
Cristina Nita-Rotaru 

CS355: Cryptography 

Lecture 12: Public-Key Cryptography.RSA. Mental Poker Protocol. 
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}  Proposed in Diffie and Hellman (1976) “New Directions in 
Cryptography” 
}  public-key encryption schemes 
}  public key distribution systems 

}  Diffie-Hellman key agreement protocol 
}  digital signature 

}  Public-key encryption was proposed in 1970 by James Ellis 
}  in a classified paper made public in 1997 by the British 

Governmental Communications Headquarters 
}  Diffie-Hellman key agreement and concept of digital signature 

are still due to Diffie & Hellman 

Public Key Cryptography Overview 
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Public Key Encryption 

}  Each party has a PAIR (K, K-1) of keys: K is the public key 
and K-1 is the private key, such that     

  DK-1[EK[M]] = M 
}  Knowing the public-key and the cipher, it is 

computationally infeasible to compute the private key 
}  Public-key crypto systems are thus known to be 

asymmetric crypto systems 
}  The public-key K may be made publicly available, e.g., in a 

publicly available directory 
}  Many can encrypt, only one can decrypt 
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Public-Key Encryption Needs One-way 
Trapdoor Functions 

}  Given a public-key crypto system,  
}  Alice has public key K 
}  EK must be a one-way function, knowing y= EK[x], it 

should be difficult to find x 
}  However, EK must not be one-way from Alice’s 

perspective.  The function EK must have a trapdoor 
such that knowledge of the trapdoor enables one 
to invert it 
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Trapdoor One-way Functions 

Definition: 
   A function f: {0,1}* → {0,1}* 

is a trapdoor one-way 
function iff f(x) is a one-way 
function; however, given 
some extra information it 
becomes feasible to 
compute f-1: given y, find x 
s.t. y = f(x) 
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RSA Algorithm 

}  Invented in 1978 by Ron Rivest, Adi Shamir 
and Leonard Adleman 
}  Published as R L Rivest, A Shamir, L Adleman, "On Digital 

Signatures and Public Key Cryptosystems", Communications 
of the ACM, vol 21 no 2, pp120-126, Feb 1978  

}  Security relies on the difficulty of factoring large 
composite numbers  

}  Essentially the same algorithm was discovered in 
1973 by Clifford Cocks, who works for the 
British intelligence 
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Zpq* 

}  Let p and q be two large primes 
}  Denote their product n=pq. 
}  Zn*= Zpq* contains all integers in the range [1,pq-1] 

that are relatively prime to both p and q 
}  The size of Zn* is     

 Φ(pq) = (p-1)(q-1)=n-(p+q)+1 
}  For every x ∈ Zpq*, x(p-1)(q-1) ≡ 1 mod n 
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Exponentiation in Zpq* 

}  Motivation: We want to use exponentiation for 
encryption 

}  Let e be an integer, 1<e<(p-1)(q-1) 

}  When is the function f(x)=xe, a one-to-one 
correspondence function in Zpq*? 

}  If xe is one-to-one correspondence, then it is a 
permutation in Zpq*. 
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Exponentiation in Zpq* 

}  Claim: If e is relatively prime to (p-1)(q-1) then 
f(x)=xe is a one-to-one correspondence 
function in Zpq* 

}  Proof by constructing the inverse function of f.  
As gcd(e,(p-1)(q-1))=1, then there exists d and 
k s.t. ed=1+k(p-1)(q-1) 

}  Let y=xe, then yd=(xe)d=x1+k(p-1)(q-1)=x (mod pq), 
i.e., g(y)=yd is the inverse of f(x)=xe. 
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RSA Public Key Crypto System 

Key generation: 
Select 2 large prime numbers of about the same 

size, p and q 
Compute n = pq, and Φ(n) = (q-1)(p-1) 
Select a random integer e,  1 < e < Φ(n), s.t.  

 gcd(e, Φ(n)) = 1 
Compute  d, 1< d< Φ(n) s.t.  ed ≡ 1 mod Φ(n) 
 
Public key:  (e, n) 
Private key: d   
 
Note: p and q must remain secret  
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RSA Description (cont.)  

Encryption 
Given a message M, 0 < M < n  M ∈ Zn- {0} 
use public key (e, n)  
compute C = Me mod n    C ∈ Zn- {0} 
 
Decryption 
Given a ciphertext C, use private key (d)  
Compute Cd mod n = (Me mod n)d mod n = Med 

mod n = M 
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RSA Example 

}  p = 11, q = 7, n = 77, Φ(n) = 60  
}  d = 13, e = 37   (ed = 481;  ed mod 60 = 1) 

}  Let M = 15.  Then C ≡ Me mod n 
C ≡ 1537 (mod 77) = 71 

}  M ≡ Cd mod n 
M ≡ 7113 (mod 77) = 15 
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Why does RSA work?  

}  Need to show that (Me)d (mod n) = M, n = pq 
}  We have shown that when M∈Zpq*, i.e., gcd(M, n) 

= 1, then Med ≡ M     (mod n) 
}  What if M∈Zpq-{0}-Zpq*, e.g., gcd(M, n) = p. 

ed ≡ 1 (mod Φ(n)), so  ed = kΦ(n) + 1, for some integer k. 
 
