Cristina Nita-Rotaru

CS355: Cryptography

Lecture 12: Public-Key Cryptography.RSA. Mental Poker Protocol.

Public Key Cryptography Overview

- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature
- Public-key encryption was proposed in 1970 by James Ellis
 - in a classified paper made public in 1997 by the British Governmental Communications Headquarters
- Diffie-Hellman key agreement and concept of digital signature are still due to Diffie & Hellman

Public Key Encryption

Each party has a PAIR (K, K⁻¹) of keys: K is the public key and K⁻¹ is the private key, such that

 $\mathbf{D}_{K^{-1}}[\mathbf{E}_{K}[\mathsf{M}]] = \mathsf{M}$

- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key
- Public-key crypto systems are thus known to be asymmetric crypto systems
- The public-key K may be made publicly available, e.g., in a publicly available directory
- Many can encrypt, only one can decrypt

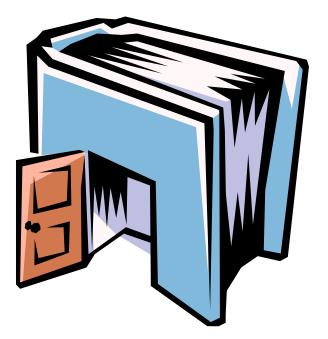
Public-Key Encryption Needs One-way Trapdoor Functions

- Given a public-key crypto system,
 - Alice has public key K
 - E_K must be a one-way function, knowing y= E_K[x], it should be difficult to find x
 - However, E_K must not be one-way from Alice's perspective. The function E_K must have a trapdoor such that knowledge of the trapdoor enables one to invert it

Trapdoor One-way Functions

Definition:

A function f: $\{0, I\}^* \rightarrow \{0, I\}^*$ is a trapdoor one-way function iff f(x) is a one-way function; however, given some extra information it becomes feasible to compute f⁻¹: given y, find x s.t. y = f(x)



RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

Z_{pq}^*

- Let p and q be two large primes
- Denote their product n=pq.
- Z_n*= Z_{pq}* contains all integers in the range [1,pq-1] that are relatively prime to both p and q

The size of
$$Z_n^*$$
 is
 $\Phi(pq) = (p-1)(q-1)=n-(p+q)+1$

For every
$$x \in \mathbb{Z}_{pq}^{*}$$
, $x^{(p-1)(q-1)} \equiv 1 \mod n$

Exponentiation in Z_{pq}^{*}

- Motivation: We want to use exponentiation for encryption
- Let e be an integer, I < e < (p-I)(q-I)</p>
- When is the function f(x)=x^e, a one-to-one correspondence function in Z_{DQ}*?
- If x^e is one-to-one correspondence, then it is a permutation in Z_{pq}^{*} .

Exponentiation in Z_{pq}^*

- Claim: If e is relatively prime to (p-1)(q-1) then f(x)=x^e is a one-to-one correspondence function in Z_{pq}*
- Proof by constructing the inverse function of f. As gcd(e,(p-1)(q-1))=1, then there exists d and k s.t. ed=1+k(p-1)(q-1)
- Let y=x^e, then y^d=(x^e)^d=x^{1+k(p-1)(q-1)}=x (mod pq), i.e., g(y)=y^d is the inverse of f(x)=x^e.

RSA Public Key Crypto System

Key generation:

Select 2 large prime numbers of about the same size, p and q

Compute n = pq, and $\Phi(n) = (q-1)(p-1)$

Select a random integer e,
$$1 < e < \Phi(n)$$
, s.t.
gcd(e, $\Phi(n)$) = 1

Compute d, $I \leq d \leq \Phi(n)$ s.t. $ed \equiv I \mod \Phi(n)$

Public key: (e, n) Private key: d

Note: p and q must remain secret

RSA Description (cont.)

Encryption

 $\begin{array}{ll} \mbox{Given a message M, 0 < M < n } & M \in Z_n \mbox{--} \{0\} \\ \mbox{use public key (e, n)} \\ \mbox{compute C = M^e mod n } & C \in Z_n \mbox{--} \{0\} \end{array}$

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M

RSA Example

- ▶ $p = II, q = 7, n = 77, \Phi(n) = 60$
- > d = I3, e = 37 (ed = 48I; ed mod 60 = I)
- Let M = 15. Then C = M^e mod n C = $|5^{37} \pmod{77} = 7|$

•
$$M \equiv C^d \mod n$$

 $M \equiv 71^{13} \pmod{77} = 15$

Why does RSA work?

- Need to show that (M^e)^d (mod n) = M, n = pq
- ▶ We have shown that when $M \in \mathbb{Z}_{pq}^*$, i.e., gcd(M, n) = 1, then $M^{ed} \equiv M \pmod{n}$
- What if M∈Z_{pq}-{0}-Z_{pq}*, e.g., gcd(M, n) = p. ed = 1 (mod Φ(n)), so ed = kΦ(n) + 1, for some integer k.

```
 \begin{array}{l} \mathsf{M}^{\mathsf{ed}} \bmod p = (\mathsf{M} \bmod p)^{\mathsf{ed}} \bmod p = 0 \\ & \mathsf{so} \ \mathsf{M}^{\mathsf{ed}} \equiv \mathsf{M} \bmod p \\ \\ \mathsf{M}^{\mathsf{ed}} \bmod q = (\mathsf{M}^{\mathsf{k}^* \Phi(\mathsf{n})} \bmod q) \ (\mathsf{M} \bmod q) = \mathsf{M} \bmod q \\ & \mathsf{so} \ \mathsf{M}^{\mathsf{ed}} \equiv \mathsf{M} \bmod q \\ \\ \\ \mathsf{As} \ \mathsf{p} \ \mathsf{and} \ \mathsf{q} \ \mathsf{are} \ \mathsf{distinct} \ \mathsf{primes}, \ \mathsf{it} \ \mathsf{follows} \ \mathsf{from} \ \mathsf{the} \ \mathsf{CRT} \ \mathsf{that} \\ & \mathsf{M}^{\mathsf{ed}} \equiv \mathsf{M} \ \mathsf{mod} \ \mathsf{pq} \end{array}
```

