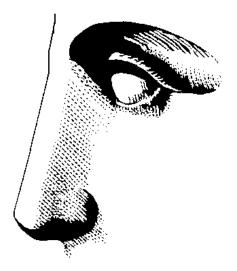
Cristina Nita-Rotaru

CS355: Cryptography

Lecture 21: Biometrics.


Authentication

- Something that you know
- Something that you have
- Something that you are

What Are Biometrics ?

(ancient Greek: bios ="life", metron ="measure")

- Biometrics are automated methods of recognizing a person based on a physical or behavioral characteristic.
- Physical Features
 - Fingerprint or fingerscan
 - Hand geometry
 - Face recognition
 - Retinal scans
 - Iris scans
- Behavioral Characteristics
 - Handwritten signature
 - Voice recognition
 - Typing
 - Gait

Biometric System

• Registration:

- A person registers with the system when one or more of his physical and behavioral characteristics are obtained.
- Information registered in a database (digital template), based on some algorithm.

• Use of biometrics:

- Biometric of the user is captured and processed into a digital template
- Verification: Compare a sample against a single stored template
- Identification: Search a sample against a database of templates.

Performance of Biometric Systems

- False accept rate (FAR): percent of invalid users who are incorrectly accepted as genuine users.
- False non match or reject rate (FRR): percent of valid users who are rejected as impostors.
- FAR and FRR can typically be traded off against each other by changing some parameter.
- High degree of confidence, forensic DNA evidence and iris recognition technology (can discriminate between individuals with identical DNA, such as monozygotic twins)

Applications of Biometric Technologies

Secure identification and personal verification

- WHERE: Federal, state and local governments, in the military, travel and transportation, financial, law enforcement, health and social services.
- Specific applications:
 - Civil and government ID
 - Network security infrastructures
 - Surveillance and screening
 - Retail/ATM/point of sale
 - Secure electronic banking
 - Telephony
 - Criminal ID

More about Applications...

- Biometrics can be used alone or integrated with other technologies such as smart cards, encryption keys and digital signatures
- Think about the number of passwords you must remember...Use of biometrics personal authentication: convenience, accuracy (?), provide audit trail
- Many countries started using biometrics

Use of Biometrics...

- Japan has been using retinal and/or iris scans for bank ID since 1997
- Malaysian airport uses face recognition for baggage claim
- USA started using it for airport security Dec. 2004
- UK airports
- European standard for biometric passports, US
- Identity cards including biometrics: UK, Oman, United Arab Emirates, Brazil

Biometrics: the DARK SIDE ...

- Social acceptance: Perceived as invasive; people liked facial scans less than fingerprints as a substitute for a PIN in ATM.
- Easy to forge: Biometric measurements are easy to forge. It is easy to steal a biometric after the measurement is taken.
- Impossible to revoke: What happens if a biometric is stolen? It can not be revoked... Once someone steals your biometric, it remains stolen for life.
- Privacy: issues...Biometrics are personal.

Handwritten Signature

- Handwritten signatures used a lot in the past to validate deals or identification
- Seals were mostly used in Europe
- How easy is to forge handwritten signatures? Depends who verifies, how trained the verifiers are
- Experiment: 105 professional document examiners, 144 pairwise comparisons, mistake rate was 6.5%
- Rules and conventions of accepting handwritten signatures differ from country to country

a-Rotaru

Handwritten Signature

- Automated signature recognition/storage: signature tablet
 - Signature tablet: sensor surface on which the client signs
 - Uses shape, speed, stroke order, off-tablet motion, pen pressure and timing information captured during the act of signing.
- Equal error rate (false accept = false reject) is about 0.01 for current commercial products, not acceptable for retail stores
- Used for financial document to prevent identity fraud

Handwritten Signature

- SMARTpen Biometric Authentication System (BiAS):
 - pen that uses sensors to authenticate individuals by the biometric characteristics of their signatures.
 - writes on regular paper
 - built-in sensors register the dynamics of writing, including the forces that are applied in 3D on paper, such as the speed, acceleration and angles of writing.
- Equal error rate (false accept = false reject) is about 0.01 for current commercial products, not acceptable for retail stores

Face Recognition

- Human ability to recognize other people's facial features and expression is much better than any automatic system to date.
- Photo identification widely used.

- Experiment: Psychologists at University of Westminster, supermarket chain and bank
 - Recruited 44 students and issued them 4 credit cards with 4 different pictures with varied quality of the photos
 - Optimal conditions: experienced cashiers, enough time, students used any of the cards, several times'
 - Result: cashiers could not tell the difference

Face Recognition

- How well does the technology works?
- Methods not very robust, depends on lighting, viewpoint and expression. Error rates were up to 20%.

