Cristina Nita-Rotaru

CS355: Cryptography

Lecture 11, 12, 13: Number theory.

Prime and Composite Numbers

Definition

An integer n > I is called a prime number if its positive divisors are I and n.

Definition

Any integer number n > I that is not prime, is called a composite number.

Example

Prime numbers: 2, 3, 5, 7, 11, 13, 17 ... Composite numbers: 4, 6, 25, 900, 17778, ...

Decomposition in Product of Primes

Theorem (Fundamental Theorem of Arithmetic) Any integer number n > I can be written as a product of prime numbers (>I), and the product is unique if the numbers are written in increasing order.

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

Example: $84 = 2^2 \cdot 3 \cdot 7$

Cristina Nita-Rotaru

Number of Prime Numbers

Theorem

The number of prime numbers is infinite.

Proof:

consider $p_1, p_2, ..., p_k$ all existing primes and $n = p_1 p_2 ... p_k+1$ Then exists p prime s.t. p | n (fundamental theorem of arithmetic), and p is not one of the $p_{1, ...} p_k$ (otherwise this will mean that p | 1).

Therefore, $p_1, \ldots p_k$ were not all the prime numbers.

Distribution of Prime Numbers

Theorem (Gaps between primes)

For every positive integer n, there are n or more consecutive composite numbers.

Proof Idea:

Numbers (n+1)! + 2, (n+1)! +3, (n+1)! + n +1 are composite

5

Distribution of Prime Numbers

Definition

Given real number x, then $\pi(x)$ is the number of prime numbers $\leq x$.

Theorem (prime numbers theorem)

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$$

For a very large number x, the number of prime numbers smaller than x is about x/ln x.

Greatest Common Divisor (GCD)

Definition - GCD

Given integers a > 0 and b > 0, we define gcd(a, b) = c, the greatest common divisor (GCD), as the greatest number that divides both a and b.

Example gcd(256, 100)=4

Definition- Relatively prime

Two integers a > 0 and b > 0 are relatively prime if gcd(a, b) = 1.

Example

25 and 128 are relatively prime.

```
OBS: gcd(a, b) \le a and gcd(a, b) \le b
```

GCD as a Linear Combination

Theorem

Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers.

Proof: We show $d \le t$ Let t be the smallest positive integer s.t. t = ax + by. We have d | a and d | b \Rightarrow d | ax + by, so d | t, so d $\le t$.

We now show $t \le d$. First t | a; otherwise, a = tu + r, 0 < r < t; r = a - ut = a - u(ax+by) = a(1-ux) + b(-uy), so we found another linear combination and r < t. Contradiction. Similarly t | b, so t is a common divisor of a and b, thus $t \le gcd$ (a, b) = d. So t = d.

Example

 $gcd(100, 36) = 4 = 4 \times 100 - 11 \times 36 = 400 - 396$

GCD and Multiplication

Theorem

Given integers a, b, m > 1. If gcd(a, m) = gcd(b, m) = 1, then gcd(ab, m) = 1

Proof idea: ax + ym = 1 = bz + tm Find u and v such that (ab)u + mv = 1

9

GCD and Multiplication

Theorem

Given integers a, b, and prime number p. If p | ab then p|a or p|b.

Proof:

Case 1: If p | a then exists k such that a = pk, then ab = pkb so p | ab

Case 2: If p not | a. Then gcd(a,p) = 1, so exists x and y such that ax + py = 1, so abx + bpy = b, since p | abx and p | pby, p | (abx + bpy) so p| b.

GCD and Division

Theorem

```
Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r).
```

```
Proof: Let gcd(b, a) = d and gcd(a, r) = e, this means
```

```
d | b and d | a, so d | b - aq , so d | r
Since gcd(a, r) = e, we obtain d \le e.
```

```
e | a and e | r, so e | aq + r, so e | b,
Since gcd(b, a) = d, we obtain e \le d.
```

```
Therefore d = e
```

Finding GCD

Using the Theorem: Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r). gcd is the last nonzero remainder **Euclidian Algorithm** Find gcd (b, a) while a $\neq 0$ do $r \leftarrow b \mod a$ b ← a a ← r *return* b

