
CS240: Programming in C

Lecture 9: Structures

Cristina Nita-Rotaru Lecture 9/ Fall 2013 1

C Structures

l  Functions: allow us to organize the
structure of the code

l  Structures: allow us to organize the
variables in a more logical way

Cristina Nita-Rotaru Lecture 9/ Fall 2013 2

Structures in C are collections of
one or more related variables,
possibly of different types, for
convenient handling

Java vs C Structures: Example

In C:
struct Slot {
 int x;
 int y;
 int direction;
};

Cristina Nita-Rotaru Lecture 9/ Fall 2013 3

Java Example:
class Slot {

 int x;
 int y;
 int direction;

methods ...
}

Slot is the name (tag) of the structure
x, y, direction are members of the structure

Structures and types

l  Tag name used after struct introduces a
new datatype

l  sizeof operator works on struct
l  Continuing the example from previous

slide …
 struct Slot s1, s2;

Cristina Nita-Rotaru Lecture 9/ Fall 2013 4

struct tag {
 list of variables
}

Accessing members of a structure

Consider declarations
struct Slot s1, s2;
int i;

Allowed
i = s1.x;

Cristina Nita-Rotaru Lecture 9/ Fall 2013 5

Structures and pointers

l  We can define pointers to structures
 struct Slot * s1_ptr = NULL;
 struct Slot s2, s1;

l  Operate with them
 s1_ptr = (struct Slot *)
malloc(sizeof(struct Slot))

free(s1_ptr);
s1_ptr = &s2;
s1 = s2;

Cristina Nita-Rotaru Lecture 9/ Fall 2013 6

Struct and sizeof

l  If the structure contains dynamically allocated
members, the size of whole struct may not equal
sum of its parts

 struct word {
 char * c;
 int length;
 }

l  Sizeof(struct word) will return …8 bytes. But if
char points to some string that was dynamically
allocated, the memory occupied by the struct
word will be bigger.

Cristina Nita-Rotaru Lecture 9/ Fall 2013 7

Memory layout for a structure

l  Data alignment: when cpu accesses the
memory reads more than one byte,
usually 4 bytes on a 32-bit platform.

l  What if the data structure is not a
multiple of 4? Padding.

l  Many computer languages and computer
language implementations handle data
alignment automatically.

Cristina Nita-Rotaru Lecture 9/ Fall 2013 8

Structures and … structures

l  A structure can contain a member of
another structure
 struct Position{
 int x;
 int y
}
struct Slot {
 struct Position pos;
 int direction;
}

Cristina Nita-Rotaru Lecture 9/ Fall 2013 9

Structures and … structures

l  A structure can not refer itself (contain a
member of the same structure) UNLESS
it is a pointer – such structures are called
self-referential structures.

 struct tnode {
 char * word;
 int count;
 struct tnode *left;
 struct tnode *right;

 }

Cristina Nita-Rotaru Lecture 9/ Fall 2013 10

Structures and functions

l  A structure can be initialized, copied,
taking its address and accessing its
members;

l  Structures can not be compared
l  Functions can return struct

Cristina Nita-Rotaru Lecture 9/ Fall 2013 11

Structures and functions

struct point {
 int x;
 int y

}
 struct point createpoint(int x, int y) {
 struct point temp;

 temp.x = x;
 temp.y = y;
 return temp;

}
struct point p1 = createpoint(0, 0);

Cristina Nita-Rotaru Lecture 9/ Fall 2013 12

Typedef

l  Allows us to create new data name
types;

typedef int Length;
Length l1, l2;

Cristina Nita-Rotaru Lecture 9/ Fall 2013 13

Typedef and structures

typedef struct {
 int x;
 int y;
} Position;

Notice the difference !!! NO struct needed

when using the type.
Position p1, p1;

Cristina Nita-Rotaru Lecture 9/ Fall 2013 14

Structures summary

l  Holds multiple items as a unit
l  Can be returned from functions
l  Can be passed to functions
l  They can not be compared
l  A structure can include

§  a pointer to itself, but not a member of the
same structure

§  a member of another structure, the latter has
to have the prototype declared before

Cristina Nita-Rotaru Lecture 9/ Fall 2013 15

Structures summary

l  Member access
§  Direct: s.member
§  Indirect: s_ptr->member
§  Dot operator . has precedence over

indirection -> : agenda.contact->name

l  Use const to make a structure read-only

Cristina Nita-Rotaru Lecture 9/ Fall 2013 16

Practice

Write a linked list using dynamic

memory allocation and
structures.

Cristina Nita-Rotaru Lecture 9/ Fall 2013 17

Readings this lecture

K&R Chapter 6 till 6.7

Cristina Nita-Rotaru Lecture 9/ Fall 2013 18

