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Math-Based Key Recovery Attacks 

}  Three possible 
approaches:  

1.  Factor n = pq 
2.  Determine Φ(n) 
3.  Find the private key d 

directly 

}  All the above are 
equivalent to factoring n 
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Knowing Φ(n) Implies Factorization 

}  Knowing both n and Φ(n), one knows  
  n = pq 
  Φ(n) = (p-1)(q-1) = pq – p – q + 1 

                 = n – p – n/p + 1 
  pΦ(n) = np – p2 – n + p 
  p2 – np + Φ(n)p – p + n = 0 

    p2 – (n – Φ(n) + 1) p + n = 0 
}  There are two solutions of p in the above equation. 
}  Both p and q are solutions.  
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Factoring Large Numbers 

} RSA-640 bits, Factored Nov. 2 2005 
} RSA-200 (663 bits) factored in  
May 2005


} RSA-768 has 232 decimal digits and 
was factored on December 12, 2009, 
latest.  

}  Three most effective algorithms are 
}  quadratic sieve 
}  elliptic curve factoring algorithm 
}  number field sieve 
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Decryption attacks on RSA  

 RSA Problem: Given a positive integer n that is a 
product of two distinct large primes p and q, a 
positive integer e such that gcd(e, (p-1)(q-1))=1, 
and an integer c, find an integer m such that me≡c 
(mod n) 
    widely believed that the RSA problem is computationally 

equivalent to integer factorization; however, no proof is 
known 

 The security of RSA encryption’s scheme 
depends on the hardness of the RSA problem. 
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Summary of Key Recovery Math-based 
Attacks on RSA 

}  Three possible approaches:  
1.  Factor n = pq 
2.  Determine Φ(n) 
3.  Find the private key d directly 

}  All are equivalent 
}  finding out d implies factoring n 
}  if factoring is hard, so is finding out d 
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Finding d: Timing Attacks 
}  Timing Attacks on Implementations of Diffie-Hellman, RSA, 

DSS, and Other Systems (1996), Paul C. Kocher 
}  By measuring the time required to perform decryption 

(exponentiation with the private key as exponent), an attacker 
can figure out the private key 

}  Possible countermeasures: 
}  use constant exponentiation time 
}  add random delays 
}  blind values used in calculations 
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Timing Attacks (cont.) 
}  Is is possible in practice? YES. 
       


      OpenSSL Security Advisory [17 March 2003]

      Timing-based attacks on RSA keys

       ================================

       OpenSSL v0.9.7a and 0.9.6i vulnerability

       ----------------------------------------

    Researchers have discovered a timing attack on RSA keys, to which 

OpenSSL is generally vulnerable, unless RSA blinding has been turned 
on.




RSA blinding: the decryption time is no longer correlated to 

the value of the input ciphertext  
Instead of computing cd mod n, choose a secret random value 

r and compute (rec)d mod n.  
A new value of r is chosen for each ciphertext.  
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Quadratic Residues 
a is a quadratic residue modulo p if  ∃ b ∈Zp

*  
such that  b2 ≡ a mod p, otherwise a is a 
nonquadratic residue 

       is the set of all quadratic residues 
       is the set of all nonquadratic residues 

42 ≡ 6 mod 10 so 6 is a quadratic 
residue (mod 10). 

}  If p is prime there are (p-1)/2 quadratic 
residues in Zp

*, |Qp| = (p-1)/2 
}  If  a (p-1)/2 ≡ 1 mod p then a is a quadratic 

residue ( if -1 then r is a nonquadratic residue) 
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Legendre Symbol 
}  Let p be an odd prime and a an integer. The Legendre 

symbol is defined  
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Jacobi Symbol 

}  let n ≥ 3 be a composite odd with prime 
factorization 

}  the Jacobi symbol is defined to be 
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The Jacobi symbol can be computed without 
factoring n  
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Semantic Insecurity of the RSA 

}  RSA encryption is not semantically secure 
because it is deterministic 

}  The encryption function f(x)=xe mod n leaks 
information about x ! 
}  it leaks the Jacobi symbol of x, so it allows an 

attacker to distinguish between ciphertexts 
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Reminder: Semantic Security (IND-CPA) 
}  The IND-CPA game 

Challenger Adversary 
picks a random key pair 

(K, K-1), and picks 
random b∈{0,1} 

picks M0, M1 of equal length M0, M1 

K 

b’ ∈{0,1} 

Attacker wins game if b=b’ 

C = EK[Mb] 
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Cost of Semantic Security in Public Key 
Encryption 

}  In order to have semantic security, some expansion 
is necessary 
}  i.e., the ciphertext must be larger than its corresponding 

plaintext  
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A Padding Scheme for Semantically Secure 
Public-key Encryption 

}  given a public-key encryption scheme E,  
}  to encrypt x, generates a random r, the ciphertext is (y1 = 

