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Lecture 11, 12, 13: Number theory. 



Prime and Composite Numbers 
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Definition 
An integer n > 1 is called a prime number if its positive 
divisors are 1 and n. 
 
Definition 
Any integer number n > 1 that is not prime, is called a 
composite number. 
 
Example 
Prime numbers: 2, 3, 5, 7, 11, 13, 17 … 
Composite numbers: 4, 6, 25, 900, 17778,  … 
 
 



Decomposition in Product of Primes 
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Theorem (Fundamental Theorem of Arithmetic) 
Any integer number n > 1 can be written as a product of 
prime numbers (>1), and the product is unique if the 
numbers are written in increasing order. 
 
 
 
 
Example:   84 = 22•3•7  
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Number of Prime Numbers 
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     Theorem 
    The number of prime numbers is infinite. 
 
    Proof: 
    consider p1, p2, … pk all existing primes and n = p1 p2 … pk+1 
    Then exists p prime s.t. p | n (fundamental theorem of arithmetic), 

and p is not one of the p1, … pk ( otherwise this will mean that p | 
1). 

    Therefore, p1, … pk were not all the prime numbers.  
 

     
 
 



Distribution of Prime Numbers 
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    Theorem  (Gaps between primes) 
    For every positive integer n, there are n or more 

consecutive composite numbers. 
 

    Proof Idea:    
    Numbers (n+1)! + 2, (n+1)! +3, …. (n+1)! + n +1 are 

composite 
 

     
 
 



Distribution of Prime Numbers 
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    Definition 
    Given real number x, then π(x) is the number of prime numbers ≤ x. 
    
    Theorem (prime numbers theorem) 
 
 
 
 
    For a very large number x, the number of prime numbers smaller than x 

is about x/ln x. 
     
 
 
 

! 
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Greatest Common Divisor (GCD) 
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     Definition - GCD 
        Given integers a > 0 and b > 0, we define gcd(a, b) = c, 

the greatest common divisor (GCD),  as the greatest 
number that divides both a and b. 

 
     Example 
       gcd(256, 100)=4 

   
     Definition- Relatively prime 
       Two integers a > 0 and b > 0 are relatively prime if  
       gcd(a, b) = 1. 
 
     Example 
       25 and 128 are relatively prime. 
 
OBS: gcd(a, b) ≤ a and gcd (a, b) ≤ b    



GCD as a Linear Combination  
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Theorem 
Given integers a, b > 0 and a > b, then d = gcd(a,b) is the  
least positive integer that can be represented as ax + by,  
x, y integer numbers. 
 
Proof: We show d ≤ t  
Let t be the smallest positive integer s.t.  t = ax + by. 
We have d | a and d | b ⇒ d | ax + by, so d | t, so d ≤ t. 
 
We now show t ≤ d.   
First t | a; otherwise, a = tu + r, 0 < r < t;  
r = a - ut = a - u(ax+by) = a(1-ux) + b(-uy), so we found 
another linear combination and r < t. Contradiction. 
Similarly t | b, so t is a common divisor of a and b, thus t ≤  gcd (a, 

b) = d.   So t = d. 
 
Example 
gcd(100, 36) = 4 = 4 × 100 – 11 × 36 = 400 - 396 



GCD and Multiplication 
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Theorem 
Given integers a, b, m >1. If 
gcd(a, m) = gcd(b, m) = 1, then gcd(ab, m) = 1 
 
Proof idea: 
ax + ym = 1 = bz + tm 
Find u and v such that  (ab)u + mv = 1 



GCD and Multiplication 
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Theorem 
Given integers a, b, and prime number p. If p | ab 

then p|a or p|b. 
 
Proof: 
Case 1: If p | a then exists k such that a = pk,  
then ab = pkb so p | ab 
 
Case 2: If p not | a. Then gcd(a,p) = 1, so exists x and 

y such that ax + py = 1, so abx + bpy = b, since p | 
abx and p | pby, p | (abx + bpy) so p| b. 



GCD and Division 
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Theorem 
Given integers a>0, b, q, r, such that  b = aq + r, 
then gcd(b, a) = gcd(a, r). 
 
Proof: 
Let gcd(b, a) = d and  gcd(a, r) = e, this means 
 
d | b and d | a, so d | b - aq , so d | r 
Since gcd(a, r) = e, we obtain d ≤ e. 
 
e | a and e | r,  so e | aq + r , so e | b,  
Since gcd(b, a) = d, we obtain e ≤ d. 
 
