 
}  Used in many places, often incorrectly  
}  DVD (LFSR), SSL( RC4), WEP (RC4), etc. 
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Weaknesses of stream ciphers 

}  If the same keystream is used twice ever, 
then easy to break – decipher the text. 

}  Highly malleable 
}  Easy to change ciphertext so that 

plaintext changes in predictable, e.g., flip 
bits 

}  Weaknesses exist even if the PRNG is 
strong 



Randomness and pseudorandomness 

}  Random is not a property of one string 
}  Is “000000”  “less random” than “011001”? 
}  Random is the property of a distribution, or a random 

variable drawn from the distribution 

}  Similarly, pseudo-random is property of a 
distribution 

}  We say that a distribution D over strings of 
length-l is pseudorandom if it is indistinguishable 
from a random distribution. 

}  We use “random string” and “pseudorandom 
string” as shorthands 
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Distinguisher 

}  A distinguisher D for two distributions works as 
follows: 
}   D is given one string sampled from one of the two 

distributions 
}  D tries to guess which distribution it is from 
}  D succeeds if guesses correctly 

}  How to distinguish a random binary string of 256 bits 
from one generated using RC4 with 128 bites seed? 
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Pseudorandom generator definition  

}  We say an algorithm G, which on input of length n 
outputs a string of length l(n), is a pseudorandom 
generator if 

1.  For every n, l(n) > n 
2.  For each PPT distinguisher D, there exists a negligible 

function negl such that      
 |Pr[D(r)=1] – Pr[D(G(s))=1]| ≤ negl(n)   

Where r is chosen at uniformly random from {0,1} l
(n)  and s is chosen at uniform random from {0,1}s 
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Variable length messages 

}  A variable output-length pseudo-random generator is 
G(s, 1l) that output l such that 
}  Any shorter output is the prefix of the longer one 
}  Fix any length, this is a pseudo-random generator 

}  Given such a generator, can encrypt messages of 
different length by choosing l to be length of the 
message. 
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Multiple encryptions 

}  How to encrypt multiple messages with one key? 
}  What is wrong with using the standard way of using 

stream cipher to encrypt? 
}  How to define secure encryption with multiple 

messages? 
}  No deterministic encryption scheme is secure for 

multiple messages 
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Single message vs. multiple messages 

}  Give an encryption scheme that has indistinguishable 
encryptions in the presence of an eavesdropper 
}  i.e., secure in single message setting 

}  But does not have indistinguishable multiple 
encryptions in the presence of an eavesdropper. 
}  i.e., insecure for encrypting multiple messages? 

 
}  No deterministic encryption scheme is secure for 

multiple messages 
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Multiple messages: Synchronized mode 

}  Use a different part of the output stream to encrypt 
each new message 

}  Sender and receiver needs to know which position is 
used to encrypt each message 

}  Often problematic 
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Multiple messages: Unsynchronized mode 

}  Use a random Initial Vector (IV) 
}  Enck(m) = 〈IV, G(k,IV) ⊕ m〉  

}  IV must be randomly chosen, and freshly chosen for each 
message 

}  How to decrypt? 

}  What G to use and under what assumptions on G 
such a scheme has indistinguishable multiple 
encryptions in the presence of an eavesdropper 
}  What if G(k,IV) ≡ G’(k||IV), where G’ is a pseudorandom 

generator 
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Security of unsynchronized mode 

}  Recall that IV is sent in clear, so is known by the 
adversary 

}  For each IV, G(⋅,IV) is assumed to be pseudorandom 
generator;  

}  Furthermore, when given multiple IVs and outputs 
under the same randomly chosen seed, the combined 
output must be pseudo-random 

}  Stream ciphers in practice are assumed to have the 
above augmented pseudorandomness property 
and used this way 
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Linear Feedback Shift Register (LFSR) 

}  Example: 

1 0 0 0 

⊕ 

•  Starting with 1000, the output stream is 
–  1000 1001 1010 1111 000 
        

•  Repeats every 24 – 1 bit 
•  The seed is the key, in this case 1000 
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Linear Feedback Shift Register (LFSR) 

}  Example: 

•  zi      = (zi-4+zi-3) mod 2     
 = (0⋅zi-1 + 0⋅zi-2 + 1⋅zi-3 + 1⋅zi-4) mod 2 

•  We say that stages 0 & 1 are selected. 

