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CS355: Cryptography 

Lecture 5: One–time pad. 
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One-time pad 

}  Extend Vigenère cipher so that the key is as 
long as the plaintext 
}  No repeat, cannot be broken by finding key 

length + frequency analysis 
}  Key is a random string that is at least as long 

as the plaintext 
}  Encryption is similar to Vigenère  



History of One-time pad 
}  1882 - First described by Frank Miller  
}  1917 - Re-invented by Gilbert Vernam; one time pad also 

known as the Vernam cipher 
}  1919 - Patented by Vernam 
}  Joseph Mauborgne recognized that having the key totally 

random increased security 
}  1949 – showed the One-time pad had perfect secrecy, 

Shannon   
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Joseph Mauborgne 
(1881-1971) was a 
Major General in the 
United States Army"

Gilbert Sandford 
Vernam (1890 - 1960), 
was AT&T Bell Labs 
engineer" Claude Elwood Shannon 

(1916 - 2001),  American 
electronic engineer and 
mathematician, was "the father 
of information theory "
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One-time pad: encryption and decryption 

Key is chosen randomly 
Plaintext   X = (x1 x2 … xn) 
Key           K = (k1 k2 … kn) 
Ciphertext Y = (y1 y2 … yn) 
 
 
ek(X) = (x1+k1  x2+k2 … xn+kn) mod m 
dk(Y) = (y1- k1  y2-k2 … yn-kn) mod m 
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Binary version of One-time pad 
Plaintext space = Ciphtertext space =  
Keyspace = {0,1}n 
Key is chosen randomly 
For example: 
}  Plaintext is   11011011 
}  Key is    01101001 
}  Then ciphertext is  10110010 



Cristina Nita-Rotaru 7 

Bit operators 

}  Bit AND 
0 ∧ 0 = 0     0 ∧ 1 = 0    1 ∧ 0 = 0   1 ∧ 1 = 1 

}  Bit OR 
0 ∨ 0 = 0     0 ∨ 1 = 1    1 ∨ 0 = 1   1 ∨ 1 = 1 

}  Addition mod 2 (also known as Bit XOR) 
0  ⊕ 0 = 0     0 ⊕ 1 = 1    1 ⊕ 0 = 1  1 ⊕ 1 = 0 
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Security of One-time pad 

}  Intuitively, it is secure … 
} The key is random, so the ciphertext is 

completely random 
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Information-theoretic security 

}  Basic Idea: Ciphertext should provide no 
“information” about plaintext 

}  We also say such a scheme has perfect secrecy. 
}  One-time pad has perfect secrecy 

}  E.g., suppose that the ciphertext is “Hello”, can 
we say any plaintext is more likely than another 
plaintext? 

}  Result due to Shannon, 1949  

     "
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Key randomness in One-time pad 

}  One-Time Pad uses a very long key, what if the key 
is not chosen randomly, instead, texts from, e.g., a 
book is used. 
}  this is not One-Time Pad anymore 
}  this does not have perfect secrecy 
}  this can be broken 

}  The key in One-Time Pad should never be reused. 
}  If it is reused, it is insecure! 
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Limitations of One-time pad 

}  Perfect secrecy ⇒ key-length ≥ msg-length 

}  Difficult to use in practice  
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Unconditional security 

}  The adversary has unlimited 
computational resources.  

}  Analysis is made by using probability 
theory. 

}  Perfect secrecy: observation of the 
ciphertext provides no information to 
an adversary. 

}  Result due to Shannon, 1949.  
    C. E. Shannon, “Communication 

Theory of Secrecy Systems”, Bell 
System Technical Journal, vol.28-4, 
pp 656--715, 1949.  
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Begin math 
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Elements of probability theory 

    A random experiment has  
    an unpredictable outcome.  

 
    Definition 
    The sample space (S) of a random phenomenon is the set 

of all outcomes for a given experiment. 
    

    Definition 
    The event (E) is a subset of a sample space,  an event is 

any collection of outcomes. 
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Basic axioms of probability 
 
    If E is an event, Pr(E) is the probability that event E 

occurs  then 
    (a) 0 ≤ Pr(A) ≤ 1 for any set A in S.  

(b) Pr(S) = 1 , where S  is the sample space.  
(c) If E1, E2, … En  is a sequence of mutually     

         exclusive events, that is Ei∩Ej = 0, for all i ≠ j 
         then: 
 
   

 

  

! 

Pr(E1UE2U...UEn ) = Pr(Ei)
i=1

n

"
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More properties  

   If E is an event and Pr(E) is the 
probability that the event E occurs  then 
}  Pr(Ê) = 1 - Pr(E) where Ê is the 

complimentary event of E 
}  If outcomes in S are equally like, then  
    Pr(E) = |E| / |S|  (where | | denotes the 

cardinality of the set) 
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Random variable 

    Definition 
    A discrete random variable, X, consists of a 

finite set X, and a probability distribution 
defined on X.  The probability that the random 
variable X takes on the value x is denoted  Pr
[X =x]; sometimes, we will abbreviate this to 
Pr[x] if the random variable X is fixed.  It must 
be that    

!
"

=

"#

Xx

x

Xxx

1]Pr[

 allfor    ]Pr[0
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Relationships between two 
random variables 

Definitions 
 Assume X and Y are two random variables, we define: 

 -  joint probability: Pr[x, y] = Pr[x|y] Pr[y] is the probability that X 
takes value x and Y takes value y;. 