Therefore d = e 



Finding GCD 
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Using the Theorem: Given integers a>0, b, q, r, 
such that  b = aq + r, then gcd(b, a) = gcd(a, r). 

gcd is the last nonzero remainder 
Euclidian Algorithm 
Find gcd (b, a) 
  while a ≠0 do 
   r ← b mod a 
   b ← a 
   a ← r 
  return b 



Euclidian Algorithm Example 
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Find gcd(143, 110) 

gcd (143, 110) = 11 

143 = 110 ×  1 + 33 
110 = 33 ×  3 + 11 
33   = 11 ×  3 + 0 

 b =     a x q  + r 



Example 
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gcd(482, 1180) 

1180 = 482 x 2 + 216 
  482 = 216 x 2 +   50 
  216 =   50 x 4 +  16 
    50 =   16 x 3 +    2 
    16 =     2 x 8 +    0 
gcd (482, 1180) = 2  



Towards Extended Euclidian Algorithm 
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• Theorem: Given integers a, b > 0 and a > b, 
then d = gcd(a,b) is the least positive integer that can 
be represented as ax + by, x, y integer numbers. 

}  How to find such x and y? 

}  Hint: use  a modified version of the Euclidian 
algorithm 



Iterative method 
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 1180 = 2 x 482 + 216 
   482 = 2 x 216 + 50 
   216 = 4 x 50 + 16 
     50 = 3 x 16 + 2 
     16 = 8 x 2 + 0 
gcd (482, 1180) = 2  
 
How to write 2 as a 

function of 1180 and 
482 

q1 = 2 
q2 = 2 
q3 = 4 
q4 = 3 
q5 = 8 
 
x0 = 0, y0 = 1 
x1 = 1, y1 = 0 
xj = -qj-1xj-1 + xj-2 
yj = -qj-1yj-1 + yj-2 
axn+ byn = gcd(a,b) 
 
x2 = -q1 x1 + x0 = -2 
x3 = -q2 x2 + x1 = -2 (-2) + 1 = 5 
x4 = -q3 x3 + x2 = -4x5 + (-2) = -22 
x5 = -q4 x4 + x3 = -3 (-22) + 5 = 71 
 
Compute y5 
 
 



Extended Euclidian Algorithm 
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x=1;  y=0;  d=a;  r=0;  s=1;  t=b; 
while (t>0) { 
  q = ⎣d/t⎦ 
  u=x-qr;  v=y-qs;  w=d-qt 
  x=r;       y=s;       d=t 
  r=u;       s=v;       t=w 

} 
return (d, x, y) 

ax + by = d 
ar + bs = t 

Invariants: 



Are we there yet? 
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}  Solving linear equations 
}  CRT 



 Modulo Operation 
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rnqaqrna +!="#=   s.t. ,  mod 

! 

where 0 " r " n #1

Definition:   

 
 
Example: 
7 mod 3 = 1,     7 = 3 x 2 + 1 
-7 mod 3 = 2,   -7 = -3 x 3 + 2 



Congrent Modulo n 
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}  Examples: 
}  32 ≡ 7 mod 5 

nbnanba  mod  mod  mod =!"

a - b is a multiple of n 
n | (a-b) 
a = nk + b, for some k 



Congruence Relation 
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Theorem 
Congruence mod n is an equivalence relation: 
 

Reflexive:   a ≡ a (mod n)    
Symmetric: a ≡ b(mod n) iff b ≡ a mod n  .  
Transitive:   a ≡ b(mod n) and b ≡ c(mod n) ⇒  
                    a ≡ c(mod n) 
 



Congruence Relation Properties 
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1) If a ≡ b (mod n) and c ≡  d (mod n), then: 
       a ± c ≡ b ± d (mod n) and  
       ac ≡ bd (mod n)  
 
2) If a ≡ b (mod n) and d | n then: 
       a ≡  b (mod d) 
 
3) a ≡ b (mod n), a ≡ b (mod m) and gcd(m, n)=1, then  
    a ≡ b (mod mn) 



Linear Equation Modulo n 
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If gcd(a, n) = 1, the equation 
 
 
    has a unique solution, 0< x < n.  This solution is 

often represented as a-1 mod n 
 
Proof: if  ax1 ≡ 
 1 (mod n) and ax2 ≡ 1 (mod n),   then    a(x1-x2) ≡ 

0 (mod n),  then n | a(x1-x2),      then n | (x1-
x2),  then x1-x2=0 

 
How to compute x? 
as + nt = 1, as = -t*n +1, so s is a solution 

! 

ax "1 mod n



Examples 
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}  Solve  
 2x ≡ 1 mod 3 
 3x ≡ 1 mod 7 
 4x ≡ 1 mod 5 
 
  6x ≡ 3 mod 3 
 



Linear Equation Modulo (cont.) 
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    If gcd(a, n) = d, the equation  
 
     
 
 
    has a solution iff d | b. 