RSA Implementation

n, p, q

- The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- p-q should not be small

RSA Implementation

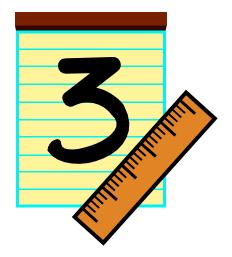
- Select p and q prime numbers
- In general, select numbers, then test for primality
- Many implementations use the Rabin-Miller test, (probabilistic test)

RSA Implementation

e

- e is usually chosen to be 3 or 2¹⁶ + 1 = 65537
- In order to speed up the encryption
 - the smaller the number of
 l bits, the better

why?



Square and Multiply Algorithm for Exponentiation

Computing (x)^c mod n

Example: suppose that c=53=110101

► $x^{53}=(x^{13})^2 x=(((x^3)^2)^2 x)^2)^2 x =(((x^2 x)^2)^2 x)^2)^2 x \mod n$

```
Alg: Square-and-multiply (x, n, c = c_{k-1} c_{k-2} \dots c_1 c_0)

z=1

for i \leftarrow k-1 downto 0 {

z \leftarrow z^2 \mod n

if c_i = 1 then z \leftarrow (z * x) \mod n

}

return z
```

RSA Implementation: Decryption

CRT is used in RSA by creating two equations for decryption: The goal is to compute M, from $M = C^d \mod n$ $MI = M \mod p = C^d \mod p$ $M2 = M \mod q = C^d \mod q$ Fermat theorem on the exponents $MI \equiv C^{d \mod (p-1)} \mod p$ $M2 \equiv C^{d \mod (q-1)} \mod q$ then the pair of equations $M \equiv MI \mod p$, $M \equiv M2 \mod q$ has a unique solution M. $M \equiv MI(q^{-1} \mod p)q + M2(p^{-1} \mod q)p \pmod{n}$

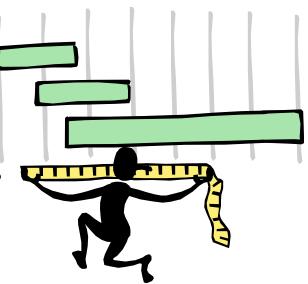
Efficiency of computation modulo n

Suppose that n is a k-bit number, and $0 \le x, y \le n$

- computing (x+y) mod n takes time O(k)
- computing (x-y) mod n takes time O(k)
- computing (xy) mod n takes time O(k²)
- computing (x⁻¹) mod n takes time O(k³)
- computing (x)^c mod n takes time O((log c) k²)

RSA on Long Messages

- RSA requires that the message M is at most n-I where n is the size of the modulus.
- What about longer messages?
 They are broken into blocks.
 Smaller messages are padded.
 CBC is used to prevent attacks regarding the blocks.



 NOTE: In practice RSA is used to encrypt symmetric keys, so the message is not very long.

Pohlig-Hellman Exponentiation Cipher

► A <u>symmetric</u> key exponentiation cipher

- encryption key (e,p), where p is a prime
- ▶ decryption key (d,p), where $ed \equiv I \pmod{(p-I)}$
- to encrypt M, compute M^e mod p
- to decrypt C, compute C^d mod p

Cristina Nita-Rotaru

Mental Poker Protocol

The Mental Poker Problem

- Alice and Bob want to play poker, deal 5 cards to each of Alice and Bob so that
 - Alice's hand of 5 cards does not overlap with Bob's hand
 - Neither Alice nor Bob can control which cards they each get
 - Neither Alice nor Bob knows the other party's hand
 - Both hands should be random provided one party follows the protocol
- First solution due to Shamir, Rivest, and Adelman in 1980 (SRA protocol)
 - uses commutative encryption schemes

Commutative Encryption

Definition:

An encryption scheme is commutative if $E_{K1}[E_{K2}[M]] = E_{K2}[E_{K1}[M]]$

Given an encryption scheme that is commutative, then $D_{K1}[D_{K2}[E_{K1}[E_{K2}[M]] = M$

Most symmetric encryption scheme (such as DES and AES) are not commutative

SRA encryption scheme

- Commutative encryption
- Alice and Bob share n=pq and they both know p and q
- Alice: encryption key e₁ decryption key d₁ e₁d₁≡1 (mod (p-1)(q-1))
- Bob: encryption key e₂ decryption key d₂ e₂d₂≡1 (mod (p-1)(q-1))

The SRA Mental Poker Protocol

Setup: Alice and Bob share $M_1, M_2, ..., M_{52}$ denote the 52 cards, n=pq, p, and q. Alice has e_1, d_1 and Bob has $e_2, d2$

Protocol:

- Alice encrypts $M_1, M_2, ..., M_{52}$ using her key, i.e., computes $C_j = M_j^{e1} \mod n$ for $1 \le j \le 52$, randomly permute them and send the ciphertexts to Bob
- Bob picks 5 cards as Alice's hand and sends them to Alice
- Alice decrypts them to get her hand
- Bob picks 5 other cards as his hand, encrypts them using his key, and sends them to Alice
- Alice decrypts the 5 ciphertexts and sends to Bob
- Bob decrypts what Alice sends and gets his hand
- Both Alice and Bob reveal their key pairs to the other party and verify that the other party was not cheating.