Euclidian Algorithm Example

Find gcd(143, 110) $b = a \times q + r$ $143 = 110 \times 1 + 33$ $110 = 33 \times 3 + 11$ $33 = 11 \times 3 + 0$

gcd(143, 110) = 11

Cristina Nita-Rotaru

Example

gcd(482, 1180)

$$1180 = 482 \times 2 + 216$$
$$482 = 216 \times 2 + 50$$
$$216 = 50 \times 4 + 16$$
$$50 = 16 \times 3 + 2$$
$$16 = 2 \times 8 + 0$$
$$gcd (482, 1180) = 2$$

Towards Extended Euclidian Algorithm

- Theorem: Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers.
- How to find such x and y?
- Hint: use a modified version of the Euclidian algorithm

Iterative method

 $1180 = 2 \times 482 + 216$ $482 = 2 \times 216 + 50$ $216 = 4 \times 50 + 16$ $50 = 3 \times 16 + 2$ $16 = 8 \times 2 + 0$ gcd (482, 1180) = 2

How to write 2 as a function of 1180 and 482

$$q_{1} = 2$$

$$q_{2} = 2$$

$$q_{3} = 4$$

$$q_{4} = 3$$

$$q_{5} = 8$$

$$x_{0} = 0, y_{0} = 1$$

$$x_{1} = 1, y_{1} = 0$$

$$x_{j} = -q_{j-1}x_{j-1} + x_{j-2}$$

$$y_{j} = -q_{j-1}y_{j-1} + y_{j-2}$$

$$ax_{n} + by_{n} = gcd(a,b)$$

$$x_{2} = -q_{1} \times_{1} + x_{0} = -2$$

$$x_{3} = -q_{2} \times_{2} + x_{1} = -2 (-2) + 1 = 5$$

$$x_{4} = -q_{3} \times_{3} + x_{2} = -4x5 + (-2) = -22$$

$$x_{5} = -q_{4} \times_{4} + x_{3} = -3 (-22) + 5 = 71$$

Compute y₅

Cristina Nita-Rotaru

Extended Euclidian Algorithm

```
x=1; y=0; d=a; r=0; s=1; t=b;

while (t>0) {

q = \lfloor d/t \rfloor

u=x-qr; v=y-qs; w=d-qt

x=r; y=s; d=t

r=u; s=v; t=w

}

return (d, x, y)
```

Are we there yet?

Solving linear equations

CRT

Modulo Operation

Definition:

$$a \mod n = r \Leftrightarrow \exists q, \text{s.t. } a = q \times n + r$$

where $0 \le r \le n - 1$

Example:

$$7 \mod 3 = 1$$
, $7 = 3 \times 2 + 1$

$$-7 \mod 3 = 2, -7 = -3 \times 3 + 2$$

Congrent Modulo n

 $a \equiv b \mod n \Leftrightarrow a \mod n = b \mod n$

- a b is a multiple of n n | (a-b) a = nk + b, for some k
- Examples:
- $\bullet 32 \equiv 7 \mod 5$

Congruence Relation

Theorem

Congruence mod n is an equivalence relation:

```
Reflexive: a \equiv a \pmod{n}
Symmetric: a \equiv b \pmod{n} iff b \equiv a \mod n.
Transitive: a \equiv b \pmod{n} and b \equiv c \pmod{n} \Rightarrow
a \equiv c \pmod{n}
```

Congruence Relation Properties

I) If
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then:
 $a \pm c \equiv b \pm d \pmod{n}$ and
 $ac \equiv bd \pmod{n}$

2) If
$$a \equiv b \pmod{n}$$
 and $d \mid n$ then:
 $a \equiv b \pmod{d}$

Linear Equation Modulo n

```
If gcd(a, n) = 1, the equation

ax \equiv 1 \mod n

has a unique solution, 0 < x < n. This solution is

often represented as a^{-1} \mod n

Proof: if ax_1 \equiv

1 (mod n) and ax_2 \equiv 1 \pmod{n}, then a(x_1-x_2) \equiv

0 (mod n), then n | a(x_1-x_2), then n | (x_1-x_2), then x_1-x_2=0
```

How to compute x? as + nt = 1, as = $-t^n + 1$, so s is a solution

Examples

- Solve
 2x ≡ 1 mod 3
 3x ≡ 1 mod 7
 4x ≡ 1 mod 5
 - $6x \equiv 3 \mod 3$

Linear Equation Modulo (cont.)

If gcd(a, n) = d, the equation

$ax \equiv b \mod n$

has a solution **iff d | b**.

Proof Sketch: "=>" exists x such that ax = qn + b; b = ax - qn d divides a and n, so divides any linear combination, so d | b

"<=" d | b then b = dt, by theorem we have d = au + sn, so dt = a (ut) + s(nt) = b, so x = ut is a solution of $ax \equiv b \mod n$

Examples

Which equations have solutions?