     - conditional probability: Pr[x|y] is the probability 
       that X takes on the value x given that Y takes value y. 
      - independent random variables: X and Y are said to be 

independent if Pr[x,y]=Pr[x]P[y], for all x ∈ X and all y ∈ Y. 
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Bayes’ theorem 

Find the conditional probability of event X given the 
conditional probability of event Y and the 
unconditional probabilities of events X and Y.     

Bayes’ Theorem 
    If Pr[y] > 0 then  
 
 
 
    Corollary 
    X and Y are independent random variables iff Pr[x|y] 

= Pr[x], for all x ∈ X and all y ∈ Y. 
! 

Pr[x | y] =
Pr[x]Pr[y | x]

Pr[y]
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End math 
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Ciphers modeled by random variables 

      Consider a cipher (P, C, K, E, D). We 
assume that: 

1.  there is a probability distribution on the 
plaintext (message) space 

2.  the key space also has a probability 
distribution. We assume the key is 
chosen before the message, the key 
and the plaintext are independent 
random variables 

3.  the ciphertext is also a random 
variable 
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Example 
P: {a, b};              
Pr(a) = 1/4;   Pr(b) = 3/4 
 
K: {k1, k2, k3};     
Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4 
 
C: {1,2,3,4};         
ek1(a) = 1;    ek1(b) = 2;     
ek2(a) = 2;    ek2(b) = 3; 
ek3(a) = 3;    ek3(b) = 4;  
 

P = plaintext 

C = ciphertext 

K = key 
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Perfect secrecy 

    Definition 
    Informally, perfect secrecy means that an 

attacker can not obtain any information about 
the plaintext, by observing the ciphertext. 

    
   What type of attack is this? 
 
    Definition  
    A cryptosystem has perfect secrecy if Pr[x|y] = 

Pr[x], for all x ∈ P and y ∈ C, where P is the 
set of plaintext and C is the set of ciphertext. 
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Bayes: 
 
 
 

C(k): the set of all possible ciphertexts if key is k.  
 
                                                               
 
 
 
 
 

! 

Pr[x | y] =
Pr[x]Pr[y | x]

Pr[y]

! 

Pr[x | y] =

Pr[x] Pr[k]
K :x= dk (y )
"

Pr[k]
K :y#C (k )
" Pr[x]! 

Pr[y] = Pr[k]Pr[x]
K :y"C (k )
#

! 

Pr[y | x] = Pr[k]
K :x= dk (y )
"

KNOWN, Pr[x], Pr[k] 

What can I say about Pr[x|y]    and  Pr[x], for all x ∈ 
P and y ∈ C, 

Don’t know it, but can 
be computed 

Don’t know it, but can 
be computed 

given 
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Example 
P: {a, b};             Pr(a) = 1/4;   Pr(b) = 3/4 
K: {k1, k2, k3};    Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4 
C: {1,2,3,4};        ek1(a) = 1; ek1(b) = 2;    ek2(a) = 2; ek2(b) = 3; 
                           ek3(a) = 3; ek3(b) = 4;  
 

Distribution of the ciphertext: 
Pr(1) = Pr(k1)Pr(a)=1/2 * 1/4 = 1/8 
Pr(2) = Pr(k1)P(b) + Pr(k2)Pr(a) = 1/2 * 3/4 + 1/4 *1/4 = 7/16 
Similarly: Pr(3) = 1/4; Pr(4) = 3/16; 
 

Conditional probability distribution of the ciphertext (we use Bayes) 
Pr(a|1) = Pr(1|a)Pr(a)/Pr(1) = 1/2*1/4/(1/8) = 1 
Similarly: Pr(a|2) = 1/7; Pr(a|3) = 1/4; Pr(a|4) = 0; 
                Pr(b|1) = 0; Pr(b|2) = 6/7; Pr(b|3) = 3/4; Pr(b|4) = 1  

DOES THIS CRYPTOSYSTEM HAVE PERFECT SECRECY? 
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One-time pad has perfect secrecy 

}  P = C = K = {0,1}n, key is chosen randomly, key used 
once per message 

Proof: We need to show that for any probability of 
the plaintext,  ∀x ∀y , Pr [x | y] =  Pr[x] 

  
    Pr [x | y] = Pr[x] Pr [y | x] / Pr[y] (Bayes) 
 = Pr[x] Pr [k] /  ∑x∈X (Pr[x] Pr[k]) 
 = Pr[x] 1/2n  /  ∑x∈X (Pr[x] 1/2n) 
 = Pr[x ] / ∑x∈X (Pr[x]) 
 = Pr[x] 



Take home lessons 

}  One-time pad difficult to use in 
practice 
}  Key must be random 
}  As long as the message  
}  Used only once 

}  Perfect secrecy, theoretical model 
for security 

}  One time pad has perfect secrecy 
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