

CS355: Cryptography

Lecture 3: Vigenere cipher.

Towards polyalphabetic substitution ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- ▶ Idea for a stronger cipher (1460's by Alberti)
 - use more than one cipher alphabet, and switch between them when encrypting different letters
- Giovani Battista Bellaso published it in 1553
- Developed into a practical cipher by Blaise de Vigenère and published in 1586

Vigenère cipher

Definition:

Given m, a positive integer, $P = C = (Z_{26})^n$, and $K = (k_1, k_2, ..., k_m)$ a key, we define:

Encryption:

$$e_k(p_1, p_2...p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$$

Decryption:

$$d_k(c_1, c_2... c_m) = (c_1-k_1, c_2-k_2... c_m-k_m) \pmod{26}$$

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Example:

Plaintext: CRYPTOGRAPHY

Key: LUCKLUCKLUCK

Ciphertext: NLAZEIIBLJJI

Security of Vigenere cipher

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key

Vigenere cipher cryptanalysis

- Find the length of the key
- Divide the message into that many shift cipher encryptions
- Use frequency analysis to solve the resulting shift ciphers
 - how?

How to find the key length?

- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random
- Two methods to find the key length:
 - Kasisky test
 - Index of coincidence (Friedman)

History of breaking Vigenere

- ▶ 1596 Cipher was published by Vigenere
- ▶ 1854 It is believed the Charles Babbage knew how to break it in 1854, but he did not published the results
- ▶ 1863 Kasiski showed the Kasiski examination that showed how to break Vigenere
- ▶ 1920 Friedman published ``The index of coincidence and its applications to cryptography"

Friedrich Wilhelm Kasiski (1805 – 1881)

German infantry officer, cryptographer and archeologist.

Charles Babbage (1791 – 1871)

- English mathematician, philosopher, inventor and mechanical engineer who originated the concept of a programmable computer.
- Considered a "father of the computer", he invented the first mechanical computer that eventually led to more complex designs.

Cristina Nita-Rotaru

William Frederick Friedman (1891 – 1969)

- ▶ US Army cryptographer who ran the research division of the Army's Signals Intelligence Service (SIS) in the 1930s, and parts of its follow-on services into the 1950s.
- In 1940, people from his group, led by Frank Rowlett broke Japan's PURPLE cipher machine

10 Cristina Nita-Rotaru

Kasisky test

Note: two identical segments of plaintext, will be encrypted to the same ciphertext, if the they occur in the text at the distance Δ , ($\Delta = 0$ (mod m), m is the key length)

Algorithm:

- Search for pairs of identical segments of length at least 3
- Record distances between the two segments: $\Delta 1, \Delta 2, ...$
- \blacktriangleright m divides gcd($\Delta 1, \Delta 2, ...$)

Example of the Kasisky test

 Key
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 G
 K
 I
 N
 I
 N
 I
 N
 I
 N
 I
 N
 I
 N
 I
 I
 N
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Index of coincidence (Friedman)

Informally: Measures the probability that two random elements of the n-letters string x are identical.

Definition:

Suppose $x = x_1x_2...x_n$ is a string of n alphabetic characters. Then $I_c(x)$, the index of coincidence is:

$$I_c(x) = P(x_i = x_j)$$

Index of coincidence (cont.)

- Reminder: binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Consider the plaintext x, and c₀, c₁, ... c₂₅ are the number of occurrences with which A, B, ... Z appear in x and p₀, p₁, ... p₂₅ are the probabilities with which A, B, ... Z appear in x.
- We want to compute

$$I_c(x) = P(x_i = x_j)$$

Begin math

▶ 15 Cristina Nita-Rotaru

Elements of probability theory

A random experiment has an unpredictable outcome.

Definition

The sample space (S) of a random phenomenon is the set of all outcomes for a given experiment.

Definition

The event (E) is a subset of a sample space, an event is any collection of outcomes.

Basic axioms of probability

If E is an event, Pr(E) is the probability that event E occurs then

- (a) $0 \le \Pr(A) \le I$ for any set A in S
- (b) Pr(S) = I, where S is the sample space.
- (c) If $E_1, E_2, ... E_n$ is a sequence of mutually exclusive events, that is $Ei \cap Ej = 0$, for all $i \neq j$ then:

$$Pr(E_1 \cup E_2 \cup ... \cup E_n) = \sum_{i=1}^n Pr(E_i)$$

More probabilities

If E is an event and Pr(E) is the probability that the event E occurs then

- ▶ $Pr(\hat{E}) = I Pr(E)$ where \hat{E} is the complimentary event of E
- If outcomes in S are equally like, then
 Pr(E) = |E| / |S| (where | | denotes the cardinality of the set)

Example

Random throw of a pair of dice.
What is the probability that the sum is 3?

Solution: Each dice can take six different values {1,2,3,4,5,6}. The number of possible events (value of the pair of dice) is 36, therefore each event occurs with probability 1/36.

Examine the sum: 3 = 1+2 = 2+1The probability that the sum is 3 is 2/36.

What is the probability that the sum is 11? How about 5?