- $6x \equiv 3 \mod 3$
- $6x \equiv 2 \mod 3$
- $6x \equiv 2 \mod 2$
- $6x \equiv 2 \mod 4$
- $482x \equiv 2 \mod 1180$
- ▶ 71 x 482 + 1180 (-29) = 1
- 71 x 1 =71 is a solution

Solving Linear Equation Modulo

To solve the equation

 $ax \equiv b \mod n$

When gcd(a,n)=1, compute $x = a^{-1} b \mod n$. When gcd(a,n) = d > 1, do the following

- If d does not divide b, there is no solution.
- Assume d|b. Solve the new congruence, get x₀

 $(a/d)x \equiv b/d \pmod{n/d}$

 The solutions of the original congruence are x₀, x₀+(n/d), x₀+2(n/d), ..., x₀+(d-1)(n/d) (mod n).

Examples

- $2x \equiv 3 \mod 5$
- Compute 2⁻¹, by solving $2x \equiv 1 \mod 5$
- 2⁻¹ with respect to multiplication mod 5 is 3
- x = 3 × 3 mod 5, x = 4
- $\bullet 6x \equiv 2 \mod 4$
- $3x \equiv 1 \mod 2$, $x_0 = 1$
- Solution is $x_0 + 4/2$, $x_0 + 2 \times 4/2$ so on mod 4
- 3, 5, 7 solutions mod 4

Chinese Reminder Theorem

Theorem Let m, and n be integers s.t. gcd(m, n) = 1.

 $x \equiv a \mod m$ $x \equiv b \mod n$

There exists a unique solution modulo mn

Chinese Reminder Theorem

gcd(m, n) = 1, then there exist integers s and t such that ms +nt=1; Note that ms = 1 mod n and nt = 1 mod m

- Idea is to show that x = bms + ant is a solution congruent to both eq.
- $(bms + ant) \mod m \equiv ant \mod m \equiv a \mod m$ $(bms + ant) \mod n \equiv bms \mod n \equiv b \mod n$

Assume that there are two solutions x and y then we obtain

x = y mod m and x = y mod n, so x-y is a multiple of both m and n, so a multiple of mn

So $x \equiv y \mod mn$

Example of CRT

Solve x = 3 mod 7 and x = 5 mod 15 Since 80 = 3 mod 7 and 80 = 3 mod 15, then 80 is a solution, solution is uniquely determined modulo 7 * 17 = 105

How to do it: list all numbers modulo that are 5 modulo15 then check which ones are 3 modulo 7.Or solve the extended euclidian algorithm, get s and t, then compute the solution x = bms + amt

Chinese Reminder Theorem (CRT)

Theorem Let $n_1, n_2, ..., n_k$ be integers s.t. $gcd(n_i, n_j) = 1$ for any $i \neq j$. $x \equiv a_1 \mod n_1$ $x \equiv a_2 \mod n_2$...

$$x \equiv a_k \mod n_k$$

There exists a unique solution modulo $n = n_1 n_2 ... n_k$

Are we there yet?

Fermat's Little Theorem

The Euler Phi Function

Definition

Given an integer n, $\Phi(n)$ is the number of all numbers a such that 0 < a < n and a is relatively prime to n (i.e., gcd(a, n)=1).

Theorem:

If gcd

 $(m,n) = 1, \Phi(mn) = \Phi(m) \Phi(n)$

The Euler Phi Function

Theorem: Formula for $\Phi(n)$

Let p be prime, e, m, n be positive integers

1)
$$\Phi(p) = p-1$$

2) $\Phi(p^e) = p^e - p^{e-1}$

3) If

then

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

$$\Phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\dots(1 - \frac{1}{p_k})$$

Cristina Nita-Rotaru

Fermat's Little Theorem

Fermat's Little Theorem

If *p* is a prime number and *a* is a natural number that is not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

Proof idea:

- gcd(a, p) = 1, then the set { i · a mod p} 0< i < p is a permutation of the set {1, ..., p-1}.</p>
 - otherwise we have 0<n<m<p s.t. ma mod p = na mod p, and thus p| (ma - na) ⇒ p | (m-n), where 0<m-n < p)
- ► $a \times 2a \times ... \times (p-1)a = (p-1)! a^{p-1} \equiv (p-1)! \pmod{p}$ Since gcd((p-1)!, p) = 1, we obtain $a^{p-1} \equiv 1 \pmod{p}$

Euler's Theorem

Euler's Theorem

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1 \pmod{n}$

Corollary

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)-1} \mod n$ is a multiplicative inverse of a mod n.