- Error rate very high when compared with other biometrics recognition (less than 1%)
- Many companies are providing face recognition products
- Several countries use face recognition for identification in airports

Face Recognition

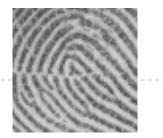
- Interesting psychological aspect: technology has problems, but system seems to work
 Studies done by banks showed that fraud dropped substantially when credit cards with photo IDs were issued/used
- In a borough in London a computer system that was said to scan faces in the crown for local criminals got a significant decrease in burglary, shoplifting and street crime

Fingerprint: Some History ...

- First modern systematic use of fingerprints seems to be in India in mid 19th century: use of fingerprints to prevent rich people to pay poor people to serve in prison in their place
- Discovered independently by a medical missionary in Japan
- Mainstream use in 1900 when a former chief officer from Bengal becomes Commissioner of the Metropolitan Police in London

Fingerprint: Applications

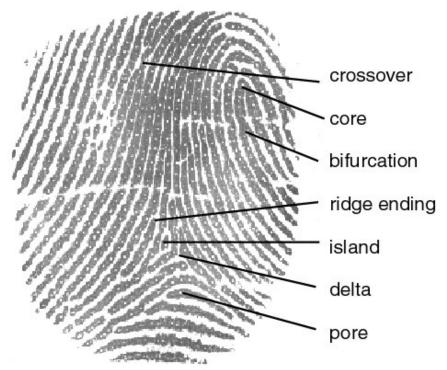
 Finger print technology captures a representation of the finger; it involves storing the image of the finger and comparing



- Two main applications:
 - Government identification
 - Criminal identification: IAFIS "Integrated Automated Fingerprint Identification System" is the law enforcement tool used either to identify a fingerprint's maker or to confirm prints

IAFIS

- Became operational in July 1999
- It is the national fingerprint and criminal history system maintained by the FBI
- It provides automated fingerprint search capabilities, latent searching capability, electronic image storage, and electronic exchange of fingerprints and responses.
- Answer received between 2 hours to 24 hours (before the integration/digital it took days sometime months)
- Largest biometric database in the world, containing the fingerprints and corresponding criminal history information for more than 66 million subjects.



- Storage is an issue
- FBI and NIST developed an image coding standard for digitized fingerprints
- The standard is a discrete wavelet transform-based algorithm referred to as Wavelet/Scalar Quantization (WSQ).
- Storage requirements...500 dots per inch with 8 bits of grayscale resolution. Do the math ...

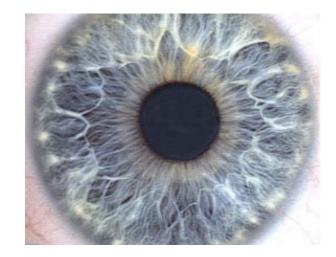
Fingerprint Identification

- Fingerprint is made of a series of ridges and furrows
- Fingerprint uniqueness: determined by the pattern of ridges and furrows as well as the minutiae point
- Minutiae points are loca ridge characteristics the occur at either a ridge bifurcation or a ridge ending

Fingerprint Identification Accuracy

- Error rate in forensic applications is very low, it depends on the quality and size of of the image taken at the crime
- Fingerprints require a number of match points, different from country to country. UK requires 16 points

Finger-scan


- A live acquisition of a person's fingerprint.
- Different type of devices:
 - Glass plate
 - Electronic
 - Ultrasound

22

Iris Scan

- Probability that two people have the same Iris Code is less than 1/10⁵²
- 512 byte Iris Code represents the visible characteristics of the eye
- Iris Code includes "266 spots" to distinguish between irises (claim is most other biometrics have between 10-60 distinguishing spots)
- Issues: obtain the information without being intrusive
- Other issues: blinking, eyelashes, sunglasses

Cristina Nita-Rotaru

Retinal Scan

- Analyses the layer of blood vessels at the back of the eye.
- Scanning involves using a low-intensity light source and an optical coupler
- Retina scan devices are probably the most accurate biometric available today.
- Retinal pattern changes very rarely, only from degenerative diseases, in case the person dies it deteriorates very quickly

Retinal Scan: Disadvantages

- Expensive
- Difficult to use
- Requires participant cooperation
- Psychological factor: consumer's thinking it is potentially harmful to the eye

Attacks on Biometrics-Based Systems

- Villain gives policeman fingerprinted fingers in the wrong order...
- Forensic biometrics: information can be planted, or not fresh; freshness is a critical aspect.
- Recordings attacks: on voice recognition systems, imprinted lens to fool iris scanners
- Collusions: handwriting systems, by giving childish samples, they can force the machine to accept a lower threshold than usual.
- Biometrics are not as accurate for all people.
 Biometrics referred to these people as goats.
- Political and religious issues