      
 
   Proof Sketch: 
   “=>” exists x such that  
          ax = qn + b; b = ax - qn 
          d divides a and n, so divides any linear combination, so d | b 
 
  “<=” d | b then b = dt, by theorem we have d = au + sn, so dt = a 

(ut) + s(nt) = b, so x = ut is a solution of  
 
                                      

nbax  mod !

! 

ax " b mod n



Examples 
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}  Which equations have solutions? 
}  6x ≡ 3 mod 3 
}  6x ≡ 2 mod 3 

}  6x ≡ 2 mod 2 
}  6x ≡ 2 mod 4 

}  482x ≡ 2 mod 1180 
}  71 x 482 + 1180 (-29) = 1 
}  71 x 1 =71 is a solution 



Solving Linear Equation Modulo  

To solve the equation  
 
     
When gcd(a,n)=1, compute x = a-1 b mod n. 
When gcd(a,n) = d >1, do the following 

•  If d does not divide b, there is no solution. 
•  Assume d|b.  Solve the new congruence, get 

x0 

•  The solutions of the original congruence are
     x0, x0+(n/d), x0+2(n/d), …, x0+(d-1)(n/

d)      (mod n). 

) (mod /)/( dndbxda !
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nbax  mod !



Examples 
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}  2x ≡ 3 mod 5 
}  Compute 2-1, by solving 2x ≡ 1 mod 5 
}  2-1 with respect to multiplication mod 5 is 3  
}  x = 3 × 3 mod 5, x = 4 

}  6x ≡ 2 mod 4 
}  3x ≡ 1 mod 2, x0= 1 
}  Solution is x0 + 4/2, x0 + 2 × 4/2 so on mod 4 
}  3, 5, 7 solutions mod 4 



Chinese Reminder Theorem  
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 Theorem 
  Let m, and n be integers s.t. gcd(m, n) = 1.  
 
     
 
 
 
 
 
 
   There exists a unique solution modulo mn  

! 

x " a  mod m
x " b modn



Chinese Reminder Theorem  
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 gcd(m, n) = 1, then there exist integers s and t such that ms
+nt=1; Note that ms ≡ 1 mod n and nt ≡ 1 mod m  

 
Idea is to show that x = bms + ant is a solution congruent to both 

eq. 
 
(bms + ant) mod m ≡ ant mod m ≡ a mod m 
(bms + ant) mod n ≡ bms mod n ≡ b mod n 
 
 
Assume that there are two solutions x and y then we obtain 
 
x ≡ y mod m and x ≡ y mod n, so x-y is a multiple of both m and 

n, so a multiple of mn 
 
So x ≡ y mod mn 
 



Example of CRT 
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Solve x ≡ 3 mod 7 and x ≡ 5 mod 15 
Since 80 ≡ 3 mod 7 and 80 ≡ 3 mod 15, then 80 is a 

solution, solution is uniquely determined modulo 7 * 17 
= 105 

 
How to do it: list all numbers modulo that are 5 modulo15 

then check which ones are 3 modulo 7. 
Or solve the extended euclidian algorithm, get s and t, 

then compute the solution x = bms + amt 



Chinese Reminder Theorem (CRT) 
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 Theorem 
  Let n1, n2, ,,, nk be integers s.t. gcd(ni, nj) = 1 for 

any i ≠ j.  
 
     
 
 
 
 
 
 
   There exists a unique solution modulo   

 n = n1 n2 … nk 

kk nax

nax
nax

mod
...

mod
 mod 

22

11
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!
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Are we there yet? 
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}  Fermat’s Little Theorem 



The Euler Phi Function 
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Definition 
  Given an integer n, Φ(n)  is the number of all 

numbers  a  such that 0 <  a < n  and  a  is 
relatively prime to n  (i.e., gcd(a, n)=1). 

Theorem:             If gcd
(m,n) = 1, Φ(mn) = Φ(m) Φ(n) 



The Euler Phi Function 
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Theorem: Formula for Φ(n) 
Let p be prime, e, m, n be positive integers 
     1) Φ(p) = p-1 
     2) Φ(pe) = pe – pe-1 

 

     3) If                                            then 
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Fermat’s Little Theorem 
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   Fermat’s Little Theorem           
    If p is a prime number and a is a natural 

number that is not a multiple of p, then  
                          ap-1 ≡ 1 (mod p) 
   Proof idea: 
}  gcd(a, p) = 1, then the set { i ⋅ a mod p} 0< i < p is a 

permutation of the set {1, …, p-1}. 
}  otherwise we have 0<n<m<p s.t. ma mod p = na mod p, and 

thus p| (ma - na) ⇒ p | (m-n), where 0<m-n < p )  
}  a × 2a × … ×(p-1)a  = (p-1)! ap-1  ≡ (p-1)! (mod p) 
   Since gcd((p-1)!, p) = 1, we obtain ap-1 ≡ 1 (mod p) 



Euler’s Theorem 
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     Euler’s Theorem 
    Given integer n > 1, such that gcd(a, n) = 1   then        
                                aΦ(n) ≡ 1 (mod n) 
    Corollary 
    Given integer n > 1, such that gcd(a, n) = 1 then   
    aΦ(n)-1 mod n is a multiplicative inverse of a mod n. 
 