Med mod p = (M mod p)ed mod p = 0      

 so Med ≡ M mod p 
Med mod q = (Mk*Φ(n) mod q) (M mod q) = M mod q   

 so Med ≡ M mod q 
As p and q are distinct primes, it follows from the CRT that 

Med ≡ M mod pq 
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RSA Implementation  

n, p, q 
}  The security of RSA depends on how large n is, 

which is often measured in the number of bits for 
n. Current recommendation is 1024 bits for n. 

}  p and q should have the same bit length, so for 
1024 bits RSA, p and q should be about 512 bits. 

}  p-q should not be small 
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RSA Implementation 

}  Select p and q prime numbers 
}  In general, select numbers, 

then test for primality 
}  Many implementations use 

the Rabin-Miller test, 
(probabilistic test) 
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RSA Implementation  

e 
}  e is usually chosen to be 3 

or 216 + 1 = 65537 
}  In order to speed up the 

encryption 
}  the smaller the number of 

1 bits, the better  
}  why? 
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Square and Multiply Algorithm for 
Exponentiation 

}  Computing (x)c mod n  
}  Example: suppose that c=53=110101 
}  x53=(x13)2·x=(((x3)2)2·x)2)2·x =(((x2·x)2)2·x)2)2·x  mod n 

 
Alg: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0) 

  z=1 
  for i ← k-1 downto 0 { 
   z ← z2 mod n 
   if ci = 1 then z ← (z * x) mod n 
  } 
  return z 
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RSA Implementation: Decryption  

}  CRT is used in RSA by creating two equations for decryption:  
     The goal is to compute M , from M = Cd mod n  

M1 = M mod p = Cd mod p   
M2 = M mod q = Cd mod q  
Fermat theorem on the exponents 
M1 ≡ Cd mod (p-1) mod p   
M2 ≡ Cd mod (q-1) mod q  
}  then the pair of equations  
           M ≡ M1 mod p,  
           M ≡ M2 mod q  
has a unique solution M. 
M ≡ M1(q-1 mod p)q  + M2(p-1 mod q)p (mod n) 
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Efficiency of computation modulo n 
}  Suppose that n is a k-bit number, and 0≤ x,y ≤ n 

}  computing (x+y) mod n takes time O(k)  
}  computing (x-y) mod n takes time O(k) 
}  computing (xy) mod n takes time O(k2) 
}  computing (x-1) mod n takes time O(k3) 
}  computing (x)c mod n takes time O((log c) k2) 
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RSA on Long Messages 

§  RSA requires that the message M is at most n-1 
where n is the size of the modulus. 

§  What about longer messages?  
    They are broken into blocks.  
    Smaller messages are padded.  
    CBC is used to prevent attacks  
    regarding the blocks. 
 
§  NOTE: In practice RSA is used to encrypt 

symmetric keys, so the message is not very long. 
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Pohlig-Hellman Exponentiation Cipher 
}  A symmetric key exponentiation cipher 

}  encryption key (e,p),  where p is a prime 
}  decryption key (d,p),  where ed≡1 (mod (p-1)) 
}  to encrypt M, compute Me mod p 
}  to decrypt C, compute Cd mod p 
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Mental Poker Protocol 
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The Mental Poker Problem 

}  Alice and Bob want to play poker, deal 5 cards to each of Alice and 
Bob so that 
}  Alice’s hand of 5 cards does not overlap with Bob’s hand 
}  Neither Alice nor Bob can control which cards they each get 
}  Neither Alice nor Bob knows the other party’s hand 
}  Both hands should be random provided one party follows the 

protocol 
}  First solution due to Shamir, Rivest, and Adelman in 1980 (SRA 

protocol) 
}  uses commutative encryption schemes 
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Commutative Encryption 

Definition:  
   An encryption scheme is commutative if 

EK1[EK2[M]] = EK2[EK1[M]]  

   Given an encryption scheme that is 
commutative, then  

    DK1[DK2[EK1[EK2[M]] = M 

Most symmetric encryption scheme  
(such as DES and AES) are not commutative 
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SRA encryption scheme 

}  Commutative encryption 
}  Alice and Bob share n=pq and they both know p 

and q 
}  Alice:  encryption key e1  
              decryption key d1  
               e1d1≡1 (mod (p-1)(q-1)) 
       

}  Bob: encryption key e2 
            decryption key d2  
            e2d2≡1 (mod (p-1)(q-1))  
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The SRA Mental Poker Protocol 

Setup: Alice and Bob share M1, M2, …, M52 denote the 52 cards, n=pq, p, and q.  
Alice has e1,d1 and Bob has e2,d2 

Protocol: 
}  Alice encrypts M1, M2, …, M52 using her key, i.e., computes Cj=Mj

e1 mod n for 1≤j ≤52, 
randomly permute them and send the ciphertexts to Bob 

}  Bob picks 5 cards as Alice’s hand and sends them to Alice 
}  Alice decrypts them to get her hand 
}  Bob picks 5 other cards as his hand, encrypts them using his key, and sends them to 

Alice 
}  Alice decrypts the 5 ciphertexts and sends to Bob 
}  Bob decrypts what Alice sends and gets his hand 
}  Both Alice and Bob reveal their key pairs to the other party and verify that the other 

party was not cheating.   