Corollary

Given integer n > 1, x, y, and a positive integers with gcd(a, n) = 1. If $x \equiv y \pmod{\Phi(n)}$, then $a^{x} \equiv a^{y} \pmod{n}$.

Consequence of Euler's Theorem

Principle of Modular Exponentiation

Given a, n, x, y with $n \ge 1$ and gcd(a,n)=1, if x \equiv y (mod $\phi(n)$), then

 $a^x \equiv a^y \pmod{n}$

Proof idea: $a^{x} = a^{k\phi(n) + y} = a^{y} (a^{\phi(n)})^{k}$ by applying Euler's theorem we obtain $a^{x} \equiv a^{y} \pmod{p}$

Groups

Definition

A group (G, *) is a set G on which a binary operation is defined which satisfies the following axioms: Closure: For all $a, b \in G, a * b \in G$.

Associative: For all a, b, $c \in G$, (a * b)*c = a * (b * c).

- Identity: $\exists e \in G$ s.t. for all $a \in G$, $a^* e = a = e^* a$.
- Inverse: For all $a \in G$, $\exists a^{-1} \in G$ s. t. $a^* a^{-1} = a^{-1*} a^{-1} = a^{-1$

Example

 $(Z_n, +)$ is a group, where + is addition modulo n $(Z_{p,*})$ = is a group, where * is multiplication modulo p Groups (cont.)

Definition:

A group (G, *) is called an *abelian group* if operation * is a commutative operation:

Commutative: For all $a, b \in G$, a * b = b * a.

Example:

(R, +) is an abelian group

Definition

A group G is cyclic if $\exists g \in G$ s.t. any $h \in G$ can be writen $h = g^{i}$.

g is called group generator.

Example

Cyclic groups: (Z₂, *), (Z₃, *)

Order of a Group

Definition

The *order* of a group G, ord(G), is defined as the number of elements in the group.

Definition

A group G is *finite*, if |G| = ord(G), is finite.

We can show that the order of $(Z_n, *)$ is $\Phi(n)$

Example:

What is the order of $(Z_{700}^{*}, *), (Z_{700}^{*}, *)$?

Order of an Element

Definition

The order of an element g from a finite group G, is the smallest power of n such that $g^n=e$, where e is the identity element.

Example:

What is the order of 2 in $(Z_5^*, *)$? It is 4 because $2^4 \equiv 1 \mod 5$

What is the order of 3 in $(Z_{10}^*, *)$? It is 4 because $3^4 \equiv 1 \mod 10$ OBS: order of an element modulo n =< $\Phi(n)$

Primitive Root

Definition

An integer g whose order modulo n is $\Phi(n)$ is called a primitive root modulo n.

Example

 $(Z_7^*, *), 5^6 \equiv 1 \mod 7 \text{ and } \Phi(7) = 6$ $5^6 = 15625$ $(Z_8^*, *) \text{ does not have a primitive root}$

FACT

The group $G = \langle Z_n^*, * \rangle$ has primitive roots only if n is 2, 4, p^t or 2p^t where p is an odd integer.

Primitive Roots and Cyclic Groups

FACT

If a group $(Z_n^*, *)$ has a primitive root, it is cyclic. Each primitive root is a generator and can be used to create the whole set. $Z_n^* = \{g_1, g^2, \dots g^{\Phi(n)}\}$

FACT

If the group $(Z_n^*, *)$ has any primitive root, the number of primitive roots is $\Phi(\Phi(n))$

OBSERVATION

 $(Z_n^*, *)$ is cyclic if it has primitive roots $(Z_p^*, *)$ is always cyclic

Discrete Logarithm

Definition

Let G = (Z_n^* , *) be a cyclic group with generator (primitive root) g. Then every element a of G can be written as $g^k \equiv a \mod n$.

k is called the index of a base g modulo n, or the discrete logarithm of a to base g modulo n.

Discrete logarithms behave similar with traditional logarithms.

 $log_g 1 \equiv 0 \mod \Phi(n)$ $log_g xy \equiv (log_g x + log_g y) \mod \Phi(n)$ $log_g x^k \equiv k \log_g y \mod \Phi(n)$