    Corollary 
    Given integer n > 1, x, y, and a positive integers with 

gcd(a, n) = 1. If x ≡ y (mod Φ(n)), then  
                               ax ≡ ay (mod n). 



Consequence of Euler’s Theorem 
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Principle of Modular Exponentiation 
   Given a, n, x, y with n ≥ 1 and gcd(a,n)=1, if x 
≡ y (mod  φ(n)), then  

                        ax ≡ ay (mod n)  
      
    Proof idea: 
    ax =  akφ(n) + y  = ay (a φ(n))k 
   by applying Euler’s theorem we obtain 
   ax ≡ ay (mod p) 



Groups 
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Definition 
A group (G, *) is a set G on which a binary operation is defined 
which satisfies the following axioms: 
 Closure:       For all a, b ∈ G, a * b  ∈ G. 
 Associative: For all a, b, c ∈ G, (a * b)* c = a * (b * c). 
 Identity:       ∃ e ∈G s.t. for all a ∈ G, a* e = a = e * a. 
 Inverse:       For all a ∈ G, ∃ a-1 ∈ G s. t. a* a-1 = a-1* a=e. 
 
Example 
(Zn, +) is a group, where + is addition modulo n 
(Zp, *) = is a group, where * is multiplication modulo p 
 
 

 
 

 



Groups (cont.) 
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Definition: 
A group (G, *) is called an abelian group if operation * is a 
commutative operation: 

Commutative:  For all a, b ∈ G, a * b = b * a. 
Example: 
(R, +) is an abelian group 
 
Definition 
A group G is cyclic if ∃ g ∈G s.t. any h ∈G can be writen 
h = gi. 
g is called group generator. 
  

Example 
Cyclic groups: (Z2, *), (Z3, *) 
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Definition 
 The order of a group G, ord(G),  is defined as the 
 number of elements in the  group.  
 

 Definition 
 A group G is finite, if |G| = ord(G), is finite. 
  
We can show that the order of (Zn, *) is Φ(n) 
   
Example: 
What is the order of (Z*7, *), (Z*700, *) ? 

Order of a Group  
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Definition 
  The order of an element g from a finite group G, is the 
  smallest power of n such that gn=e , where e is the  
  identity element. 
 
Example: 
What is the order of 2 in (Z*5, *)?  
It is 4 because 24 ≡ 1 mod 5 
 
What is the order of 3 in (Z*10, *)?  
It is 4 because 34 ≡ 1 mod 10 
OBS: order of an element  modulo n =< Φ(n) 

Order of an Element 



Primitive Root 
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   Definition 
    An integer g whose order modulo n is Φ(n) is called a 

primitive root modulo n. 

   Example 
(Z7*, *), 56 ≡ 1 mod 7 and Φ(7) = 6 
56 = 15625 
(Z8*, *) does not have a primitive root 
 
FACT 
The group G = <Zn*, *> has primitive roots only if n is 2, 4, pt or 

2pt where p is an odd integer. 
 



Primitive Roots and Cyclic Groups 
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   FACT 
    If a group (Zn*, *) has a primitive root, it is cyclic. Each 

primitive root is a generator and can be used to create the 
whole set. Zn* = {g1, g2, … g Φ(n)} 

   FACT 
    If the group (Zn*, *) has any primitive root, the number of 

primitive roots is Φ(Φ(n)) 

    OBSERVATION 
    (Zn*, *) is cyclic if it has primitive roots 
    (Zp*, *) is always cyclic 



Discrete Logarithm 
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   Definition 
    Let G = (Zn*, *) be a cyclic group with generator (primitive 

root) g. Then every element a of G can be written as gk ≡ a 
mod n.  

    k is called the index of a base g modulo n, or the discrete 
logarithm of a to base g modulo n. 

 
    Discrete logarithms behave similar with traditional 

logarithms. 
     logg1 ≡ 0 mod Φ(n) 
     loggxy ≡ (loggx + loggy) mod Φ(n)  
     loggxk ≡ k loggy mod Φ(n) 