End math

20 Cristina Nita-Rotaru

Index of coincidence (cont.)

- Reminder: binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Consider the plaintext x, and c₀, c₁, ... c₂₅ are the number of occurrences with which A, B, ... Z appear in x and p₀, p₁, ... p₂₅ are the probabilities with which A, B, ... Z appear in x.
- We want to compute.

$$I_c(x) = P(x_i = x_j)$$

Index of coincidence (cont.)

- We can choose two elements out of the string of size n in $\binom{n}{2}$ ways
- For each i, there are $\binom{c_i}{2}$ ways of choosing the elements to be i

$$I_C(x) = \frac{\sum_{i=0}^{S} {c_i \choose 2}}{{n \choose 2}} = \frac{\sum_{i=0}^{S} c_i (c_i - 1)}{n(n-1)} \approx \frac{\sum_{i=0}^{S} c_i^2}{n^2} = \sum_{i=0}^{S} p_i^2$$

THIS IS AN APPROXIMATION IF N is VERY BIG

Example: IC of a string

Consider the text THE INDEX OF COINCIDENCE

$$I_{C}(x) = \frac{\sum_{i=0}^{S} c_{i}(c_{i} - 1)}{n(n-1)}$$

▶ There are 21 characters, so N = 21, S = 25

$$I_c = (3*2+2*1+4*3+1*0+1*0+3*2+3*2+2*1+1*0+1*0) / 21*20 = 34/420 = 0.0809$$

Example: IC of a language

For English, S = 25 and p_i can be estimated

Letter	p _i						
A	.082	Н	.061	O	.075	V	.010
В	.015	I	.070	P	.019	W	.023
C	.028	J	.002	Q	.001	X	.001
D	.043	K	.008	R	.060	Y	.020
E	.127	L	.040	S	.063	Z	.001
F	.022	M	.024	T	.091		
G	.020	N	.067	U	.028		

$$I_c(x) = \sum_{i=0}^{i=25} p_i^2 = 0.065$$

Find the key length

- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
- Two methods to find the key length:
 - Kasisky test
 - Index of coincidence (Friedman)

Finding the key length

 $q = q_1 q_2 ... q_{n,}$, m is the key length

Cristina Nita-Rotaru

Guessing the key length

If m is the key length, then the text ``looks like' English text

$$I_c(y_i) \approx \sum_{i=0}^{i=25} p_i^2 = 0.065 \quad \forall 1 \le i \le m$$

If m is not the key length, the text ``looks like' ' random text and:

$$I_c \approx \sum_{i=0}^{i=25} (\frac{1}{26})^2 = 26 \times \frac{1}{26^2} = \frac{1}{26} = 0.038$$

Finding the key, once key length known

- Consider vectors y_i, and look for the most frequent letter
- Check if mapping that letter to e will not result in unlikely mapping for other letters
- If that's not the case, look at the shift of the mapping, that represents the letter of the key
- Repeat for each vector

Kasisky example

Suppose that a Kasiski analysis of the ciphertext from a Vigenere cipher identifies these seven pairs of repeated sequences of ciphertext letters.

First occurence	8	20	38	48	59	72
Second occurence	32	64	110	104	163	132

What can you say about the length of the key used to encrypt the message?

Index of coincidence example

A ciphertext of 100 letters was intercepted. The frequency distribution of letters of the alphabet in this ciphertext is as follows:

```
A 2; B 10; C 2; D 5; E 3; F 8; G 1; H 2; I 2;
J 5; K 1; L 1; M 3; N 2; O 10; P 1; Q 8; R 1;
S 8; T 5; U 2; V 1; W 3; X 5; Y 1; Z 8.
```

What is the index of coincidence of this ciphertext?

Index of coincidence example

- Suppose there is a language that has only three letters: a,b,c.
 - frequency of letter a is 0.5
 - frequency of letter b is 0.3
 - frequency of letter c is 0.2

What is the index of coincidence of the language?

Vigenere example

- ► EBBBLCKSYMMKTHPDLSPWLCKVJCKDSYMVLCK
- **52133**
- \blacktriangleright Key length dives gcd(21-5, 33-21) = gcd(16, 12) = 4
- **▶** EBBB
- **LCKS**
- YMMK
- ▶ THPD
- LSPW
- LCKV
- JCKD
- SYMV
- ▶ <u>LCK</u>

Vigenere challenge

- KVAESZXYFQZGGEVPQVRSOHVZTXYXOCG XQVDRKALKIEKUUCAKXKOGKSSSMMKXUU GMTEIJSSPWBGVFBZREWZWVVSTVSQZML NGSURSFYCIINIRGGNUVTLGUWLEEEAYXQC GLFJGBXLTRTXDXLQVPQKUEXASJFIWXDLF TFKHJRLVVULVYHUELFJGBXLXYFVVPLFYFJ EOGRPRXPRCRLQVPQIEZKPRFUQEMGIXB
- ▶ 10 bonus points, submit all your code you used to solve it
- Deadline is Sept. 2

Take home lessons

Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.

34 Cristina Nita-Rotaru