Stage 
0 

Stage 
1 

Stage 
2 

Stage 
3 

⊕ 

16 Cristina Nita-Rotaru 



Properties of LFSR 

}  Fact: given an L-stage LFSR, every output 
sequence is periodic if and only if stage 0 is 
selected 

}  Definition: An L-stage LFSR is maximum-length if 
some initial state will results a sequence that 
repeats every 2L - 1 bit 

}  Whether an LFSR is maximum-length or not 
depends on which stages are selected 
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Cryptanalysis of LFSR 

}  Vulnerable to know-plaintext attack 
}  A LFSR can be described as   

zm+i = ∑j=0
m-1 cj zi+j mod 2 

}  Knowing 2m output bits, one can  
} Construct m linear equations with m unknown 

variables c0, …, cm-1 

} Recover c0, …, cm-1 
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Cryptanalysis of LFSR 

}  Given a 4-stage LFSR, we know 
}  z4=z3c3+z2c2+z1c1+z0c0 mod 2 
}  z5=z4c3+z3c2+z2c1+z1c0 mod 2 
}  z6=z5c3+z4c2+z3c1+z2c0 mod 2 

}  z7=z6c3+z5c2+z4c1+z3c0 mod 2 
}  Knowing z0,z1,…,z7, one can compute c0,c1,c2,c4. 
}  In general, knowing 2n output bits, one can solve an 

n-stage LFSR 

czczcz jjj +++= −− 2211
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RC4 

}  A proprietary cipher owned by RSA DSI, 
designed by Ron Rivest.  

}  Simple and effective design.  
}  Variable key size, byte-oriented stream cipher.  
}  Widely used (web SSL/TLS, wireless WEP).  
}  Key forms random permutation of all 8-bit 

values.  
}  Uses that permutation to scramble input info 

processed a byte at a time.  
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RC4 Key Schedule  

}  Walks each entry in an array S of numbers: 0..255 turn, 
using its current value plus the next byte of key to pick 
another entry in the array, and swaps their values over.  

}  Total number of possible states is 256!, very big number  
}  S forms internal state of the cipher, L is the size of the 

key k 
for i = 0 to 255 do 

S[i] = i 
j = 0 
for i = 0 to 255 do  

j = (j + S[i] + k[i mod L])(mod 256)  
swap (S[i], S[j]) 
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RC4 encryption 

}  Encryption continues shuffling array values 
}  Sum of shuffled pair selects the "stream key” byte 

value 
}  XOR with next byte of message to en/decrypt 

i = j = 0  
for each message byte mi 

i = (i + 1) (mod 256) 
j = (j + S[i]) (mod 256) 
swap(S[i], S[j]) 
t = (S[i] + S[j]) (mod 256)  
Ci = mi ⊕ S[t]  
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RC4 cryptanalysis 

}  The algorithm was kept secret however… 
}  In 1994 the source code was leaked on the to 

cyberpunks mailing list.  
}  The external analysis of RC4 was done on the 

source code that leaked in 1994. 
}  Fluhrer showed two weaknesses: 

}  The first byte generated by RC4 leaks 
information about individual key bytes. 

}  Found a large number of weak keys, in which 
knowledge of a small number of key bits suffices 
to determine many state and output bits with 
non-negligible probability. 
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Fluher, Mantin, and Shamir Attack 

}  This is an known-plaintext attack against 
RC4, that allows attackers to eventually 
recover a key. 

}  Attack is based on an assumption that the 
attacker is able to guess the first byte of 
plaintext used by the victim. 

}  Stubblefield, Ionnandis, and Rubin showed 
that the attack is possible in practice 
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Take home lessons 

}  Keystream should never be 
reused for stream ciphers 

}  When encrypting with a stream 
cipher in unsynchronized mode 
IV must be randomly chosen, and 
freshly chosen for each message 

}  LFSR is vulnerable to known 
plaintext attacks 
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Example: WEP 
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Wired Equivalent Privacy 

}  Security goals: protect link-level transmission 
}  Confidentiality 
}  Access control 
}  Data integrity 

}  Security relies on the difficulty of discovering 
the secret key through a brute-force attack 

}  Uses stream cipher RC4 for encryption and 
CRC32 for integrity 
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WEP details 

}  RC4 is a stream cipher: based on key k and 
initialization vector (IV) v, generates a keystream 
RC4(v,k) 

}  To send a message M from A to B 
}  Compute integrity checksum (CRC32):  c(M)   
}  plaintext P = {M, c(M)} 
}  Encrypt P using RC4: ciphertext C = P ⊕ RC4

(v,k)   
}  Transmit C’ = v, (P ⊕ RC4(v,k)) 

}  To decipher an encrypted message C’, the 
encryption process is reversed 
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Some observations 

}  The integrity check does not depend on 
a key, but just on the message M, so 
anybody can create a pair M and 
CRC32(M) 

}  The WEP standard specifies 64-bit key 
=  40 bit key and 24 IV. Some vendors 
implemented 128-bit keys (24 IV and 
104 bit key). 