EK[r], y2 = H(r)⊕x) , where H is a cryptographic hash 
function 

}  to decrypt (y1,y2), one compute H(DK[y1]) ⊕y2 
}  requires an extra random number generation and an 

XOR operation for each bit 
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Example of the Padding Scheme 
}  Example of the Padding Scheme for RSA 

Public key: (n,e),  
The ciphertext for x is (re mod n, x⊕H(r)) 
To decrypt a ciphertext (y1, y2), compute r= y1

d mod n, and 
x= y2⊕H(r) 

To encrypt a 128-bit message, the ciphertext has 1024+128 
bits 
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OAEP 

}  M. Bellare and P. Rogaway, Optimal asymmetric encryption, 
Advances in Cryptology - Eurocrypt '94, Springer-Verlag 
(1994), 92-111. 

}  [Optimal Asymmetric Encryption Padding (OAEP)]: method for 
encoding messages. 

}  Uses one trapdoor permutation functions EK and two hash 
functions: H: {0,1}m→{0,1}t and G: {0,1}t→{0,1}m 

}  To encrypt x∈{0,1}m, chooses random r∈{0,1}t and computes 
EK[x⊕G(r) || r⊕H(x⊕G(r))] 

}  OAEP is provably IND-CPA secure when H and G are modeled 
as random oracles and EK is a trapdoor one-way permutation.  
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Testing for primality. 
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Pseudoprime Numbers 
}  Fermat pseudoprime base a: a composite number p 

which satisfies the Fermat Theorem  
 

                                  ap-1 ≡ 1 (mod p) 
 

}  If a = 2: p is called simply a pseudoprime.  
}  If p is a pseudoprime, so is 2p-1. 
}  Carmichael number: a pseudoprime for every base a 

relatively prime to it. 
}  The use of a Carmichael number instead of a prime factor 

in the modulus of an RSA cryptosystem is likely to make 
the system fatally vulnerable, so such numbers may be 
detected.  
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Strong Pseudoprimes 

}  Strong pseudoprime to a base a is an odd 
composite number p with p-1 = d*2r, d is odd, such 
that 

  
                  ad ≡ 1 (mod p) 
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Testing for Primality 
      
§  There are applicationsthat need large prime numbers.  
§  The usual algorithm to generate prime numbers is to 

generate random odd numbers and test them for 
primality.  

§  Primality testing is easier than prime factorization, and  
is P-class. 

    How can we tell if a number is prime or not 
without factoring the number? 
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Complexity 

§  Complexity theory:  mathematical discipline that 
classifies problems based on the difficulty to solve them.  

§  P-class (polynomial-time):  class of questions for which 
some algorithm can provide an answer in polynomial 
time. i.e. number of steps needed to solve a problem is 
bounded by some power of the problem's size. 

§  NP-class (nondeterministic polynomial-time): Class of 
questions for which there is no known way to find an 
answer in polynomial time, but if the answer is 
provided, it can be verified in polynomial time, i.e. it 
permits a nondeterministic solution and the number of 
steps to verify the solution is bounded by some power 
of the problem's size.  



P vs NP problem 
}  P ? NP: Asks whether every problem whose solution can 

be quickly verified by a computer can also be quickly 
solved by a computer 

}  Quickly means polynomial 
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NP-Complete 
}  NP-complete:  problems to each of which any other 

NP-problem can be reduced in polynomial time, and 
whose solution may still be verified in polynomial time, 
i.e. , any NP problem can be transformed into any of the 
NP-complete problems.  

}  An NP-complete problem is at least as "tough" as any 
other problem in NP. 
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Integer Factoring 

}  Computation: determine the prime factorization of 
a given integer 

}  Decision: determine if a given integer has a factor 
less than k 

}  No efficient integer factorization algorithm is known 
}  Integer factorization is in NP 
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Testing for Primality 
    Theorem 
   Composite numbers have a divisor below their square root. 
 

     Proof idea: 
    n composite, so n = ab,  0 < a ≤ b < n, then a ≤ sqrt(n), 

otherwise we obtain ab > n (contradiction).  
 

    Algorithm 1 
            for (i=2, i < sqrt(n) + 1); i++) { 
                  If i a divisor of n { 

   n is composite 
                  } 
             } 
            n is prime 
    Running time is O(sqrt(n)) 
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Rabin-Miller Test 



}  Primality test that provides an efficient probabilistic algorithm 
for determining if a given number is prime.  
}  Given an odd integer p = 2ds + 1, with s odd.  
}  Choose a random integer a,  1 ≤ a ≤  p-1.  
}  If ad ≡ 1 mod p then p passes the test. 

}  A prime will pass the test for all a, while a composite number 
passes the test for at most 1/4 of the possible bases a.  

}  If N multiple independent tests are performed on a composite 
number, then the probability that it passes each test is or less 
than 1/4N. 

}  The test is fast, very used in practice. 


