

CS355: Cryptography

Lecture 14: Diffie-Hellman, ElGamal

Many cryptographic algorithms rely on exponentiation Example: Diffie-Hellman key exchange, ElGamal encryption

ax mod n, where x is supposed to be secret

QUESTIONS:

- I) how difficult is to compute x from ax mod n
- 2) from a^x mod n and a^y mod n how easy it to compute a^{xy} mod n

Logarithm: $\log_a b = x$, where $a^x = b$ Discrete logarithm: x with property that $a^x \mod n = b$

Groups

Definition

A group (G, *) is a set G on which a binary operation is defined which satisfies the following axioms:

Closure: For all $a, b \in G$, $a * b \in G$.

Associative: For all $a, b, c \in G$, (a * b)* c = a * (b * c).

Identity: $\exists e \in G \text{ s.t. for all } a \in G, a^*e = a = e^*a.$

Inverse: For all $a \in G$, $\exists a^{-1} \in G$ s. t. $a^* a^{-1} = a^{-1*} a = e$.

Example

 $(Z_n, +)$ is a group, where + is addition modulo n $(Z_{p,*})$ = is a group, where * is multiplication modulo p

Groups (cont.)

Definition:

A group (G, *) is called an *abelian group* if operation * is a commutative operation:

Commutative: For all $a, b \in G$, a * b = b * a.

Example:

(R, +) is an abelian group

Definition

A group G is *cyclic* if $\exists g \in G$ s.t. any $h \in G$ can be writen $h = g^i$.

g is called group generator.

Example

Cyclic groups: $(Z_2, *), (Z_3, *)$

Order of a Group

Definition

The *order* of a group G, ord(G), is defined as the number of elements in the group.

Definition

A group G is *finite*, if |G| = ord(G), is finite.

We can show that the order of $(Z_n, *)$ is $\Phi(n)$

Example:

What is the order of $(Z_{7}^{*}, *), (Z_{700}^{*}, *)$?

Order of an Element

Definition

The *order of an element g* from a finite group G, is the smallest power of n such that $g^n=e$, where e is the identity element.

Example:

```
What is the order of 2 in (Z_5^*, *)?
It is 4 because 2^4 \equiv 1 \mod 5
```

```
What is the order of 3 in (Z^*_{10}, ^*)?
It is 4 because 3^4 \equiv 1 \mod 10
OBS: order of an element modulo n = \Phi(n)
```

Primitive Root

Definition

An integer g whose order modulo n is $\Phi(n)$ is called a primitive root modulo n.

Example

$$(Z_7^*, *)$$
, $5^6 = 1 \mod 7$ and $\Phi(7) = 6$
 $5^6 = 15625$
 $(Z_8^*, *)$ does not have a primitive root

FACT

The group $G = \langle Z_n^*, * \rangle$ has primitive roots only if n is 2, 4, p^t or $2p^t$ where p is an odd prime number.

Cristina Nita-Rotaru

Primitive Roots and Cyclic Groups

FACT

If a group $(Z_n^*, *)$ has a primitive root, it is cyclic. Each primitive root is a generator and can be used to create the whole set. $Z_n^* = \{g_1, g^2, \dots g^{\Phi(n)}\}$

FACT

If the group $(Z_n^*, *)$ has any primitive root, the number of primitive roots is $\Phi(\Phi(n))$

OBSERVATION

 $(Z_n^*, *)$ is cyclic if it has primitive roots $(Z_p^*, *)$ is always cyclic

8

Discrete Logarithm

Definition

Let $G = (Z_n^*, *)$ be a cyclic group with generator (primitive root) g. Then every element a of G can be written as $g^k = a \mod n$.

k is called the index of a base g modulo n, or the discrete logarithm of a to base g modulo n.

Discrete logarithms behave like traditional logarithms.

```
\begin{split} &\log_g 1 \equiv 0 \ \text{mod} \ \Phi(n) \\ &\log_g xy \equiv (\log_g x + \log_g y) \ \text{mod} \ \Phi(n) \\ &\log_g x^k \equiv k \ \log_g y \ \text{mod} \ \Phi(n) \end{split}
```

$$(Z_p^*, *)$$

I, 2, ... p-I
It always has primitive roots
It is cyclic
The primitive root is the base of the discrete logarithm

▶ 10 Cristina Nita-Rotaru

Diffie-Hellman Key Establishment

- A and B wish to establish a shared secret key without sharing any secret so that no eavesdropper can compute the key:
- A and B shares public parameters a group Z_p and a generator g
 - A randomly chooses x and sends g^x mod p to B
 - B randomly chooses y and sends g^y mod p to A
 - Both A and B can compute g^{xy} mod p
 - It is (believed to be) infeasible for an eavesdropper to compute g^{xy} mod p
 - DLP must be difficult to compute in Z_p

Diffie-Hellman Example

$$p = 11$$
, $g = 2$

Alice selects random x and sends Bob:

$$A = g^x \mod p$$
.

$$x = 4$$
, $A = 2^4 \mod 11 = 16 \mod 11 = 5$

Bob generates random y and sends Alice:

$$B = g^y \mod p$$
.

$$y = 6$$
, $B = 2^6 \mod 11 = 64 \mod 11 = 9$

Alice calculates secret key: $K = (B) \times mod p$.

$$K = 9^4 \mod 11 = 6561 \mod 11 = 5$$
.