}  The IV is sent in clear, so is available to 
the attacker as well. 
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Risk of keystream reuse 

C1 = P1 ⊕ RC4(v, k) 
C2 = P2 ⊕ RC4(v, k) 
C1 ⊕ C2 = P1 ⊕ P2 

}  If P1 or P2 is also known by the attacker, the other 
plaintext is easy to compute 

}  If n ciphertexts using the same keystream are available 
makes reading traffic easier (frequency analysis, etc) 

}  Find plaintext P and the encryption C with keystream k, 
then it is easy to decipher any ciphertext C’ encrypted 
with the same keystream k. 
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Is keystream reused? 

}  The pseudorandom keystream is based on the 
shared key k and the initialization vector IV. Since 
the key k is secret and is difficult to be changed 
for every packet, changing the IV is important to 
prevent keystream reuse. 

}  The IV is sent in clear, so is available to the 
attacker as well. 

}  The WEP standard recommends, but does not 
require that the IV be changed every packet, also 
does not say anything about how to select the IV. 

}  An implementation can reuse the same IV for all 
packets without risking non-compliance ! 
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24-bit IV space 

}  Busy access point sending 1500 byte packets, 
at an average of 2 Mbps, exhausts the IV 
space in half a day. 

}  Random generation of IV can produce 
collisions every 5000 packets (due to the 
birthday paradox). 

}  Many implementations use for IV a counter 
that is incremented for each packet sent and 
reset every time the card is inserted in the 
computer. 
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Exploiting keystream reuse 

}  Methods to obtain pairs (plaintext, ciphertext): 
}  IP fields predictable: login sequences, recognize 

shared libraries transfer   
}  Send email and wait for the user to check it 

via wireless links 
}  Send data to access-points that have access 

control disables and observe the encrypted 
data 
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Dictionary attack  
}  Goal: Decrypt traffic 
}  How: Store keystream in a table, indexed by IV. 
}  Remember the IV is sent it clear 
}  When the attacker sees a packet with an IV stored 

already in the table, look up the corresponding 
keystream, XOR it against the packet, and read the 
data! 

}  Table is at most 1500 * 2^24 bytes = 24 GB 
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Packet modification 

}  CRC32 is linear: c(M ⊕ D) = c(M) ⊕ c(D) 
}  Message M was transmitted, and the ciphertext was 

C and the IV was IV,  C and IV are known to the 
adversary. 

}  Attacker can find C’ s. t. it decrypts to M’ = M ⊕ D  
D = arbitrarily chosen by the attacker 

}  C’= C ⊕ <D,c(D)> 
    = RC4(v,k) ⊕ <M,c(M)> ⊕ <D,c(D)> 
    = RC4(v,k) ⊕ <M ⊕ D, c(M) ⊕ c(D)>  
    = RC4(v,k) ⊕ <M’, c(M ⊕ D)>  
    = RC4(v,k) ⊕ <M’, c(M’)> 



Cristina Nita-Rotaru 36 

Packet injection 

}  The attacker knows the keystream, he 
can select any message and compute 
CRC of the message without knowing 
the key. 

}  The base station will accept the packet 
as valid 
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WEP authentication 

}  Base station verifies that a client joining the network really 
knows the shared secret key k.  

}  The base station sends a challenge string to the client, 
and the client sends back the encrypted challenge 

}  The base station checks if the challenge is correctly 
encrypted, and if so, accepts the client.  

}  If adversary sees a challenge/response pair for a given 
key k; he can perform the packet injection attack 
previously describe, and trick the base station. 



Lessons learnt 
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}  Engineering network protocols vs. security:  
}  CRC-32 and RC4 are fast and simple, but they have 

problems 
}  Being stateless is good for networking, but  

dangerous for security because they give an 
attacker more freedom 

}  Learn from previous works: see IPSEC, TLS. 
}  Public review is important: international standards 

should be examined by the cryptographic community 



3G encryption also a stream cipher 

}  2010, reports of a new attack that had "broken 
Kasumi" (also known as A5/3), the standard 
encryption algorithm used to secure traffic on 3G 
GSM wireless networks, by means of a sandwich 
attack (a type of related-key attack), allowing them to 
identify a full key 
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Take home lessons 
}  The strongest attack is finding the key 

just by observing the traffic and 
exploiting a known-attack on RC4, the 
encryption algorithm 

}  Decrypting traffic looking for pairs of 
plaintext, ciphertext and look for text 
encrypted with the same keystream 

}  Packet modification and injection  
    exploiting the fact that integrity  
    was implemented using CRC32 
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