Bob calculates secret key: $K = (A)^y \mod p$.

$$K = 5^6 \mod 11 = 15625 \mod 11 = 5$$
.

Example from Tom Dunigan's notes: http://www.cs.utk.edu/~dunigan/cs594-cns00/class14.html

Discrete Logarithm Problem (DLP)

Given a multiplicative group (G, *), and a primitive root g in G and an element y, find the unique integer x such that

$$g^x \mod n = y$$

i.e., x is the discrete logarithm log_qy

Algorithms for The Discrete Log Problem (DLP)

- There are generic algorithms that work for every cyclic group
 - Pollard Rho
 - Pohlig-Hellman
- There are algorithms that work just for some groups such as Z_p*
 - e.g., the index calculus algorithms
 - these algorithms are much more efficient
 - 1024 bits for p are needed for adequate level of security

CDH and DDH

- Security of the Diffie-Hellman key establishment protocol based on the CDH problem
- Computational Diffie-Hellman (CDH)
 - Given a multiplicative group (G, *), and a primitive root $g \in G$, given g^x mod n and g^y mod n, find g^{xy} mod n
- Decision Diffie-Hellman (DDH)
 - ▶ Given a multiplicative group (G, *), and a primitive root $g \in G$, given $g^x \mod n$, $g^y \mod n$, and $g^z \mod n$, determine if $g^{xy} \equiv g^z \mod n$
- DLP is at least as hard as CDH, which is at least as hard as DDH.

EIGamal

- Published in 1985 by ElGamal
- Its security is based on the intractability of the DLP and the CDH and DDH problem
- Message expansion: the ciphertext is twice as big as the original message
- Uses randomization, each message has p-1 possible different encryptions

16 Cristina Nita-Rotaru

El Gamal

Key Generation

- Generate a large random prime p such that DLP is infeasible in Z_p and a generator g of the multiplicative group Z_p of the integers modulo p
- Select a random integer a, 1 ≤ a ≤ p-2, and compute

 $g^a \mod p$

- Public key is (p; g; $\beta=g^a \mod p$)
- Private key is a.

▶ 17 Cristina Nita-Rotaru

ElGamal (cont.)

Encryption:

Message M into ciphertext C

Select a random integer k, $0 < k \le p-2$.

Compute $\gamma = g^k \mod p$ and $\delta = M \beta^k \mod p$.

Ciphertext C = (γ, δ)

Decryption:

Compute γ^{-a} as follows: $\gamma^{p-1-a} \mod p = \gamma^{-a} \mod p$ $M = \gamma^{-a} \delta \mod p$

WHY DECRYPTION WORKS? $\gamma^{-a} \delta \mod p \equiv g^{-ka} M \cdot (g^a)^k \mod p \equiv M \mod p$

Parameters Size

- All parties could use the same modulus p and generator g
- Different encryptions should use different
- Prime p should be chosen as 1024 bits to ensure that DLP is infeasible, while k should be 160 bits

ElGamal Example

```
g = 2, p=13.
```

secret key a = 7

public key $\beta = g^a \mod p = 2^7 \mod 13 = 11$.

Encrypt message M = 3.

Select a random k = 5 and

$$\gamma = g^k \mod p = 2^5 \mod 13 = 6$$

$$\delta = M \beta^{k} \mod p = 3 * 11^{5} \mod 13 = 3 * 7 \mod 13 = 8$$

Ciphertext C = (γ, δ) = (6, 8)

Decrypt $\gamma^{p-1-a} \mod p = \gamma^{-a} \mod p = 6^{13-1-7} \mod 13 = 6^5 \mod 13 = 7776 \mod 13 = 2$

 $M = 2 * 8 \mod 13 = 16 \mod 13 = 3$

Example courtesy of http://www.cs.chalmers.se/Cs/Grundutb/Kurser/krypto/lect05.pdf

Optional homework

- ▶ Encrypt m = 7, k=5
- ▶ Encrypt m = 2, k = 3

≥ 21 Cristina Nita-Rotaru

Security of ElGamal

- ElGamal is not semantically secure.
- WHY? An attacker can learn information about the plaintext without decrypting: given two encryptions, can say which plaintext was a quadratic residue and which one was not.

Semantically Secure ElGamal

- Choose p such that p = 2q + 1, where q is also prime
- Then define ElGamal in Q_q, the subgroup of quadratic residues modulo p, this subgroup is a cyclic subgroup of Z_p having order q
- ▶ Equivalent with restricting the message m, α^a and y1 = α^k mod p to be quadratic residues

ElGamal and DH Problems

- Semantic security of ElGamal is equivalent to the infeasibility of Decision Diffie-Hellman
- ElGamal decryption (without knowing the secret key)
 is equivalent to solving Computational Diffie-Hellman

24 Cristina Nita-Rotaru